Mushroom Spore-prints

Previous

Puff-ball
spore-clouds

O

Our common dusty Puff-ball, floating its faint trail of smoke in the breeze from the ragged flue at its dome-shaped roof as from an elfin tepee, or perhaps enveloping our feet in its dense purple cloud as we chance to step upon it in the path, is familiar to every one. To the mycophagist connoisseur, on the alert for every delectable fungus morsel for his fastidious appetite, the Puff-ball is indeed pleasantly familiar, though a specimen in such a powdery stage as theits discovery has been thus delayed, for in its earlier firm white stage he knows it at his table as a most delicate entrÉe of "mock omelet."

The old-time country physician gathered its powdery bag and carefully preserved it for another purpose, its spongy, dusty contents having been a time-honored remedy as a styptic, or for the arrest of hemorrhage from wounds. But by no class of the community perhaps is it so enthusiastically welcomed as by the small boy, to whom it is always a challenge for a kick and a consequent demonstration of smoke worthy of a Fourth-of-July celebration.

A week ago this glistening gray bag, so free with its dust-puff at the slightest touch, was solid in substance and as white as cottage cheese in the fracture. In this condition, sliced and fried, it would have proven a veritable delicacy upon our table, quite suggesting an omelet in consistency and flavor, and in size also, if perchance we had been favored with one of the larger specimens, which frequently approaches the dimensions of a football.

Development of spores

But in a later stage this clear white fracture would have appeared speckled or peppered with gray spots (see page 271), and the next day entirely gray and much softened, and, later again, brown and apparently in a state of decay. But this is not decay. This moist brown mass by evaporation becomes powdery, and the Puff-ball is now ripe, and preparing for posterity.

Buoyant spore-atoms
Number of spores

Each successive squeeze, as we hold it between our fingers, yields its generous response in a puff of brown smoke, which melts away apparently into air. But the Puff-ball does not thus end in mere smoke. This vanishing purple cloud is composed of tiny atoms, so extremely minute as to require the aid of a powerful microscope to reveal their shapes. Each one of these atoms, so immaterial and buoyant as to be almost without gravity, floating away upon the slightest breath, or even wafted upward by currents of warm air from the heated earth, has within itself the power of reproducing another clump of Puff-balls, if only fortune shall finally lodge it in congenial soil. These spores are thus analogous to the seeds of ordinary plants. The number of these vital atoms or spores in a single Puff-ball is almost past computation. Fries, however, an eminent fungologist, went to some pains to estimate this number, and, referring to a certain puff-ball, says: "The spores are infinite. In a single individual of Reticularia maxima I have reckoned ten millions so subtle as to resemble thin smoke as light as if raised by evaporation, and dispersed in so many ways—by the sun's attraction, by insects, by adhesion and elasticity—that it is difficult to conceive the spots from which they could be excluded."

Spore-cloud from mushrooms

We have seen the myriad-fold dispersion of its potential atoms in the cloud of spore-smoke, but who ever thinks of a spore-cloud from a mushroom or a toadstool? Yet the method of the Puff-ball is followed by all the other fungi, with only less conspicuousness. The Puff-ball gives a visible salute, but any one of the common mushrooms or toadstools will afford us a much prettier and more surprising account of itself if we but give it the opportunity. This big yellow toadstool out under the poplar-tree—its golden cap studded with brownish scurfy warts, its under surface beset with closely plaited laminÆ or gills—who could ever associate the cloud of dry smoke with this moist, creamy-white surface? We may sit here all day and watch it closely, but we shall see no sign of anything resembling smoke or dust, albeit a filmy emanation is continually eluding us, floating away from beneath its golden cap, the eager breeze taking such jealous care of the continual shower that our eyes fail to perceive a hint of it.

Catching the spores

Do you doubt it? You need wait but a few moments for a visible demonstration of the fact in a pretty experiment, which, when once observed, will certainly be resorted to as a frequent pastime in leisure moments when the toadstool or mushroom is available.

Here is a very ordinary-looking specimen growing beside the stone steps at our back door perhaps. Its top is gray, its gills beneath are fawn-colored. We may shake it as rudely as we will, and yet we shall get no response such as the Puff-ball will give us. But let us lay it upon a piece of white paper, gills downward, on the mantel, and cover it with a tumbler or finger-bowl, so as to absolutely exclude the least admission of air. At the expiration of five minutes, perhaps, we may detect a filmy pinkish-yellow tint on the paper, following beneath the upraised border of the cap, like a shadow faintly lined with white. In a quarter of an hour the tinted deposit is perceptible across the room, and in an hour, if we carefully raise the mushroom, the perfect spore-print is revealed in all its beauty—a spore-tint portrait of the under surface of the mushroom—a pink-brown disk with a white centre, which indicates the point of contact of the cut stem, and white radiating lines, representing the edges of the thin gills, many of them as fine and delicate as a cobweb.

