This escapement is so-called because the escape wheel remains “dead” (motionless) during the periods between the impulses given to the pendulum. It is the original or predecessor of the well known detached lever escapement so common in watches, and it is surprising how many watchmakers who are fairly well posted on the latter form exhibit a surprising ignorance of this escapement as used in clocks. It has like the latter a “lock,” “lift” and “run”; the only difference being that it has no “draw,” the control by the verge wire rendering the draw unnecessary. It may be made to embrace any number of teeth of the escape wheel, but, owing to the peculiarities of angular motion referred to in the last chapter, see Fig. 26, B C, D E, the increased arcs traveled as the pallet arms lengthen introduce elements of friction which counterbalance and in some cases exceed the advantage gained by increasing the length of the lever used to propel the pendulum. Similarly, the too short armed escapements were found to cause increased difficulty from faulty fitting of the pivots and their holes, and other errors of workmanship, which errors could not be reduced in the same proportion as the arms were shortened, so that it has been determined by practice that a pallet embracing ninety degrees, or one-fourth of the circumference of the escape wheel, offers perhaps the best escapement of this nature that can be made. Therefore the factories generally now make them in this way. But as many clocks are coming in for repair with greater or less arcs of escapement and the It is quite a common thing for some workmen to imagine that in making an escapement, the pallets ought to take in a given number of teeth, and that the number which they suppose to be right must not be departed from; but there seems to be no rule that necessarily prescribes any number of teeth to be used arbitrarily. The nearer that the center of motion of the pallets is to the center of the escape wheel, the less will be the number of teeth that will be embraced by the pallets. Fig. 28 is an illustration of the distances between the center of motion of the pallets and the center of the wheel required for 3, 5, 7, 9 and 11 teeth in a wheel of the same size as the circle; but although we have adopted these numbers so as to make a symmetrical diagram, any other numbers that may be desirable can be used with equal propriety. All that is necessary to be done to find the proper center of motion of the pallets is first to determine the number of teeth that are to be embraced, and draw lines (radii) from the points of the outside ones of the number to the center of the wheel, and at right angles to these lines draw other two lines (tangents), and the point where they intersect each other on the line of centers will be the center of motion of the pallets. Fig. 28. Fig. 29. Note the difference in It will be seen by the diagram, Fig. 28, that by this method the distance between the centers of motion of the pallets and that It is for this reason that moderately short arms are used in clocks having dead-beat escapements of modern construction. Most of the first-class modern makers of astronomical clocks only embrace seven and one-half teeth, on a 30-tooth wheel, with the centers of motion of the pallets and scape wheel proportionately nearer, as it can be mathematically demonstrated that with the pallets embracing an arc of 90° the application of the power to the pendulum is at right angles to the rod and therefore is most effective. To Draw the Escapement.—In order to make the matter clearer we show in Fig. 30 the successive stages of drawing an escapement and also the completed work in Figs. 32 and 33 embracing different numbers of teeth. Draw a line, A B, Fig. 30, to serve as a basis for measurements. With a compass draw from some point C on this line a circle to represent the diameter of our escape wheel. Now we shall require to know how many teeth there will be in our escape wheel. There may be 60, 40, 33, 32, 30, or any other number we desire to give it; seconds pendulums generally have 30 teeth in this wheel, because this allows the second hand to be mounted directly on the escape wheel arbor and thus avoids complications. We divide the number of degrees in a circle (360) by the number of teeth we have selected, say 30. 360÷30=12° for each tooth and space. One-fourth of 360° equals 90° Fig. 30. We now take 90° and, dividing it, set off 45° each side of our center line and draw radii, R, from the center to the circumference of our circle; this marks the beginnings of our pallets. Now to find our pallet center distance we draw tangents, T (at right angles), from the ends of these radii toward the line of centers. The point where they intersect on the line of centers is the pallet center. Now we must determine how much motion we are going to give our pendulum, so that we can give the proper lift to our pallets. Four degrees of swing is usual for a seconds pendulum, so we will take four degrees and, dividing it, give two degrees of lift to each pallet. To do this we draw a line two degrees inside the tangent, T (towards the escape wheel center), from our pallet center on the entering pallet side and another line from the pallet center two degrees outside of the tangent, T, on the exit pallet side. Next, from the pallet center we draw arcs of circles cutting the tangents, T, and the radii, R, where they intersect; this gives us the locking planes on which the teeth of the escape wheel “run” (slide) during the excursions of the pendulum, if the escapement is to have unequal lockings; if the lockings are to be equidistant (if the pallet arms are to be of equal length) the arc for the entering pallet is drawn three degrees below (outside) the