Early Lenoir engine (1860).—The motor (Fig. 1) resembled in external appearance a horizontal double-acting steam engine. This design was in great favour at that time, being copied from the steam engine, and was to a certain extent suitable for use with an explosive gas instead of steam. The valve chest is cylindrical and the valves themselves flat, and work off two eccentrics; ignition is effected by an electric spark from a Ruhmkorff coil, which passes through the gas in the cylinder when the piston is commencing the second half of the forward stroke. The exploded gases having done their work are driven out through the exhaust in the return stroke, during which work is being done by a similar explosion on the other side of the piston. A water jacket prevents the cylinder walls from becoming overheated. This arrangement is therefore double-acting, but a compression of the explosive gas is not possible without the use of a second cylinder. It has been abandoned because regularity of working is only obtained at the expense of economy, and by using both The Bisschop gas engine.—This motor (Fig. 2), based on a mixed principle, uses the explosion to do work during the forward stroke, and in the return the atmosphere exerts an excess of pressure on the other side of the piston, as in the Otto and Langen atmospheric engine which we have previously mentioned. In its time the Bisschop gas engine obtained a great measure of success, but it has now almost completely disappeared. It was, however, well thought out and constructed; the cylinder was vertical, and relied on longitudinal corrugations, and the air to keep it cool. Above the cylinder was placed a cylindrical guide; a connecting rod and cross-head formed FranÇois motor.—This type, which is now quite obsolete, was somewhat similar in character to the last, but rather more complicated and perfect. The crank shaft was not in a line with the cylinder, and was connected by two connecting rods to the cross-head. Two fly-wheels were BÉnier gas engine.—This motor was the first conceived by the inventors of the combined gas plant and engine which we will describe later, and is extremely simple. This piston rod is connected to the crank in a manner similar to a beam engine (Fig. 3). Both the admission of the gases and their ignition are accomplished by a single spring valve worked by a cam on the crank-shaft. The cylinder, which is vertical and inverted, draws in the gases for half the forward stroke, and then the valve, which has moved still further forward, brings a flame opposite the admission port and ignites the mixture; a small auxiliary Forest gas engine (Fig. 4).—This motor, being of the single-acting type without compression, had at one time a considerable sale, being used where only a small power was required. The rectilinear motion is changed into a rotary one by means of an Oliver Evans beam, and a connecting rod which returned alongside of the cylinder to the crank-shaft and fly-wheel, which are placed at the back. Ignition is obtained by a burner which is re-lit by a smaller one at each stroke, and the cylinder is cooled Economic motor.—Constructed in New York. This engine is another example of the early attempts to obtain economy without compression. As a rule they were not constructed of more than half horse-power size, and the general arrangement is ingenious, but rather more complicated than those which we have so far spoken of. The piston rod is guided by being attached to one end of a lever, connected with crank by means of a vertical connecting rod. The cylinder is grooved, and cooled by the circulation of the air round it, and constancy of speed is obtained by a centrifugal governor, which cuts off the supply of gas when the speed is too high. The engine seems to have given some very fair results. Lentz gas engine.—It is difficult to conceive a more simple mechanism than is to be found in this motor. The supply of gas is drawn into the cylinder by an open valve, and a gas flame situated in this admission port ignites the explosive gases. The force of the explosion closes the admission valve, and on the return stroke a cam opens an exhaust port situated underneath the cylinder. There is no water jacket, but the cylinder is formed of two parts connected together by a non-conducting joint. In order to smooth down the jerk of the explosion the head of the connecting rod slides in a groove, and is kept pressed against the crank-pin by a spring, the result being that Group II., Class I.—One cycle per revolution.Dugald-Clerk gas engine.