Regulation.—The reader will have noticed that in describing the various forms of seconds pendulums we have specified either eighteen or thirty-six threads to the inch; this is because a revolution of the nut with such a thread gives us a definite proportion of the length of the rod, so that it means an even number of seconds in twenty-four hours. Moving the bob up or down ¹/18 inch makes the clock having a seconds pendulum gain or lose in twenty-four hours one minute, hence the selecting definite numbers of threads has for its reason a philosophical standpoint, and is not a matter of convenience and chance, as seems to be the practice with many clockmakers. With a screw of eighteen threads, we shall get one minute change of the clock’s rate in twenty-four hours for every turn of the nut, and if the nut is divided into sixty parts at its edge, each of these divisions will make a change of the clock’s rate of one second in twenty-four hours. Thus by using a thread having a definite relation to the length of the rod regulating is made comparatively easy, and a clock can be brought to time without delay. Suppose, after comparing your clock for three or four days with some standard, you find it gains twelve seconds per day, then, turning the nut down twelve divisions will bring the rate down to within one second a day in one operation, if the screw is eighteen threads. With the screw thirty-six threads the nut will require moving just the same number of divisions, only the divisions are twice as long as those with the screw of eighteen threads. The next thing is the size and weight of the nut. If it is to be placed in the middle of the bob as in Figs. 10, 12 and 15, it should project slightly beyond the surface and its diameter will be governed by the thickness of the bob. If it is an internal nut, worked by means of a sleeve and disc, as in Fig. 9, the disc should be of sufficient diameter to make the divisions long enough to be easily read. If the nut is of the class shown in Fig. 5, 6, 7, a nut is most convenient, 1 inch in diameter, and cut on its edge into thirty equal divisions, each of which is equal to one second in change of rate in twenty-four hours, if the screw has thirty-six threads to the inch. This gives 3.1416 inches of circumference for the thirty divisions, which makes them long enough to be subdivided if we choose, each division being a little over one-tenth of an inch in length, so that quarter-seconds may be measured or estimated. With some pendulums, Fig. 13, the bob rotates on the rod, and is in the form of a cylinder, say 8½ inches long by 2½ inches in diameter, and the bob then acts on its rod as the nut does, and moves up and down when turned, and in this form of bob the divisions are cut on the outside edge of the cover of the bob, and are so long that each one is subdivided into five or ten smaller divisions, each altering the clock .2 or .1 second per day. On the top of the bob turn two deep lines, close to the edge, about ?-inch apart, and divide the whole diameter into thirty equal divisions, and subdivide each of the thirty into five, and this will give seconds and fifths of seconds for twenty-four hours. Each even seconds division should be marked heavier than the fraction, and should be marked from one to thirty with figures. Just above the cover on the rod should slide a short tube, friction-tight, and to this a light index or hand should be fastened, the point of which just reaches the seconds circle on the bob cover, and thus indicates the division, its number and fraction. The tube slides on the rod because the exact place Suspensions.—Suspensions are of four kinds, cord, wire loop, knife edges and springs. Cords are generally of loosely twisted silk and are seldom found except in the older clocks of French or Swiss construction. They have been entirely displaced in the later makes of European manufactures by a double wire loop, in which the pendulum swings from a central eye in the loop, while the loop rocks upon a round stud by means of an eye at each end of the loop. The eyes should all be in planes parallel to the plane of oscillation of the pendulum, otherwise the bob will take an elliptical path instead of oscillating in a plane. They should also be large enough to roll without friction upon the stud and center of the loop, as any slipping or sliding of either will cause them to soon wear out, besides affecting the rate of the pendulum. Properly constructed loops will give practically no friction and make a very free suspension that will last as long as the clock is capable of keeping time, although it seems to be a very weak and flimsy method of construction at first sight. Care should be taken in such cases to keep the bob from turning when regulating the clock, or the effect upon the pendulum will be the same as if the eyes were not parallel. Knife edge suspensions are also rare now, having been displaced by the spring, as it was found the vibrations were too free and any change in power introduced a circular error (See Fig. 4) by making the long Pendulum Suspension Springs.—Next in importance As with the hairspring, it is quite necessary that the pendulum spring be accurately adjusted to isochronism and my advice to every jeweler is to thoroughly test his regulator, which can easily be done by changing the weight or motive power. If the test should prove the lack of isochronism he can adjust it by following these simple rules. Fig. 16 is the pendulum spring or leaf. If the short arcs should prove the slowest, make the spring a trifle thinner at B; if fastest, reduce the thickness of the spring at A. Continue the test until the long and short arcs are equal. In doing this care must be taken to thin each spring equally, if it is a double spring, and each edge equally, if a single spring, as if one side be left thicker than the other the pendulum will wabble. Fig. 16. The cause of a pendulum wobbling is that there must be something wrong with the suspension spring, or the bridge that holds the spring. If the suspension spring is bent or kinked, the pendulum will wabble; or if the spring should be of an unequal thickness it will have the same effect on the pendulum; but the main cause