radius, R, while that on the exit pallet is drawn three degrees above (inside) the exit radius. Finally the lifting planes are drawn from the intersection of the arcs of circles struck from the pallet center with their tangents, T, to the lines, marking the limits of the lift, two degrees away. These lifting planes should be at an angle of 60° from the radii, R, and as a tangent is always at right angles (90°) to its radius, they are consequently at 30° to the tangents running to the pallet center. Thus we can measure these angles from either the escape wheel or the pallet center, as may be most convenient. When making a new pallet fork, it is most convenient to mark out the lifting planes on the steel at 30° from the tangents, T, as we then do not have to bother with the escape wheel further than to get its center distance and the degrees of arc the lifting planes are to embrace. The workman who is not familiar with this rule is apt to have his ideas upset at first by the angles of inclination toward the center line which the lifting planes will take for different center distances, as owing to the fact that the tangents meet on the center line at different angles for different distances, the lifting planes assume different positions with regard to the center line and he may think that they do not “look right.” They are right, however, when drawn at 30° to their tangents. Fig. 31 shows several pallets with different arcs arranged in line for purposes of comparison, each being drawn according to the above rule, as measurements with a protractor will show. Fig. 31. We have now arrived at the complete escapement, having finished our pallets. We have, however, nothing to hold them in position; they must be rigidly held in position with regard to each other and the escape wheel, consequently we will make a yoke to connect them to the pallet arbor out of the same steel, giving it any desired shape that will not interfere with the working of the clock. Two of the most usual forms are shown at Figs. 32 and 33. Fig. 32. Fig. 33. Measure the escape wheel, getting its diameter carefully, take half of this as a radius, and mark out the circle with a fine needle point on some copper, brass or sheet steel, drawing the escapement as detailed in Figs. 30 and 32. Then measure carefully the angles made by the tangents with the center line; take the steel which is to be used in making the pallets and fork; draw on it a center line; lay off the tangents and the lift lines; draw the locking arcs and the lifting planes carefully from the tangents and give the rest of the fork a symmetrical shape. Use needle points to draw with and have your protractor large enough to measure your angles accurately. Then drill or saw out and file to your lines, except on the locking and lifting planes; leave these large enough to stand grinding or polishing after hardening. Harden; draw to a straw color and polish the planes. Your verge will fit if it has not warped in hardening. If this is the case, soften the center, keeping the heat away from the pallets, and bend or twist the arms until the verge will fit the drawing, when laid on top of it. In grinding the pallets the fork should be mounted on its arbor and the latter held between the centers of a rounding-up tool while the grinding is done by a lap in the lathe. This insures that the planes will be parallel to the pallet arbor and hence square with the escape wheel teeth, so that they will not create an end thrust on either escape or pallet arbor. It is also the quickest, easiest and most reliable way of doing the job. When clocks come in with the pallets badly cut; soften the center of the fork, place the ends between the jaws of a vise, squeeze enough to bring them closer, mount in the rounding-up tool and lap off the cut planes until they are smooth and stand at the proper angle; then polish. This is done quickly. Fig. 34. Drawing escape wheel to fit a tracing from a pallet fork. Take off the pallet fork; lay it on a sheet of brass and trace around it carefully with a needle point. Fig. 34. Mark the center carefully at the pallet arbor hole and measure carefully the distance between the pallets and mark that center. Draw a center line cutting these centers and extending beyond. Now draw the tangent from the beginning of the entering pallet (as shown by the tracing on our brass) to the pallet center; do the same with the exit pallet. Now take a metal square and place it on one of the tangents exactly, with the end at the beginning of the entering pallet; trace a line cutting the line of centers and we have the radius of our escape wheel. Trace a circle from the intersection of the radius and the center line and we have the circumference of our escape wheel. This circle should also cut the intersection of the tangent and radius on the other side if it is drawn correctly; if it does not do this an error has been made in the drawing. Fig. 35. Drawing an escape wheel to cut. If the workman has a wheel cutter the job is much simpler. A piece of brass is mounted on a cement brass with soft solder, faced off, centered and the pitch circle, inner and outer edges of the rim and the hub are traced with the T-rest and graver. The extra metal is then cut away and a suitable index placed on the spindle and locked. The wheel cutter is set up with a fine-toothed, smooth cutting saw on the spindle, horizontal, with its upper edge at the line of centers of the lathe. It is then run out to the circumference of the wheel, turned upwards ten degrees and the wheel cut around, Fig. 36. This makes the fronts of the teeth. Turn the saw ten degrees more and cut the backs of the teeth. Then turn the saw so that it will reach from the front of one tooth to the root of the