NebulÆ and Clusters In his interesting and valuable work on “The Stars,” the late Prof. Newcomb said— “Great numbers of the nebulÆ are therefore thousands of times the dimensions of the earth’s orbit, and most of them are thousands of times the dimensions of the whole solar system. That they should be completely transparent through such enormous dimensions shows their extreme tenuity. Were our solar system placed in the midst of one of them it is probable that we should not be able to find any evidence of its existence”! Prof. Perrine thinks that the total number of the nebulÆ will ultimately be found to exceed a million.[352] Dr. Max Wolf has discovered a number of small nebulÆ in the regions near Algol and Nova Persei (the great “new star” of 1901). He says, “They mostly lie in two bands,” and are especially numerous where the two bands meet, a region of 12 minutes of arc square containing no less than 148 of them. They are usually “round with Some small nebulÆ have been found in the vicinity of the globular clusters. They are described by Prof. Perrine as very small and like an “out of focus” image of a small star. “They appear to be most numerous about clusters which are farthest from the galaxy.” Prof. Perrine says, “Practically all the small nebulÆ about the globular clusters are elliptical or circular. Those large enough to show structure are spirals. Doubtless the majority of these are spirals.”[354] This seems further evidence in favour of the “spiral nebular hypothesis” of Chamberlin and Moulton. A great photographic nebula in Orion was discovered by Prof. Barnard in 1894. In a drawing he gives of the nebula,[355] it forms a long streak beginning a little south of ? Orionis (Bellatrix), passing through the star 38 Orionis north of 51 and south of 56 and 60 Orionis. Then turning south it sweeps round a little north of ? Orionis; then over 29 Orionis, and ends a little to the west of ? Orionis. There is an outside patch west of Rigel. Barnard thinks that the whole forms a vast spiral structure; probably connected with the “great nebula” in the “sword of Orion,” which it surrounds. Arago says— “The spaces which precede or which follow simple nebulÆ, and a fortiori groups of nebulÆ, contain generally few stars. Herschel found this rule to be invariable. Thus every time that, during a short interval, no star appeared, in virtue of the diurnal motion, to place itself in the field of his motionless telescope, he was accustomed to say to the secretary who assisted him (Miss Caroline Herschel), ‘Prepare to write; nebulÆ are about to arrive.’”[357] Commenting on this remark of Arago, the late Herbert Spencer says— “How does this fact consist with the hypothesis that nebulÆ are remote galaxies? If there were but one nebula, it would be a curious coincidence were this one nebula so placed in the distant regions of space as to agree in direction with a starless spot in our sidereal system! If there were but two nebulÆ, and both were so placed, the coincidence would be excessively strange. With reference to the small elongated nebula discovered by Miss Caroline Herschel in 1783 near the great nebula in Andromeda, Admiral Smyth says, “It lies between two sets of stars, consisting of four each, and each disposed like the figure 7, the preceding group being the smallest.”[359] Speaking of the “nebula” Messier 3—a globular cluster in Canes Venatici—Admiral Smyth says, “This mass is one of those balls of compact and wedged stars whose laws of aggregation it is so impossible to assign; but the rotundity of the figure gives full indication of some general attractive bond of union.”[360] The terms “compact and wedged” are, however, too strong, for we know that in the globular clusters the component stars must be separated from each other by millions of miles! Prof. Chamberlin suggests that the secondary nebula (as it is called) in the great spiral in Canes Scheiner says “the previous suspicion that the spiral nebulÆ are star clusters is now raised to a certainty,” and that the spectrum of the Andromeda nebula is very similar to that of the sun. He says there is “a surprising agreement of the two, even in respect to the relative intensity of the separate spectral regions.”[362] In the dynamical theory of spiral nebulÆ, Dr. E. J. Wilczynski thinks that the age of a spiral nebula may be indicated by the number of its coils; those having the largest number of coils being the oldest, from the point of view of evolution.