Benjamin Thompson, like Franklin, was a native of Massachusetts, his ancestors for several generations having been yeomen in that province, and descendants of the first colonists of the Bay. In the diploma of arms granted him when he was knighted by George III., he is described as "son of Benjamin Thompson, late of the province of Massachusetts Bay, in New England, gent." He was born in the house of his grandfather, Ebenezer Thompson, at Woburn, Massachusetts, on March 26, 1753. His father died at the age of twenty-six, on November 7, 1754, leaving the infant Benjamin and his mother to the care of the grandparents. The widow married Josiah Pierce, junior, in March, 1756, and with her child, now a boy of three, went to live in a house but a short distance from her former residence. Young Thompson appears to have received a sound elementary education at the village school. From some remarks made by him in after years It was in 1769, while preparing fireworks for the illumination on the abolition of the Stamp Act, that Thompson was injured by a severe explosion as he was grinding his materials in a mortar. His note-book contained many directions for the manufacture of fireworks. During Thompson's apprenticeship those questions were agitating the public mind which finally had their outcome in the War of Independence. Mr. Appleton was one of those who signed the agreement refusing to import British goods, and His note-book, containing the entries made at this time, comprised several comic sketches very well drawn, and a quantity of business memoranda which show that he was very systematic in keeping his accounts. His chief method of earning money, or rather of making up the "Cr." side of his accounts, was by cutting and cording wood. A series of entries made in July and August, 1771, show the expense he incurred in constructing an electrical machine. It is not easy to determine, from the list of items purchased, the character of the machine he constructed; but it is interesting to note that the price in America at that time of nitric acid was 2s. 6d. per ounce; of lacquer, 40s. per pint; of shellac, 5s. per ounce; brass wire, 40s. per pound; and iron wire, 1s. 3d. per yard. The nature of the problems which occupied his thoughts during the last year or two of his business life are apparent in the following letters:—
This was an extensive request, and the reply was probably not altogether satisfactory to the inquirer. On the back of the above letter was written:—
Thompson appears now to have given up business and commenced the study of medicine under Thompson won such a reputation as a teacher during the few weeks that he taught in village schools in the course of his student life, that he received an invitation from Colonel Timothy Walker to come to Concord, in New Hampshire, on the Merrimack, and accept a permanent situation The young schoolmaster of Concord was soon on very intimate terms with the minister of the town, the Rev. Timothy Walker, The exact date of Thompson's marriage is not known. His daughter Sarah, afterwards Countess of Rumford, was born in the Rolfe mansion on October 18, 1774. It is needless to say that the engagement to Mrs. Rolfe terminated the teaching at the school. Thompson now had a large estate and ample means to improve it. He gave much attention to gardening, and sent to England for garden seeds. In some way he attracted the attention of Governor Wentworth, the Governor of Portsmouth, who invited him to the Government House, and was so taken with the former apprentice, medical student, and schoolmaster, that he gave him at once a commission as major. This appointment was the cause of the misfortunes which almost immediately began to overtake him. He incurred the jealousy of his fellow-officers, over whom he had been appointed, and he failed to secure the confidence of the civilians of Concord. Public feeling in New England was very much excited against the mother country. Representations were sent to the British Government, but appeared to be treated with contempt. Very many of these documents were found, after the war was over, unopened in drawers at the Colonial Office. British ministers appeared to know little about the needs of their American dependencies, and relations rapidly became more and more strained. The patriots appointed committees to watch over the patriotism of their fellow-townsmen, and thus the While at Woburn, his wife and child joined him, and stayed there for some months. At length he was arrested and confined in the town upon suspicion of being inimical to the interests of his country. When he was brought before the Committee of Inquiry, there was no evidence brought against him. Major Thompson then petitioned to When Thompson reached London with the intelligence of the evacuation of Boston, Lord George Germaine, the Secretary for War, saw that he could afford much information which would be of value to the Government. An appointment was soon found for him in the Colonial Office, and afterwards he was made Secretary of the Province of Georgia, in which latter capacity, however, he had no duties to fulfil. Throughout his career in the Colonial Office he remained on very intimate terms with Lord George Germaine, and generally breakfasted with him. In July, 1778, he was guest of Lord George at Stoneland Lodge, and here, in company with Mr. Ball, the Rector of Withyham, he undertook experiments "to determine the most advantageous situation for the vent in firearms, and to measure the velocities of bullets and the recoil under various circumstances." The results of these investigations procured for him the friendship of Sir Joseph Banks, the President of the Royal Society, and Thompson was not the man to lose opportunities for want of making use of them. In 1779 he was elected a Fellow of the Royal Society, "as a gentleman well versed On the defeat of Cornwallis, Lord George Germaine and his department had to bear the brunt of Parliamentary dissatisfaction. Lord George resigned his position in the Government, and was created Viscount Sackville. He had, however, previously conferred on Thompson a commission as lieutenant-colonel in the British