7 Success

Previous

It was January of 1491, and a light snow had fallen in Milan, edging with white all the roofs, the massive spires of the cathedral and the red battlements of the Sforza castle. Soon Ludovico was to be married to Beatrice d’Este of the ducal house of Ferrara.

Once more the streets of Milan echoed to the carpenters’ hammers. Messengers rode to and from the castle and endless carts full of provisions pushed through the crowded city. Guests began to arrive from all the allied courts of Italy with their bodyguards and servants. The rooms of the castle, the palaces of the nobles, and even the inns were filling with the royal processions.

Leonardo was again summoned by the court to prepare the decorations, the costumes for the masquerades, and the arena for the jousting tournaments. An invitation had been sent to all the friendly courts to attend these contests-at-arms. So, accompanying each new party’s arrival was a band of armored knights, their breast-plates, helmets, and shields glistening in the winter sun.

Leonardo enjoyed designing mechanical toys and entertaining the guests with them. One of these was a mechanical drum. Ordinarily most of the entertainment began with normal drum rolls, but Leonardo’s rolls were made on a kind of wheelbarrow. On it was mounted an enormous drum. When the “wheelbarrow” was pushed, it put into motion a cogged wheel geared to the axle. This wheel in turn was geared to two rotary cylinders with pegs mounted around the top. The pegs moved against five drumsticks on either side of the drum and thumped out a rhythm according to the position of the pegs.

Ludovico’s marriage to Beatrice d’Este, a girl of little more than fifteen years, further isolated Leonardo from the court. Being almost a child, Beatrice loved parties and festivities, and she surrounded herself with people who catered to her frivolous whims. As a result so serious a man as Leonardo was forced into the background of the court life. He was called upon more and more to act as stage-designer while his more important work went unnoticed. Because these entertainments were easy for Leonardo to design, they did give him more time to work on his giant equestrian monument of Francesco Sforza. Working one day on the scaffolding surrounding the clay figure of his statue, Leonardo heard a knock at his studio door.

“Come in,” he shouted as he climbed down. “The door’s open.”

Three peasants cautiously entered the room and quickly took off their caps. One of them was holding a carefully wrapped bundle.

“Master Leonardo, we have brought you some shells we found on a ridge of Monferrato. Remember, you asked us to bring anything we found that was unusual?”

“Yes, Pietro. Thank you. Put them here on the table.”

Leonardo opened the bundle. He smiled when he saw the shells. He remembered how, as a young boy, he had found seashells like these high in the mountains. Leonardo questioned Pietro and his companions as to where they had been found and under what circumstances. He gave them some coins and, when they had gone, he looked among his growing collection of notes and drawings on the shelves. It took some time for him to find what he wanted, for the pages were in such confusion. Finally, he sat down at the table with several of the sheets and, putting the seashells in front of him, he began to make notes.

The shells were fossil shells but, thought Leonardo, their presence on the high mountains of Lombardy could hardly be attributed to the great flood as described in the Bible. In his notes, Leonardo cited the case of the cockle which, out of water, is like the snail. It makes a furrow in the sand and can travel in this furrow about three to four yards a day. By such means, he calculated, it could not possibly have reached Monferrato from the Adriatic in forty days (which was supposed to have been the duration of the flood)—a distance of 250 miles. Nor were these simply dead shells deposited by the waves—for the living creatures are recognized by being in pairs, and these in front of him had certainly been traveling in pairs. Consequently, they could have been left there only when they were alive and the mountains were covered by the primeval oceans. Moreover, Leonardo also described how living matter in prehistoric times fell into the mud and died, and how this mud, as the waters receded and years had passed, was changed into rock forming a mold about the fossil—literally making a cast of its original living appearance.

By such deductive reasoning and the testing of the evidence before him against the common beliefs, Leonardo struggled to free the minds of men from medieval superstitions and beliefs. Indeed, these medieval superstitions existed everywhere. Astrologers, or men who told fortunes by the position of the stars at a given moment; and necromancers, those who by tricks of magic claimed to be able to talk to departed spirits—these men profited from the ignorant. The Church, with its preaching of devils and hells, provided the background against which these fakers flourished.

Ludovico Sforza was himself a believer in such things. His own physician and astrologer was a man by the name of Ambrogio da Rosate, who had such influence over the court that he was given a post in the University of Pavia, and his fame was so great that he was called upon to predict the future of Pope Innocent VIII! Leonardo’s dislike of these men was intense. He scorned the supernatural and asked men to look about them at the real world and the real heavens. Observation and experiment—these were Leonardo’s key words. But he was a lonely figure in his thinking—like a man awake while the rest of the world slept.

At last the full-size model of the Sforza monument was nearing completion. Ludovico had ordered it ready for exhibition in the courtyard of the castle for yet another marriage festival that was soon to take place. This time it was the marriage of his niece Bianca Maria to Maximilian I of Germany. Leonardo and his assistants were busy with the finishing touches on the monument, and with building a wagon on which to carry it from the studio to the courtyard.