[363] This seems to be very probable. In the spectrum of the gaseous nebulÆ, the F line of hydrogen (H) is visible, but not the C line (Ha). The invisibility of the C line is explained by Scheiner as due to a physiological An apparent paradox is found in the case of the gaseous nebulÆ. The undefined outlines of these objects render any attempt at measuring their parallax very difficult, if not impossible. Their distance from the earth is therefore unknown, and perhaps likely to remain so for many years to come. It is possible that they may not be farther from us than some of the stars visible in their vicinity. On the other hand, they may lie far beyond them in space. But whatever their distance from the earth may be, it may be easily shown that their attraction on the sun is directly proportioned to their distance—that is, the greater their distance, the greater the attraction! This is evidently a paradox, and rather a startling one too. But it is nevertheless mathematically true, and can be easily proved. For, their distance being unknown, they may be of any dimensions. They might be comparatively small bodies relatively near the earth, or they may be immense masses at a vast distance from us. The latter is, of course, the more probable. In either case the apparent size would be the same. Take the case of any round gaseous nebula. Assuming it to be of a globular form, its real diameter will depend on its distance from The apparent size of “the great nebula in Andromeda” shows that it must be an object of vast dimensions. The nearest star to the earth, Alpha Centauri, although probably equal to our sun in volume, certainly does not exceed one-hundredth of a second in diameter as seen from the earth. But in the case of the Andromeda nebula we have an object of considerable apparent size, not measured by seconds of arc, but showing an area about three times greater than that of the full moon. The nebula certainly lies in the region of the stars—much farther off than It has been generally supposed that this great nebula lies at a vast distance from the earth, possibly far beyond most of the stars seen in the same region of the sky; but perhaps not quite so far as Herschel’s estimate would imply. Recently, however, Prof. Bohlin of Stockholm has found from three series of measures made in recent years a parallax of 0·17.[365] This indicates a distance of 1,213,330 times the sun’s distance from the earth, and a “light journey” of about 19 years. This would make the distance of the nebula more than twice the distance of Sirius, about four times the distance of a Centauri, but less than that of Capella. Elementary geometrical considerations will show that if the Andromeda nebula lies at a greater distance from the earth than that indicated by Bohlin’s parallax, its real diameter, and therefore its volume and mass, will be greater. If, therefore, Among Dr. Roberts’ photographs of spiral nebulÆ (and the Andromeda nebula is undoubtedly a spiral) there are some which are apparently seen nearly edgeways, and show that these nebulÆ are very thin in proportion to their diameter. From a consideration of these photographs we may, I think, assume a thickness of about one-hundredth of the diameter. This would give a thickness for the Andromeda nebulÆ of about 500 times the sun’s distance from the earth. This great thickness will give some idea of the vast proportions of the object we are dealing with. The size of the whole solar system—large as it is—is small in comparison. The diameter and thickness found above can easily be converted into miles, and from these dimensions the actual volume of the nebula can be compared with that of the sun. It is merely a question of simple mensuration, and no problem of “high mathematics” is involved. Making the necessary calculations, I find that the volume of the Andromeda nebula would be about 2·32 trillion times (2·32 × 1018) the sun’s volume! Now, assuming that the nebulous matter fills only one-half of the apparent volume of the nebula (allowing for spaces between the spiral branches), we have the volume = 1·16 × 1018. If the nebula had the same As possibly I may have assumed too great a thickness for the nebula, let us take a thickness of one-tenth of that used above, or one thousandth of the length of the nebula. This gives a mass of 8 million times the sun’s mass. This seems If we assume a parallax of say 0·01—or one-hundredth of a second of arc—which would still keep the nebula within the bounds of our sidereal system—we have the dimensions of the nebula increased 17 times, and hence its mass nearly 5000 times greater (173) than that found above. The mass would then be 40,000 million times the sun’s mass! This result seems highly improbable, for even this small parallax would imply a light journey of only 326 years, whereas the distance of the Milky Way has been estimated by Prof. Newcomb at about 3000 years’ journey for light. In Dr. Roberts’ photograph many small stars are seen scattered over the surface of the nebula; but these do not seem to be quite so numerous as in the surrounding sky. If the nebula lies nearer to us than the fainter stars visible on the photograph, some of them may be obscured by the denser portions of the nebula; some may be visible through the openings between the spiral branches; while others may be nearer to us and simply projected on the nebula. To add to the difficulty of solving this celestial problem, the spectroscope shows that the Andromeda nebula is not gaseous. The spectrum is, according to Scheiner, very similar to that of the sun, and “there is a surprising agreement of It has often been suggested, and sometimes definitely stated, that the Andromeda nebula may possibly be an “external” universe, that is an universe entirely outside our sidereal system, and comparable with it in size. Let us examine the probability of such hypothesis. Assuming that the nebula has the same diameter as the