of the pendulum wobbling in American clocks is that the slot in the bridge that holds the spring, or the slot in the slide that works up and down on the spring (which is used to regulate the clock) is not parallel. When this slot is not parallel it pinches the spring, front or back, and allows it to vibrate more where it is the freest, causing the pendulum to wabble. We have It occasionally happens in mantel clocks that the pendulum when brought to time is just too long for the case when too thick a spring is used. In such a case thinning the spring will require the bob to be raised a little and also give a better motion. If compelled to make a spring use a piece of mainspring about .007 thick and ? wide for small pendulums and the same spring doubled for heavier pendulums, making the acting part of the spring about 1.5 inches long. The suspension spring for a rather heavy pendulum is better divided, that is, two springs, held by two sets of clamps, and jointly acting as one spring. The length will be the same as to the acting part, and that part held at each end by the clamps may be ¾ inch long; total length, 1.5 inches with ? inch at each end held in the clamps. These clamps are best soldered on to the spring with very low flowing solder so as not to draw the temper of the spring, and then two rivets put through the whole, near the lower edge of the clamps. The object of securing the clamps so firmly is so that the spring may not bend beyond the edge of the clamps, as if this should take place the clock will be thrown off of its rate. After a time the rate would settle and become steady, but it only causes an extra period of regulating that does not occur when the clamps hold the spring immovable at this point. About in the center of each of the clamps, when soldered and riveted, is to be a hole bored for a pin, which pins the clamp into the bracket and holds the weight of the pendulum. The width of this compound spring for a seconds’ pendulum of average weight may be .60 inch, from outside to outside, each spring .15 inch Pendulum Supports.—Stability in the movement and in the suspension of the pendulum is very necessary in all forms of clocks for accurate timekeeping. The pendulum should be hung on a bracket attached to the back of the case (see Fig. 6), and not be subject to disturbance when the movement is cleaned. Also the movement should rest on two brackets attached to the bracket holding the pendulum and the whole be very firmly secured to the back board of the case. Screws should go through the foot pieces of the brackets and into a stone or brick wall and be very firmly held against the wall just back of the brackets. Any instability in this part of a clock is very productive of poor rates. The bracket, to be in its best form, is made of cast iron, with a large foot carrying all three separate brackets, well screwed to a strong back board and the whole secured to the masonry by bolts. Too Crutches.—The impulse is transmitted to the pendulum from the pallet staff by means of a wire, or slender rod, fastened at its upper end to the pallet staff and having its lower end terminating in a fork (crutch), loop, or bent at right angles so as to work freely in a slot in the rod. It is also called the verge wire, owing to the fact that older writers and many of the older workmen called the pallet fork the verge, thus continuing the older nomenclature, although of necessity the verge disappeared when the crown wheel was discarded. In order to avoid friction at this very important point, the centers of both axes of oscillation, that of the pallet arbor and that of the pendulum spring, where it bends, should be in a straight horizontal line. If, for instance, the center of suspension of the pendulum be If the centers of motion do not coincide, as is often the case with cheap clocks with recoil escapements, any roughness of the pendulum rod where it slides on the crutch will stop the clock, and repairers should always see to it that this point is made as smooth as possible and be very slightly oiled when setting up. If putting in a new verge wire, the workman can always tell where to bend it to form the loop by noticing where the rod is worn and forming the loop so that it will reach the center of that old crutch or loop mark on the pendulum rod. If the verge wire is too long, it will give too great an arc to the pendulum if the latter is hung below the pallet arbor, as is generally the case with recoil escapements of the cheap clocks, and if it is too short there will not be sufficient power applied to the pendulum when the clock gets dirty and the oil dries, in which case the clock will stop before the spring runs down. An important thing to look after when repairing is in the verge wire and loop (the slot the pendulum rod goes through). After the clock is set up and oiled, put it on a level shelf; have a special adjusted Putting in Beat.—To put a clock in beat, hang the clock in such a position that when the pendulum is at rest one tooth of the escape wheel will rest on the center of a pallet stone. Screwed on the case of the clock at the bottom of the pendulum there is, or should be, an index marked with degrees. Now, while the escape wheel tooth is resting on the pallet, as explained above, the index of the pendulum Close Rating with Shot.—Very close rating of a seconds’ pendulum, accompanied by records in the book, may be got with the nut alone, but there is the inconvenience of stopping the clock to make an alteration. This may be avoided by having a small cup the size of a thimble or small pill box on the pendulum top. This can be lifted off and put back without disturbing the motion of the pendulum. In using it a number of small shot, selected of equal size, are put in, say 60, and the clock brought as nearly as possible to time by the nut. After a few days the cup may be emptied and put back, when on further trial the value of the 60 shot in seconds a day will be found. This value divided by 60 will give the value of a single shot, by knowing which very small alterations of rate may be made with a definite approach towards accuracy, and in much less time than by putting in or taking out one or more shot at random. |