During these last months Leonardo had had to struggle with all kinds of heavy loads. Already he had improved on pulleys by inventing a new kind of tackle, and he also had utilized many kinds of levers. One of his simpler discoveries for raising heavy weights was a jack which, in appearance and principle, was the forerunner of our own automobile jack.

In 1493 when the clay model of the Sforza monument was completed, it was put on the cart and wheeled to its place of exhibition where a curtain was thrown around it. Again Milan was the host to a gathering of noble courts, and this time Ludovico outdid himself in the display of luxury. Tapestries hung from the buildings and rich carpets were laid down the steps of the cathedral. Everything that Milan had to show was on exhibition—even a crocodile.

But the most impressive sight of all was the unveiling of Leonardo’s colossal statue. It rose in majesty against the red walls of the castle. The name of Leonardo da Vinci was suddenly on everyone’s lips. As the word of his artistic achievement spread from city to city, messages of praise came pouring in. And, for a while the years of frustration and failure to gain recognition melted away. Leonardo at forty-one had at last achieved some success.

Now there was a breathing spell, and Leonardo returned to some of his own projects. For a long time he had continued his observations of his two favorite elements—air and water. To him they were related in their movements. The birds flying in the currents of air and the fish swimming in the flow of water seemed very similar to him. He had already designed various instruments to tell him about the direction of wind and its velocity, and he had also commenced to analyze the wing structure of birds and bats. To soar through the air like a bird was an ancient dream of man, yet for Leonardo it had become a passion. Ceaselessly, he sketched the flights of birds, the flutterings of butterflies and analyzed their flying patterns.

But to Leonardo, understanding the dynamics, or motion, of air was the most important thing. He built an anemoscope, an instrument like a weather-vane for telling the direction of the wind; and, he also constructed several types of anemometers for measuring the velocity or force of the wind. One of these latter consisted of a thin rectangle of metal hanging straight down in front of an upward-curving wooden arc. This arc was marked off in units of measurement. When the wind blew, it pushed the thin rectangle up the arc; thus, by noting at which gradation it stopped, Leonardo could tell the velocity.

In addition, Leonardo at this time constructed a device which has been compared to the modern instrument used for testing the weight-carrying capacity of airplane wings. He fashioned a wing resembling a bird’s wing and attached it to a lever so that it would be possible to lower the wing by pushing rapidly down on the lever. This wing in turn was mounted on a plank that was in weight equal to that of a human being. He then calculated that two wings of this kind would have to be about twelve meters wide and twelve meters long to raise a man and his machine together. Another device resembling those found in airplanes today that Leonardo constructed was an inclination gauge. He made this by suspending a heavy ball on a cord within a glass bell. This ball was then supposed to guide the flyer by telling him whether he was flying level, diagonally, up, or down.

One of Leonardo’s anemometers. The wind blew against the strip of metal, pushing it up the curved gauge and thereby measuring the force of the wind.

Leonardo’s inclination gauge, designed to guide a man in flight. The ball in the glass cylinder was supposed to tell a “flyer” whether or not he was flying level or tipped.

To Leonardo, water was also a phenomenon that from his youth never failed to excite his curiosity. The use of water power to run machines, to irrigate fields and to carry boats inland was a subject that he never ceased investigating. Out of his experiments at this time he constructed a device for raising water to high levels. It was based on the geometric spiral of Archimedes. He took a piece of gut, inflated it, and let it dry. Then, covering it with a coat of wax to make it waterproof, he wound it around a thin staff in a spiral. He put one end in a stream and attached it by gears to a cogged water wheel; this set the long screw to turning, and he was able to raise water from a low level to any height he desired. With a multiple system of these screws he could raise water in continuous circulation to the reservoirs on the highest towers.

In the year 1494, King Charles VIII of France crossed the Alps at the head of an army of twenty-five thousand men. Now Ludovico, by a series of diplomatic maneuvers, had allied himself with Charles and had, by secret negotiation, actually invited the invasion. By such an alliance he hoped to use Charles’ army to overcome the forces of the Pope which stood in the path of Ludovico’s ambition to become the most powerful ruler in Italy. Outwardly Charles was asserting his rights to the Kingdom of Naples, but inwardly he dreamt of leading a crusade against the infidels in the Holy Land. At the same time young Gian Galeazzo Sforza, Duke of Milan, was dying. Ludovico desired this title for himself; however, until Galeazzo was out of the way, he could not have it. There were ugly rumors that young Sforza had been poisoned. Moreover, in 1494, the Medicis—another powerful obstacle—were expelled from Florence, and a republic was established.

Soon young Gian Galeazzo died, leaving a son, Francesco. This son was the rightful heir to the Dukedom of Milan but Ludovico usurped the boy’s claim and declared himself Duke of Milan. Now Ludovico was in a position to await the impending battle between Charles and the Pope.