Milky It is evident, however, that the mass of the Andromeda nebula must be enormous; and if it belongs to our sidereal system, and if the other great nebulÆ have similar masses, it seems quite With reference to the small star which suddenly blazed out near the nucleus of the Andromeda nebula in August, 1885, Prof. Seeliger has investigated the decrease in the light of the star on the hypothesis that it was a cooling body which had suddenly been raised to an intense heat by the shock of a collision, and finds a fair agreement between theory and observation. Prof. Auwers points out the similarity between this outburst and that of the “temporary star” of 1860, which appeared in the cluster 80 Messier, and he thinks it very probable that both phenomena were due to physical changes in the nebulÆ in which they appeared. The appearance of this temporary star in the Andromeda nebula seems to afford further evidence against the hypothesis of the nebula being an external universe. For, as I have shown above, our sun, if placed at a distance of 150,000 light years, would shine only as a star of the 23rd magnitude, or over 15 magnitudes fainter than the temporary star. This would imply that the star shone with a brightness of over a million times that of the sun, and would therefore indicate a body of enormous size. But the rapid In Sir John Herschel’s catalogue of NebulÆ and Clusters of Stars, published in 1833, in the Philosophical Transactions of the Royal Society, there are many curious objects mentioned. Of these I have selected the following:— No. 496 is described as “a superb cluster which fills the whole field; stars 9, 10 ... 13 magnitude and none below, but the whole ground of the sky on which it stands is singularly dotted over with infinitely minute points.” This is No. 22 of Sir William Herschel’s 6th class, and will be found about 3 degrees south and a little east of the triple star 29 Monocerotis. No. 650. This object lies about 3 degrees north of the star Leonis, the most northern of the bright stars in the well-known “Sickle,” and is thus described by Sir John Herschel: “A star 12th magnitude with an extremely faint nebulous atmosphere about 10 to 12. It is between a star 8-9 magnitude north preceding, and one 10th magnitude south following, neither of which are so affected. A curious object.” No. 1558. Messier 53. A little north-east of the star a ComÆ Berenices. Described as “a most beautiful highly compressed cluster. Stars No. 2018. “A more than usually condensed portion of the enormous cluster of the Milky Way. The field has 200 or 300 stars in it at once.” This lies about 2° south-west of the star 6 AquilÆ, which is near the northern edge of the bright spot of Milky Way light in “Sobieski’s Shield”—one of the brightest spots in the sky. No. 2093. “A most wonderful phenomenon. A very large space 20' or 30' broad in Polar Distance, and 1m or 2m in Right Ascension, full of nebula and stars mixed. The nebula is decidedly attached to the stars, and is as decidedly not stellar. It forms irregular lace-work marked out by stars, but some parts are decidedly nebulous, wherein no star can be seen.” Sir John Herschel gives a figure of this curious spot, which he says represents its “general character, but not the minute Among the numerous curious objects observed by Sir John Herschel during his visit to the Cape of Good Hope, the following may be mentioned:— h 2534 (H iv. 77). Near t4 Eridani. Sir John Herschel says, “Attached cometically to a 9th magnitude star which forms its head. It is an exact resemblance to Halley’s comet as seen in a night glass.”... “A complete telescopic comet; a perfect miniature of Halley’s comet, only the tail is rather broader in proportion.”[367] h 3075. Between ? Monocerotis and ? Canis Majoris. “A very singular nebula, and much like the profile of a bust (head, neck, and shoulders) or a silhouette portrait, very large, pretty well defined, light nearly uniform, about 12' diameter. In a crowded field of Milky Way stars, many of which are projected on it.”[368] h 3315 (Dunlop 323). In the Milky Way; about 3° east of the Eta ArgÛs nebula. Sir John Herschel says, “A glorious cluster of immense magnitude, being at least 2 fields in extent every way. The stars are 8, 9, 10, and 11th magnitudes, but chiefly 10th magnitude, of which there must be at least 200. It is the most brilliant object of the kind I have ever seen” ... “has several Among astronomical curiosities may be counted “clusters within clusters.” A cluster in Gemini (N.G.C. 2331) has a small group of “six or seven stars close together and well isolated from the rest.” Lord Rosse describes No. 4511 of Sir John Herschel’s General Catalogue of NebulÆ and Clusters (Phil. Trans., 1864) as “a most gorgeous cluster, stars 12-15 magnitude, full of holes.”