back of the next one, without touching either tooth, and cut round again; this cuts out a triangular piece of waste metal between the teeth. Turn the saw again so that it reaches from the bottom of the front of a tooth to the top of the back of the next one and cut around again, thus removing another portion of the waste metal, and leaving only a small triangle between the teeth. Lower the saw its own thickness and cut around the wheel again, repeating the operation until the waste metal is all removed and you have a smooth circular rim between the teeth, Fig. 36. Fig. 36. Making an escape wheel with a saw, showing the successive cuts. Next you can mount a lap in place of the saw and smooth the fronts and backs of the teeth and if you have a rather thick disc the outer edge of the rim, between the teeth, may also be smoothed. If you have a good strong pivot polisher, mount a triangular end mill in the spindle, lock the yoke, and cut the arcs of circles of the hub and rim from edge to edge of the spokes, feeding carefully against the mill with the hand on the lathe pulley. Put on your jeweling tailstock and open the wheel to fit the pinion, collet, or arbor, if there is no collet. You now have the wheel all done, except facing the side that was soldered to the cement brass and trimming up the corners of the spokes at the rim and hub, and you have got it round, true and correct in much less time than you could have done in any other way, while an immense amount of work with the file and eye-glass has been avoided. It is true because it was soldered in position at the beginning and has not been removed until finished. Sometimes what are known from their appearance as club-shaped teeth are used in the wheels of Graham’s escapements. Pendulums receive their impulse from escapements made in this manner partly from the lifting planes on the pallets, and partly from the planes on the scape wheel. The advantage gained by this method is, that wheels made in this way will work with the least possible drop, and consequently, power is saved; but the power saved is thrown away again in the increased friction of the planes of the wheel against those of the pallets, which is considerably more than when plain-pointed teeth are used on the escape wheel. Clock pallets are usually made of steel, and on the finer classes of work jewels are often set into them to prevent the oil from drying, after the same fashion as jewels are placed in steel pallets in a lever watch; but it is obvious that stone pallets made in this way have to be finished with polishers held in the hand, and that, except in factories, they cannot be made so perfectly regular, especially that pallet that is struck downwards, as the particular action of a fine Graham escapement requires. When great accuracy is required, the pallets are usually made of separate pieces, and the acting circles ground and polished on laps, running in a lathe. This method of constructing pallets also allows a means of adjustment which in some particular instances is very convenient. There is also a plan of making jeweled pallets adjustable, which is practiced on fine work, such as astronomical and master clocks. The pallet fork consists of two pieces of thin, hard, sheet brass, cut out in the usual form and two mounted on one arbor. Circular grooves are cut in the sides of both plates, at the proper distance, and of the proper size to receive the jewels which are the acting parts of the pallets. When jewels cannot be made of the desired size, pallets of steel are made, and the jewels are then set into the steel large enough for the teeth of the wheel to act upon. The two parts of the fork are fastened at a given distance apart, and the jewels, or pieces of steel, go in between them, and, after they have been adjusted to the proper position, are fastened by screws that pull the frames close together and press against the edges of the jewels. Pallets made in this manner have a very elegant appearance. Another method is to have only one frame, and to have it thick enough, where the jewels have to be set in, to allow a groove to be cut in its side as deep as the jewels (or the pieces of steel that hold the jewels) are broad, and which are held in their proper position by screws. This system of jeweling pallets is frequently adopted by the makers of fine mantel clocks. Fig. 37. Brocot’s visible escapement, escaping over Clock movements with this escapement, of a careful construction, will frequently come for repairs, accompanied by the complaint of constant stopping and that no attempt at closely regulating can succeed with them, although they appear to have no visible disturbing cause. In such cases the depthing of the escapement is generally wrong. With proper depthing the point of the escape wheel tooth should drop on the center or a little beyond the center of the pallet stone. If it is set in this way the clock will stop when wound, especially if it has a strong spring, as the light pendulum will not then have momentum enough to unlock it against the full power of the spring. If the pallets are set shallow, in order to avoid this difficulty, then, the pendulum will take too short a swing and thus the clock will have a gaining rate. Generally the pendulum ball cannot be made enough heavier to correct the defect. Fig. 38. Brocot’s visible escapement escaping over In spite of its incontestable qualities, the visible escapement possesses one inherent fault. I refer to the formation of its pallets, the semi-circular shape of which renders unequal the action of the train in giving impulse to the pendulum exceeding 50 centimeters (20 inches), since to make it to describe arcs of from one to two degrees only, with pendulums of from 60 centimeters to