Every fresh species experimented with will yield its surprise in the markings and color of the prints.

_

These spore-deposits are, of course, fugitive, and will easily rub off at the slightest touch. But inasmuch as many of these specimens, either from their beauty of form or exquisite color, or for educational or scientific purposes, it will be desirable to preserve, I append simple rules for the making and "fixing" of the prints by a process which was original with the writer, and which he has found most effective for their preservation.

Making and fixing spore-prints
Various colors of spores

Take a piece of smooth white writing-paper and coat its surface evenly with a thin solution of gum-arabic, dextrine, or other mucilage, and allow it to dry. Pin this, gummed side uppermost, to a board or table, preferably over a soft cloth, so that it will lie perfectly flat. To insure a good print the mushroom specimen should be fresh and firm, and the gills or spore-surface free from breaks or bruises. Cut the stem off about level with the gills, lay the mushroom, spore-surface downward, upon the paper, and cover with a tumbler, finger-bowl, or other vessel with a smooth, even rim, to absolutely exclude the slightest ingress of air. After a few hours, perhaps even less, the spores will be seen through the glass on the paper at the extreme edge of the mushroom, their depth of color indicating the density of the deposit. If we now gently lift the glass, and with the utmost care remove the fungus, perhaps by the aid of pins previously inserted, in a perfectly vertical direction, without the slightest side motion, the spore-print in all its beauty is revealed—perhaps a rich brown circular patch with exquisite radiating white lines, marking the direction and edges of the gills, if an Agaric; perhaps a delicate pink, more or less clouded disk, here and there distinctly and finely honey-combed with white lines, indicating that our specimen is one of the polypores, as a Boletus. Other prints will yield rich golden disks, and there will be prints of varying red, lilac, green, orange, salmon-pink, and brown and purple, variously lined in accordance with the nature of their respective parent gills or pores.

_

Plate XXXV.—SPORE-SURFACE OF AN AGARIC

[Pg 284]
[Pg 285]

_

Plate XXXVI.—SPORE-SURFACE OF POLYPORUS (BOLETUS)

[Pg 286]
[Pg 287]

Invisible prints
Fixing the print

Occasionally we shall look in vain for our print, which may signify that our specimen had already scattered its spores ere we had found it, or, what is more likely, that the spores are invisible upon the paper, owing to their whiteness, in which case black or colored paper must be substituted for the white ground, when the spores will be beautifully manifest in a white tracery upon the darker background. One of these, from the Amanita muscarius, is reproduced in Plate 37. If the specimen is left too long, the spore-deposit is continued upward between the gills, and may reach a quarter of an inch in height, in which case, if extreme care in lifting the cap is used, we observe a very realistic counterfeit of the gills of the mushroom in high relief upon the paper. A print of this kind is of course very fragile, and must be handled with care. But a comparatively slight deposit of the spores, without apparent thickness, will give us the most perfect print, while at the same time yielding the full color. Such a print may also be fixed by our present method so as to withstand considerable rough usage, by laying the paper upon a wet towel until the moisture has penetrated through and reached the gum. The spores are thus set, and, upon drying the paper, are securely fixed. Indeed, the moisture exuded by the confined fungus beneath the glass is often sufficient to set the spores.

A number of prints may be obtained successively from a single specimen gathered at its fruitful prime.

Agarics and Polypores

To those of my readers interested in the science of this spore-shower I give illustrations of examples of the two more common groups of mushrooms—the Agaric, or gilled mushroom, and the Polyporus, or tube-bearing mushroom. The entire surface of both gills and pores is lined with the spore-bearing membrane or hymenium, the spores being produced in fours from each of the crowded sporophores, and, where all air is absolutely excluded, permitting them to fall directly beneath their point of departure as indicated; in the case of the Agaric, in radiating lines in correspondence with the spaces between the gills; and in Polyporus, directly beneath the opening of each pore, whose inner surface is lined with the sporophores, as shown in Plate 36.

Spore-mist from an Agaric

This dust-shower is continuous in nature after the perfect ripening of the spores, but it is almost impossible to conceive of such an entire absence of moving air under natural conditions as to permit even a visible hint of the spore-shower to appear beneath its respective fungus. An exception to this rule is sometimes to be seen in fungi of massed growth—as, for example, beneath such a cluster as that shown on page 147. Indeed, a correspondent recently described such a cluster as "enveloped in a mist of its own spores floating away in the apparently still air."