—In the ideal motor we should have at least one explosion per revolution of the fly-wheel, which is not the case in the Otto cycle. For this reason many inventors have tried to construct gas engines with one cycle per revolution, but experience has taught us that though they may be mechanically more simple, they lose in efficiency what they gain in simplicity, and in spite of many eminent inventors attempting to solve the problem. Even the best-designed motors of this type have been unable to hold their own against the Otto cycle because they are not as efficient. The first attempt was made by Dugald-Clerk in 1881. His engine is simple in the extreme, containing no gear-wheels, and working steadily and noiselessly at a fairly constant speed (Fig. 5). There are two cylinders of equal diameter placed side by side, and projecting over the end of a cast-iron bed-plate. The first of these is the motive cylinder in which the explosion takes place; the other is used for compressing the explosive mixture, this compression taking place in the Otto cycle in the motive cylinder itself. This secondary cylinder also serves for another purpose; it draws in a certain volume of air directly after the explosion, which is afterwards driven through the motive cylinder, effectively clearing out the waste gases. The Owing to the fact that this motor was not as efficient as those of the Otto type it never became a commercial success, and it is doubtful if any are working at the present date. Early Stockport gas engine.—The working of this motor affords a good example of British ingenuity. The compression cylinder is situated behind the motive cylinder, being a prolongation of it on the same axis; the two are firmly bolted together end on. The active piston is in front and connected to the crank, drawing behind it the piston of the compression chamber. Each cylinder has a separate sliding valve. The rear cylinder having aspirated and compressed a volume of the explosive gases, they are passed into the motive cylinder through a sliding valve which also serves to ignite them. The waste gas escapes into the air by a special valve. The aspiration and compression take place in the auxiliary cylinder once in every revolution of the crank, and besides, the motive piston also compresses the gases a trifle before the explosion takes place. The exhaust valve is made to open slightly before the piston reaches the end of its stroke. The motor was rather inefficient, and since its appearance a new type has been brought out with an Otto cycle which we will describe later on. Benz motor (Fig. 6).—In this motor the inventor attempts to drive out the whole of the exhaust gases before the second half of the backward stroke of the piston is reached. To do this he injects a certain volume of air under pressure, driving out the burnt gases and substituting itself in their place. Before the end of this return stroke a small auxiliary pump introduces the requisite amount of coal gas, which is then compressed during the rest of the stroke. The ignition is effected by a small magneto machine driven by the engine itself, the sparks being Baldwin gas engine.—The cycle of this engine is somewhat similar to that of the Benz motor, one side of the piston being used for expansion and the other side for compression. Part of the bed-plate casting is arranged so as to form a reservoir for the compressed gases. The coal gas is also admitted into this vessel, so that it contains an explosive mixture. As the vessel is only made of cast-iron this arrangement is rather dangerous. There are three valves, the admission valve being regulated by the governor. The power developed is, therefore, always kept proportional to the demand, and the constancy of speed is sufficient to warrant the use of these engines for running dynamos for electric light. The ignition is by an electric spark, and is generally obtained from some extra apparatus, such as accumulators or batteries, and an induction coil. The engine is constructed by Messrs. Otis Bros. of New York. De Ravel motors.—The first motor constructed by M. de Ravel was exhibited in Paris in 1878, and was of the oscillating cylinder type, with a variable centre of gravity. The explosion drove up a heavy piston whose rod was directly connected to the crank-pin. The revolution of the crank-pin caused the whole cylinder to move in the same manner as that of the early oscillating steam engines. Midland motor (Taylor).—Constructed in Nottingham, this engine is of the horizontal double-cylinder type. One cylinder compresses the explosive mixture and passes it on to the other, where it is ignited and does work. The cranks connected to the two pistons are placed 65° apart, and a complete cycle in the cylinders is performed every revolution. The makers of this engine claim a consumption of only 600 litres of gas per horse-power hour. Campbell gas engine.—The mechanism of this engine is very much like that of the Dugald-Clerk motor, two cylinders being placed side by side. The utilization of the heat is, however, far superior, and only about 500 litres of coal gas per horse-power hour are required. A result which the inventor of this type of cycle never succeeded in obtaining, but as far as we know the motor has never had Otto gas engine (Fig. 7).