one meter in length, it became necessary to make the anchor arms extremely long, which considerably impeded the freedom of action, especially when the oil became thick, and this disposition would, therefore, stand in direct contradiction with the principles of modern horology. Both stopping and the irregularity of rate can be obviated by changing the semi-circular form of the pallets for one of an inclined plane, either by grinding a new plane or turning the stones in such manner as to offer an inclined plane to the action of the wheel, analogous to that of the Graham The importance of this transformation will readily be understood; it suffices to give to these planes a more or less large inclination in order to obtain a greater regularity of lifting, and, at desire, a lifting arc more or less considerable without being compelled to modify the proportions of the fork or to exaggerate the center distance of wheel and pallet arbor. In adjusting an escapement, perhaps it may be advisable to mention that moving the pallets closer together, or opening them wider, will only adjust the drop on one side, while the other drop can only be affected by altering the distance between the centers of the pallets and scape wheel. This is accomplished in various ways. The French method consists of an eccentric bush, riveted in the frame just tight enough to be turned by a screwdriver. Another plan, common in America, is simply pieces of brass (cocks) fastened on the sides of the frames. The pivots of the pallet axis are hung in holes in these cocks, and an adjustment of great accuracy may be quickly obtained by loosening the clamping screws. Lock, drop and run should be of the same amount on each pallet. However, we do not approve of adjustments of any kind, except in the very highest class of clocks, where they are always likely to be under the care of skillful people, who understand how to use the adjustments to obtain nicety of action in the various parts. In making escapements, lightness of all the parts ought to be an object always in view in the mind of the workman, and such materials should be used as will best serve that purpose. The scape wheel, and the pallets and fork, should have no more metal in them than is necessary for stiffness. The pallet arbor, and also the escape wheel arbor, should be left pretty thick when the wheel and pallets are placed in the center between the plates, to prevent their springing when giving impulse to It is often assumed that the friction of the teeth on the circular part of the pallets of a dead-beat escapement is small in amount and unimportant in its value. With respect to its amount, we believe it is often not far short of being equal to one-half of the combined retarding forces presented to the pendulum; and with respect to its being unimportant, this assumption is founded on the supposition that it is always a uniform force, when it is easy to show that it is not a uniform force. It is very well known that the force transmitted in clock trains, from each wheel to the next, is very far from being constant. Small defects in the forms of the teeth of the wheels and of the leaves of the pinions, and also in the depths to which they are set into each other, cause irregularities in the amount of power transmitted from each wheel to the next; and the accidental combination of these irregularities in a train of four or five wheels, makes the force transmitted from the first to the last exceedingly variable. The wearing of the parts and the change in the state of the oil, are causes of further irregularities; and, from these causes, it must be admitted that the propelling power of the scape wheel on the pallets is of a variable amount, and a more important question for consideration than it is usually supposed to be. To avoid the consequences of this irregular pressure of the scape wheel on the pallets being communicated to the pendulum, is a problem that has puzzled skillful mechanicians for many years; for, although we find the Graham escapement to be pronounced both theoretically and mechanically correct, and by some authorities little short of perfection, we find some of these same authorities—both theoretically and practically—testify their While considering this class of escapements, we would say a few words in regard to the sizes of escape wheels generally used. Small wheels can now be cut as accurately as larger ones and there is now no reason or necessity for continuing the use of a wheel of the size Graham and Le Paute used, and which has been the size generally adopted by most European makers who use these escapements. The Germans and Swiss make wheels much smaller for Graham escapements than the English makers do; and the American factories make them smaller still. On the continent of Europe the wheels of Le Paute’s escapement are made much larger than they are made in England and in the United States. No wheel, and more especially a scape wheel, should be larger than will just give sufficient strength for the number of teeth it has to contain, in proportion to the amount of work that it has to perform. The amount of work a scape wheel has to perform in giving motion to the pendulum is of the lightest description, and not more than one-tenth of what it is popularly supposed to be, which is shown by its variation under slight increase of friction; therefore we do not consider that we take extreme ground in recommending wheels for these escapements to be made nearly half the size their originators made them, and the pallets drawn off in proportion to the reduced size of the wheel. It is plain that by reducing the size of the wheel its inertia will be reduced. When the teeth begin to act on the inclined planes of the pallets, the wheel |