_

Plate XXXVII.—SPORE-PRINT OF AMANITA MUSCARIUS

[Pg 290]
[Pg 291]

_

Plate XXXVIII.—ACTION OF SLIGHT DRAUGHT ON SPORES

[Pg 292]
[Pg 293]

Affected by a pin-hole draft

In Plate 38 is shown a spore-print with a peculiar elongated tail. Such was the specimen which I observed when lifting the pasteboard box which had been placed above the mushroom to absolutely exclude the air. The explanation was simple when I discerned that the tapering elongation pointed directly to a tiny hole in the box barely larger than a knitting-needle.

_

FUNGUS SPORES

The greatest portion of the myriads of spores are wafted to the ends of the earth, and form an important element in the so-called "dust" so unwelcome to the tidy housewife. A sticky glass slide exposed to the deposit of such dust, and placed beneath the microscope, will reveal many fungus spores. The air is full of them.

A few of the various characteristic forms of these fungus-spores is shown on a previous page, somewhat as a powerful microscope would reveal them to us.

Whims of habitat

But it is only as they chance to alight individually in congenial conditions for growth that they will consent to vegetate. Thus billions of them are doomed to perish without progeny. These whims of habitat among the fungi are almost past belief. Here, for instance, is a tiny Puff-ball hardly larger than the period on this page. It bursts at the summit, and sheds its puff of microscopic spores, so light as to be without gravity, floating and settling everywhere upon the earth, but only as they chance to alight upon the spines of a dead chestnut-burr of two years' decay will they find heart to grow. Such is the fastidiousness of the little white mushroom, whose globular caps dot the spines of the decaying chestnut-burrs in so many damp nooks in the woods.

Curious fastidiousness

In closing my chapter a glance at the further eccentricities of choice will not be inopportune. I append a few taken at random from the pages of Berkeley, which lie open before me. In addition to the general broad distinctions of habitat as "woods," "rotten wood," "old pastures," "dunghills," we find such fastidious selections as the following, each by a distinct species with its own individual whim: "Dead fir-cones, sawdust, beechnuts, plaster walls, old fermenting coffee-grounds, wheat ears, cinders, dead oak leaves, old linen, wheat bread, hoofs, feathers, decayed rope, fat, microscopic lenses, and damp carpets."

A complete list of these exclusive habitats of fungi would well fill a large book, and might indeed almost involve the "index" of our botanies and zoologies, to say nothing of organic substances generally.

House-fly fungus

Plants, both living and dead, are favorite habitats for various species. The old stems of the common European nettle, according to Cooke, becomes the host of about thirty distinct species of the minute fungi. The toadstool itself is often the victim of other minor species. Insects are a frequent prey. The wasp succumbs to its special fungus parasite, which has formed a home within its body, and the common house-fly is seen in the toils of its similar enemy, as it hangs helpless by its proboscis upon the window-pane, enveloped in the winding-sheet of white mould from the fungus which has done its work within the insect's body. Spiders, locusts, ants, cicadÆ, and presumably all insects, are subject to similar fate from their especial parasitic fungi. The fungus thus often comes to the rescue of afflicted humanity in regulating the undue increase of insect pests. Here is a pretty, slender, orange, pointed mushroom growing in the moss. We pluck it from its bed, and it brings to the surface a chrysalis, with the dead moth distinctly seen within the cavity from which its roots spring. When we next come upon this species in the moss, we may confidently predict the discovery of this same species of chrysalis.

Edible caterpillar fungi

A similar long, slender fungus springs from the head of a caterpillar in New Zealand, and at length almost absorbs the insect's body. A similar species upon another caterpillar is carefully collected and desiccated by the Chinese, with whom it forms an important article in their native pharmacopoeia, and, moreover, it seems, may be perhaps appropriately included among the "edibles," for are we not assured by these expert and indiscriminate epicures of the chopsticks that this species "makes an excellent dressing for roast duck."

_

_

Concerning "Mushromes and Tadstoles"

O

And now for that our fine mouthed and daintie wantons who set such store by their tooth; take so great delight to dress this only dish with their own hands, that they may feed thereon in conceit and cogitation all the while they be handling and preparing the same, furnished in this their businesse with their fine knives and razors of amber and other vessels of silver about them.

"I for my part also am content to frame and accomodate myself to their humourous fancie and will shew unto them in generall certaine observations and rules how to order and use them that they may be eaten with securitie."

Plinius Secundus.


_
                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page