—The principle on which this engine is based is known as the Otto cycle, named after Dr. Otto, but first suggested by Beau de Rochas. Since the patents have expired numerous copies and imitations have been brought out, but very few surpass or even equal some of the earlier types. The explanation of the working of the Otto motor, which we are about to give, will save us from returning to it in the descriptions of analogous types brought out after this famous system. The cylinder is continued in a backward direction so as to form a compression chamber, into which the mixture of gas and air is drawn during the forward stroke of the piston. The mixture is compressed The Otto gas engine is a marvel of simplicity from a mechanical point of view, very much more so than a Corliss steam engine for instance. The admission and exhaust valves are worked by cams, and the ignition takes place under pressure. The governor is sometimes of the centrifugal type, and at others of the inertia type, but in both it is a case of all or nothing, the supply being completely shut off if the engine is going too fast. The connecting rod joins the crank to the piston rod by a cross-head running into a bored out-guide. It is necessary to have a heavy fly-wheel, because, as only one explosion takes place per two revolutions, the fly-wheel must store up enough energy during that explosion to carry it through the rest of the cycle. Many different types of Otto gas engines now exist, some having two cylinders and a single crank, and others two fly-wheels, in order to ensure constancy of speed for driving dynamos. Dr. Otto devised a compound gas engine, but it did not succeed, and also a cheaper vertical type (Fig. 8), which is very convenient for small workshops. Since the invention of carburetted air the creator of the Otto cycle has devised another motor for use with gasoline instead of coal gas. Otto devised the first practical gas engine and opened up the path for others, who, following in his footsteps, have confined their attention to improvement of detail. Some have undoubtedly succeeded, and by avoiding waste of heat, and by raising the initial temperature of the gases, they have considerably reduced the consumption of fuel. We shall now discuss different types of motors which have appeared during the last fifteen years, confining ourselves to the really successful ones. Second Lenoir motor.—Twenty-five years separated the appearances of the first and second Lenoir motors, and during this time M. Lenoir gained a great deal of practical experience, so that if reference be made to Figs. 1 and 9 they will be seen to have very little in common. In the later type the cylinder projects over the back of the bed-plate, and is provided with deep circular grooves on the Koerting-Lieckfeld motor.—The first of these motors Andrews’ motor.—The governing apparatus in this engine is exceedingly simple and ingenious, consisting of a weight fixed to an oscillating lever which controls the admission valve. The position which the weight takes up depends upon the rapidity with which the lever oscillates, and consequently upon the speed of the engine. If, therefore, the engine is running too fast or too slow the weight takes up a new position, and the effect upon the admission valve is to either slow down or quicken the speed. The gases are ignited by means of a tube kept red-hot by a gas flame. This engine possesses the special advantage of being self-starting, that is to say, it is not necessary, as in many other motors, to start the engine by giving the fly-wheel a few rapid turns by hand. The motor is stopped with the crank in a position slightly in advance of the point corresponding to ignition. The gas is allowed to enter by a small auxiliary valve, which closes after the first explosion. This volume of gas entering the cylinder mixes with the air already in it, forming an explosive mixture. This explosive mixture then begins to The Andrews gas engine is also constructed of a special type for consuming poor gas produced by the Dowson process, and gives very good results. As a rule, about 600 to 800 grammes of anthracite are necessary to produce one horse-power hour. In one particular plant generating electricity, the cost has been certified to be as low as one penny per kilowatt hour, including lubrication. Fielding gas engine.—The characteristic point in these engines is the extreme simplicity of the valve gear, only one valve being ever subjected to pressure. Even in the small engines of this type all sliding valves are replaced by those of the spring pattern, in fact, the valve mechanism consists simply of two spring-valves, one of which fulfils two functions, controlling the admission and the escape of the gases. The two valves are moved by a double lever actuated by a single cam. The cycle is that of Dr. Otto. When the piston is starting on the return stroke after an explosion has taken place, the lever lifts Niel motor.—As will be seen from Fig. 11, the valves are actuated by cams rotating on a supplementary shaft placed parallel to the cylinder. A pair of toothed wheels transmit the rotation of the crank to this valve-shaft, and it is arranged so as to give one rotation to every two of the crank. The cycle of operations is somewhat similar to the Otto cycle; gas is only admitted to the cylinder for two-thirds of the forward stroke, so that the compression on the back stroke is somewhat lessened. It is doubtful whether there is much advantage in this method, but the Niel motors have had a large sale, which is a sufficient proof of their good qualities. Lombart, Martini (Fig. 12), Adam, Le Parisien, and Le Kientzy motors.