[370] His sketch of this cluster shows 3 rings of stars in a line, each ring touching the next on the outside. Sir John Herschel described it as “Cluster; very large; very rich; stars 11-15 magnitude (Harding, 1827),” but says nothing about the rings. This cluster lies about 5 degrees south of d Cygni. Dr. See, observing with the large telescope of the Lowell Observatory, found that when the sky is clear, the moon absent, and the seeing perfect, “the sky appeared in patches to be of a brownish colour,” and suggests that this colour owes its existence to immense cosmical clouds, which are shining by excessively feeble light! From a comparison of Trouvelot’s drawing of the small elongated nebula near the great nebula in Andromeda with recent photographs, Mr. Easton infers that this small nebula has probably rotated through an angle of about 15° in 25 years. An examination I have made of photographs taken in different years seems to me to confirm this suspicion, which, if true, is evidently a most interesting phenomenon. Dr. Max Wolf of Heidelberg finds, by spectrum photography, that the well-known “ring nebula” in Lyra consists of four rings composed of four different gases. Calling the inner ring A, the next B, the next C, and the outer D, he finds that A is the smallest ring, and is composed of an unknown gas; the next largest, B, is composed of hydrogen gas; the next, C, consists of helium gas; and the outer and largest ring, D, is composed—like A—of an unknown gas. As the molecular weight of hydrogen is 2·016, and that of helium is 3·96, Prof. Bohuslav Brauner suggests that the molecular weight of the gas composing the inner ring A is smaller than that of hydrogen, and the molecular weight of the gas forming the outer ring D is greater than that of helium. He also suggests that the gas of ring A may possibly be identical with the “coronium” of the solar With reference to the nebular hypothesis of Laplace, Dr. A. R. Wallace argues that “if there exists a sun in a state of expansion in which our sun was when it extended to the orbit of Neptune, it would, even with a parallax of 1/60th of a second, show a disc of half a second, which could be seen with the Lick telescope.” My reply to this objection is, that with such an expansion there would probably be very little “intrinsic brightness,” and if luminous enough to be visible the spectrum would be that of a gaseous nebula, and no known star gives such a spectrum. But some planetary nebulÆ look like small stars, and with high powers on large telescopes would probably show a disc. On these considerations, Dr. Wallace’s objection does not seem to be valid. It is usually stated in popular works on astronomy that the spectra of gaseous nebulÆ show only three or four bright lines on a faint continuous background. But this is quite incorrect. No less than forty bright lines have been seen and measured in the spectra of gaseous nebulÆ.[373] This includes 2 lines of “nebulium,” 11 of hydrogen, 5 of helium, 1 of oxygen (?), 3 of nitrogen (?), 1 of silicon (?), and 17 of an unknown substance. In the great nebulÆ in Orion 30 bright lines have been photographed.[374] Mr. A. E. Fath thinks that “no spiral nebula investigated has a truly continuous spectrum.” He finds that so feeble is the intensity of the light of the spiral nebulÆ that, while a spectrogram of Arcturus can be secured with the Mills spectrograph “in less than two minutes,” “an exposure of about 500 hours would be required for the great nebula in Andromeda, which is of the same spectral type.”[376] Mr. Fath thinks that in the case of the Andromeda nebula, the “star cluster” theory “seems to be the only one that can at all adequately explain the spectrum obtained.”[377] Prof. Barnard finds that the great cluster in Hercules (Messier 13) is “composed of stars of different spectral types.” This result was confirmed by Mr. Fath.[378] From observations with the great 40-inch telescope of the Yerkes Observatory (U.S.A.), Prof. Barnard finds that the nucleus of the planetary nebula H. iv. 18 in Andromeda is variable to the extent of at least 3 magnitudes. At its brightest it is about the 12th magnitude; and the period seems to be about 28 days. Barnard says, “I think this is the first case in The so-called “globular clusters” usually include stars of different brightness; comparatively bright telescopic stars of the 10th to 13th magnitude with faint stars of the 15th to 17th magnitude. Prof. Perrine of the Lick Observatory finds that (a) “the division of the stars in globular clusters into groups, differing widely in brightness, is characteristic of these objects”; (b) “the globular clusters are devoid of true nebulosity”; and (c) “stars fainter than 15th magnitude predominate in the Milky Way and globular clusters, but elsewhere are relatively scarce.” He found that “exposures of one hour or thereabouts showed as many stars as exposures four to six times as long; the only effect of the longer exposures being in the matter of density.” This last result confirms the late Dr. Roberts’ conclusions. Perrine finds that for clusters in the Milky Way, the faint stars (15th to 17th magnitude) “are about as According to Sir John Herschel, “the sublimity of the spectacle afforded” by Lord Rosse’s great telescope of 6 feet in diameter of some of the “larger globular and other clusters” “is declared by all who have witnessed it, to be such that no words can express.”[381] In his address to the British Association at Leicester in 1907, Sir David Gill said— “Evidence upon evidence has accumulated to show that nebulÆ consist of the matter out of |