With such military and political ambitions in mind, Duke Ludovico now assigned Leonardo the task of reviewing Milan’s defenses. Again Leonardo submitted to Ludovico his plans for strengthening fortresses and designs for new ones. The great architect Bramante was also assigned the task of seeing to the city’s defenses, and for some time the two brilliant men worked together.

Then, in the spring of 1494, Leonardo was sent to Vigevano where Ludovico’s young wife was staying. This town was also the birthplace of Ludovico, and Leonardo was given the job of designing and building a small summer house and garden there for Beatrice. In addition, Leonardo built a kind of “air conditioner” for her bedroom. It consisted of a large waterwheel that cooled the air circulated into her room. Although this ancient device had long been known to the Greeks and Romans, Leonardo was the one who succeeded in perfecting it.

During this time Leonardo’s highly original mind was also at work on other devices. One of these was an odometer, an instrument for measuring the distance traversed by a vehicle. Dials, turned by a system of gears attached to the wheel of a wheelbarrow, measured the distance traveled as the barrow was pushed along the ground. In addition, Leonardo conceived a kind of odometer to be used at sea; this consisted essentially of a spinner that was towed by a ship which registered its speed. Leonardo even invented an automatic spit operated by metal vanes mounted in the chimney that revolved with the pressure of the hot air rising from the fire—and a pair of large floating shoes for walking on water!

In the meantime, Charles VIII of France had marched through Rome and entered Naples. The conquest was without opposition. Charles was then crowned King of Naples and all Italy was at his feet. Yet his triumph was a short one. Ludovico, having used the king to get rid of his enemies, now plotted against the king himself. He formed an alliance with the Pope, Venice, Spain, and the German emperor. Charles, faced with this league, hastily beat a retreat to France. Fighting his way to the border, he there signed a peace treaty. Thus Ludovico had swept Italy clean of all opposition and was now the most powerful prince in the land.

Yet Ludovico was quick to realize that his position could only be held by force and he set about strengthening himself and his allies. To provide for more cannons, a hundred and fifty thousand tons of bronze were sent to manufacturing works in Ferrara. This, however, included the very bronze Leonardo needed for the casting of his equestrian statue, and this is why the statue was never cast. Years of Leonardo’s work now seemed to vanish overnight. Ludovico also needed large sums of money to secure friends in high places and Leonardo’s own payments were suddenly dropped. Forced again to worry about paying for his daily bread and for his household and apprentices, he wrote letters to Ludovico complaining of his lack of funds and asking for money that was owed him for work done. He looked about for other commissions, but none were available. Moreover, because he was still court painter to Ludovico, he was ordered to paint the decorations of some rooms in the castle. But this was more than Leonardo could take—he walked off the job without finishing it.

Despite all of these misfortunes, Leonardo continued struggling with the problems of flight. He kept working out the proportions of wing span to the weight of the load. Indeed, he had already started designs for a flying machine. He had chosen a room which was the highest in one of the towers of the castle and which had access to a roof. Leonardo’s plans for a flying machine were a secret, and, with the exception of an assistant, no one knew about them. He made sure that he could not be seen by the workmen on the dome of the cathedral and proceeded to block off his room with beams which he planned to use as supports for his model.

He had thought at first that any attempted flight should take place over water in order to cushion a possible crash—but as his plans progressed he designed a parachute. It was a pyramid-shaped “tent of linen” twenty-four feet broad and twenty-four feet high, and it is believed to have been successfully tried out from a tower especially constructed for that purpose.

Since Leonardo was no longer working for Ludovico, he lived more simply than ever. He made regular lists of his expenses down to the last penny. His habits were frugal although he always kept himself neat. His meals were spare; he drank a little wine at meals and never ate meat. To his pupils and apprentices, he recommended regular habits such as not sleeping during midday, eating only when hungry and chewing well, exercising moderately, and sleeping well covered.

Yet, even though Leonardo lived cheaply, he was now greatly in need of money. Swallowing his pride, he wrote to Ludovico, placing himself at the duke’s service once again. His absence from court, he said, had been necessary so that he could earn a living. In this and other ways, Leonardo attempted to heal the break between them.

It turned out that Ludovico was glad to have Leonardo back. Perhaps mindful of the fame that the model of the equestrian monument had brought the house of Sforza, he now commissioned Leonardo to paint a picture. The Dominican monastery of Santa Maria delle Grazie was the nearest church to the Sforza castle and a favorite retreat of Ludovico. Here he used to walk in the quiet garden while the white-robed monks silently went about their chores. In gratitude for the peace he found there, Ludovico had had the refectory rebuilt and on the back wall, a crucifixion scene had been painted by Montorfano, a Lombard. But the front wall was given to Leonardo. On this Leonardo decided to paint a picture of the Last Supper—the painting that has since become one of the best known in the world.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page