—All these motors, each of which is constructed by a different maker, are based in principle on the Otto engine, and except for slight modifications of the working parts, they do not call for any particular notice. The small amount of space at our disposal only admits of our mentioning them. Lablin motor (Fig. 13).—M. Lablin of Nantes set himself to produce a motor which should correspond with the Brotherood and Westinghouse steam engine, that is to say, Crossley Bros. gas engine (Figs. 14, 15).—This engine is from the cycle point of view purely and simply an Otto gas engine. A light shaft runs parallel to the cylinder, being driven by a worm-gear of the crank-shaft. On it are situated the cams which force open the four spring-valves, controlling respectively the admission of air gas and the ignition and exhaust. The pressure of the gases is raised during compression to about four atmospheres, and immediately after the explosion it rises to about 180 lbs. on the square inch; during the exhaust it averages about 10 lbs. per square inch. Ignition is obtained by a tube heated to a bright red incandescence by a Bunsen flame. At the right moment a valve is opened, placing the explosive mixture in contact with it and causing the explosion. When starting the machine the ignition is retarded or takes place a little after passing the dead point, so that the machine cannot start the wrong way by mistake. Two or three other features call for special notice, especially the device for lubricating the cylinder. In the illustration (Fig. 14) will be seen a small bell-shaped receptacle. This vessel contains oil, and also a small crank inside driven by a belt off the valve-shaft. As this crank rotates it dips into the oil at the bottom of the vessel, and at the top of its path it wipes off the oil which it has gathered on to a cup which allows it to flow into the cylinder. The water jacket is cast separately from the cylinder, and not, as in many engines, in one piece with it. There is an advantage in this, because there is less likelihood of flaws or blow-holes in the cylinder wall passing unobserved when the engine is leaving the maker’s hands. The governor in some of the sizes is centrifugal, and in others of the inertia type similar to that described in the Fielding gas engine. PygmÉe motor (Lefebvre).—This motor, shown in Fig. 16, gives one the idea of solidity and compactness. It possesses the peculiar property of working equally well in any position, either horizontal or vertical. This is due to the fact that it is particularly well balanced, and when running does not vibrate at all. Easily started, these engines run at a very constant speed, and their power in relation to their size is truly remarkable, hence the name PygmÉe. They have been especially designed for self-propelled vehicles, and are not affected by the worst running conditions, such as inclement weather or bad roads. In this type they are constructed with two cylinders in order to obtain a more constant torque, and also have an arrangement by which the speed can be changed. For stationary purposes the motor is mounted on a cast-iron stand (Fig. 16). In virtue of their exceedingly small dimensions and reduced weight they are specially suitable where small-power motors are required for home industries or small workshops, and also for driving private electric installations and pumping water. They have economically replaced steam engines in agricultural operations, both on a large and small scale. The working parts being entirely enclosed they stand a good deal of rough usage, and will work in positions in which other motors would be useless. Where it is necessary to bring the motor to the work it is required to perform they are bolted to a carriage instead of a cast-iron base. The “National” gas engine.—As a gas engine this machine is constructed in all sizes, from one horse-power up to large units requiring a gas plant of their own. As petroleum motors they range from one to ten horse-power. They are all provided with two fly-wheels, which keep them well balanced and steadies their speed. They have besides been especially designed with a view to economy of coal gas or petroleum. An idea of the general arrangement of the parts will be obtained by glancing at Fig. 17. The petroleum motors are provided in addition with a vaporizer and a petroleum lamp placed at the front end of the machine, and the oil reservoir is situated immediately above the cylinder. M. Herckenrath has specially devoted himself to simplifying the mechanism and making it more self-contained and less unsightly. Up to 50 horse-power only one cylinder is found necessary, and for larger powers two are provided. The patent governor is centrifugal and rather novel in construction, and to it is partly due the high efficiency of these engines. The large sizes are as easily started as the smaller ones, and the lubrication is perfectly automatic. Besides these advantages they require a minimum of attention, in fact, a skilled attendant can be dispensed with, a few explanations and instructions being all that is necessary to enable a boy or labourer to take competent charge of them. Forest motor (Figs. 18, 19, 20).—We have already described the earlier attempts of M. Forest to produce a practical gas engine. The idea embodied in the motor depicted in Fig. 20, if not particularly advantageous, is none the less highly original. The ends of the single cylinder are open, and within it are two pistons, between which the explosive mixture is introduced. The explosion drives these pistons out in different directions, but by means of a suitable mechanism they are each connected to one of two cranks on the same shaft. The whole forms a very neat and compact arrangement. In another type Cuinat gas engines.—These engines are constructed in four types. The A type is vertical with the cylinder above and fly-wheel and shaft below. This is a more stable arrangement than placing them in the reversed order, as is more frequently done. For small engines the vertical type is undoubtedly the best, space, or rather lack of space, being very often an important consideration to the purchaser. The B type is similar to the previous one, except that two fly-wheels are provided so as to make it suitable for small electric light installations. The C type is horizontal, having all the valves placed vertically, which plan seems to work better for engines of power greater than 10 horse-power. The D type is also horizontal, but has two fly-wheels, having been specially designed for electric lighting purposes. In order to take up as little It is best not to use animal or vegetable oils for lubricating the inside of the cylinder, because they decompose, forming fatty acids which have a corrosive action. Besides this, when they have fulfilled their function of lubrication they settle down to a thick paste, which has a most injurious effect on the working of the engine. It is best, therefore, to use nothing but perfectly pure mineral oils and to avoid all others. This does not only apply to the type of engine we have just been describing, but to all gas engines. The Cuinat gas and petroleum motors do not mix a portion of their exhausted gases with the fresh charge as is frequently done, but completely sweep away the products of the explosion before admitting a new charge. The result is, that combustion is more complete but at the same time rather more violent. An examination of an indicator diagram taken from one of these engines shows that the combustion takes place at once as an explosion, and that the final expanded pressure is as low as it is possible to get it. These being the conditions necessary for a high efficiency, it is needless to state that the consumption of fuel in these engines is as low as in any other engine. NoËl motor.—This type, constructed at Provins, has the Tenting motor.—This is a horizontal motor with the cylinder cooled atmospherically, and the gases ignited by electricity. The governor acts upon the exhaust valve; the products of the explosion remain in the cylinder if the speed is too great, and then the admission valve, which is automatic, no longer rises to admit a fresh charge until the speed has once more fallen to the normal. This little motor is one of the most practical small-power engines existing, partly because of the great simplicity of the mechanism. It works well with carburetted air, and the vertical type has been successfully applied to the propulsion of small pleasure-boats. Atkinson motor (Figs. 21, 22).—This apparatus, constructed by the British Gas Engine Company, was until recently the most efficient heat engine in existence, its indicated efficiency being 22·8%. Mr. Atkinson, the inventor, has arrived at this result by making the gases burn gradually and by shortening the compression stroke. The discharge of the residual gases is complete, this being Charon motor (Fig. 23).—M. Charon has attempted to obtain a prolonged combustion without the complicated devices resorted to by Atkinson. He has obtained the same result by means of a regulator controlling a double cam, one half of which actuates the admission valve and the other half an auxiliary valve, which opens into a tube forming a sort of reservoir, into which part of the explosive mixture passes during the compression. After the explosion this stored-up mixture is gradually allowed to re-enter the cylinder and prolong the combustion. By this means a considerable gain in economy is obtained, so that engines of this type only use about 500 litres of coal gas per horse-power hour. In appearance the motor much resembles the Otto motor, the crank-shaft and valve-shaft and valves being placed in the same relative positions. Although these motors are rather more expensive than others working with the Otto cycle, they are nevertheless widely used. This is due to the fact that if cost of coal gas in a particular district is high it is cheaper in the end to pay a higher price for an efficient engine than to buy a less expensive and at the same time less economical machine. Roger motor.—This excellent little engine (Fig. 24) was especially designed for small workshops. The extreme simplicity of the working parts in no way lessens the efficiency, for the two horse-power only burns 700 litres of gas per horse-power hour. The simple design also keeps the cost of construction low, and the price averages about £30 per horse-power. The governor controls the admission valve. Ignition is obtained by means of an incandescent tube; the cylinder is cooled by a water jacket; the mean speed is about 200 revolutions per minute, and this speed is constant enough to allow the engine to drive a dynamo for electric lighting. The motor has been very favourably received abroad, but is not much known in this country. Motor of the Compagnie Parisienne du Gaz (Fig. 25).—Owing to its very large consumption of gas the engine can only be used if the price of gas is low, but it has several advantages which to a certain extent neutralize this defect. It runs at a high speed of 400 revolutions per minute, and the parts are arranged so as to be easily accessible. Letombe motor.—Constructed by the firm of Mollet-Fontaine of Lille, this engine presents several interesting features which we will briefly enumerate. The cylinder is double-acting, giving one impulse to the piston during every revolution. The speed is therefore maintained fairly constant. The efficiency is high owing to the gases in the cylinder being made to burn slowly as in the Charon motor. The machine on the whole works exceedingly satisfactorily and reflects great credit on its inventors. Robuste (Levasseur) motor.—The composition, admission, and ignition of explosive mixture are regulated by a sliding valve as in the Otto motor; in this case, however, it is a piston-valve and not a flat one. The valve-chest is at the back of the cylinder. The governor is of the inertia type, Richardson and Norris gas engine.—Yet another high-speed engine, running at a speed of 230 revolutions per minute. Roby & Co. construct this machine especially for driving dynamos, and for this purpose two fly-wheels are provided in order to make it run smoothly without variation of speed. The gases are ignited through a valve with a double seating by means of a red-hot tube. The motor is reversible, which is an advantage under certain conditions. Poor gas can also be used instead of coal gas, consuming about 510 grammes of anthracite per horse-power hour for an 86 horse-power engine supplied with Dowson gas. This works out to a thermal efficiency of 21%, a result which places this engine above criticism. H. C. motor.—This is an enclosed motor for use in mines or dusty places, the fly-wheel alone of the moving parts being visible. It works equally well with coal gas, carburetted air, or petroleum, and is constructed in sizes from ½ to 60 horse-power. In spite of its original features it has not met with much success up to the present time. Le Marcel and Le Maurice motors (Cadiot) (Fig. 26).—The smallest types of the Marcel motors are of one man-power, and the largest of one horse-power, so that they are only suitable for small operations. One impulse is given to the piston every two revolutions, the cycle being that of The Maurice motors are somewhat similar in construction, but are designed for operating dynamos. For this purpose two fly-wheels are provided. Many of these little motors are to be seen about the country working fans, lathes, pumps, etc. Various.—We have described about thirty different sorts of motors, selected from the best-known and most original types. About one hundred other motors exist in Europe, which are similar in one way or another to those already described, such as the engines of DÜrkopp, Forward, Griffin motor.—In this engine we have only two explosions over three revolutions, but as it is double-acting this number is reduced to one explosion per revolution and a half. The different operations are as follows:—(1) gases drawn into the cylinder, (2) compression of gases, (3) ignition and expansion, (4) products of combustion driven out of the cylinder, (5) a volume drawn into it to completely sweep away any residue of the exhaust gases, (6) this volume of air drawn out. Admission and ignition are obtained by the action of a sliding valve and eccentric. The governor causes the gas admission valve to remain open for a shorter or longer time, so as to ensure constancy of speed. The exhaust gases escape by two valves actuated by a pair of cams, opening them at every turn and a half, so that the gases are alternately discharged from the back and front parts of the cylinder. The consumption of fuel for a 12 horse-power motor was about 792 litres of coal gas per horse-power hour in an official trial. The speed is very constant in spite of the long cycle. Rollason gas engine.—This is also an engine using a long cycle of operations, the arrangement of the parts being copied off the Otto motor. The governor is electric, and acts on the admission valve, varying the amount of gas admitted to the cylinder in proportion to the demand for |