army, and Thompson, probably foreseeing the outcome of events and its effect on the Ministry, was already in America when Lord George resigned. He had intended landing at New York, but contrary winds drove him to Charlestown. It is needless to trace the sad events which preceded the end of the war. It was to be expected that many bitter statements would be made by his countrymen respecting Thompson's own actions as colonel commanding a British garrison, for at length he succeeded in reaching Long Island, and taking the command of the King's American Dragoons, who were there awaiting him. The spirit of war always acts injuriously on those exposed to its In 1783, before the final disbanding of the British forces, Thompson returned to England, and was promoted to the rank of colonel, with half-pay for the rest of his life. Still anxious for military service, he obtained permission to travel on the Continent, in hopes of serving in the Austrian army against the Turks. He took with him three English horses, which rendered themselves very objectionable to his fellow-travellers while crossing the Channel in a small boat. Thompson went to Strasbourg, where he attracted the attention of the Prince Maximilian, then Field-Marshal of France, but afterwards Elector of Bavaria. On leaving Strasbourg, the prince gave him an introduction to his uncle, the Elector of Bavaria. He stayed some days at Munich, but on reaching Vienna learned that the war against the Turks would not be carried on, so he returned to Munich, and thence to England. M. Pictet gives the following as Rumford's account of the manner in which he was cured of his passion for war:— "'I owe it,' said he to me, one day, 'to a beneficent Deity, that I was cured in season of this martial folly. I met, at the house of the Prince de Kaunitz, a lady, aged seventy years, of If the course in life which Colonel Thompson afterwards took was due to the advice of this lady, she deserves a European reputation. The Elector of Bavaria, Charles Theodore, gave Thompson a pressing invitation to enter his service in a sort of semi-military and semi-civil capacity, to assist in reorganizing his dominions and removing the abuses which had crept in. Before accepting this appointment, it was necessary to obtain the permission of George III. The king not only approved of the arrangement, but on February 23, 1784, conferred on the colonel the honour of knighthood. Sir Benjamin then returned to Bavaria, and was appointed by the elector colonel of a regiment of cavalry and general aide-de-camp. A palatial residence in Munich was furnished for him, and here he lived more as a prince than a soldier. It was eleven years before he returned, even on a visit, to England, and these years were spent by him in works of philanthropy and statesmanship, to which it is difficult to find a parallel. At one time he is found reorganizing the military system of the country, arranging a complete One great evil of a standing army is the idleness which it develops in its members, unfitting them for the business of life when their military service is ended. Thompson commenced by attacking this evil. In 1788 he was made major-general of cavalry and Privy Councillor of State, and was put at the head of the War Department, with instructions to carry out any schemes which he had developed for the reform of the army and the removal of mendicity. Four years after his arrival in Munich he began to put some of his plans into operation. The pay of the soldiers was only threepence per day, and their quarters extremely uncomfortable, while their drill and discipline were unnecessarily irksome. Thompson set to work to make "soldiers citizens and citizens soldiers." The soldier's pay, uniform, and quarters were improved; the discipline rendered less irksome; and schools in which the three R's were taught were connected with all the regiments,—and here not only the soldiers, but their children as well as other children, were taught gratuitously. Not only were the soldiers employed in public works, and thus accustomed to habits of industry, while they were enlivened in their work by the strains of their own military bands, but they were supplied with raw material of various kinds, and Having thus secured the co-operation of the army, Thompson determined to attack the mendicants. The number of beggars may be estimated from the fact that in Munich, with a population of sixty thousand, no less than two thousand six hundred beggars were seized in a week. In the towns, they possessed a complete organization, and positions of advantage were assigned in regular order, or inherited according to definite customs. In the country, farm labourers begged of travellers, and children were brought up to beggary from their infancy. Of course, the evils did not cease with simple begging. Children were stolen That Thompson's work was appreciated by those in whose interest it was undertaken is shown by the fact that when, on one occasion, he was dangerously ill, the poor of Munich went in public procession to the cathedral to pray for him, though he was a foreigner and a Protestant. Perhaps it may appear that his philanthropic work has little to do with physical science; but with Thompson everything was a scientific experiment, conducted in a truly scientific manner. For example, the lighting of the military workhouse afforded matter for a long series of experiments, described in his papers on photometry, coloured shadows, etc. The investigations on the best methods of employing fuel for culinary purposes led to some of his most elaborate essays; and his essay on food was welcomed alike in London and Bavaria at a time of great scarcity, and when famine seemed impending. The Emperor Joseph was succeeded by Leopold II., but during the interregnum the Elector of Bavaria was Vicar of the Empire, and he employed the power thus temporarily placed in his hands in raising Sir Benjamin to the dignity of Count of the Holy Roman Empire, with the order of the White Eagle, and the title which the new count selected was the old name of the village in New England where he had spent the two or three years of his wedded life. In 1795 Count Rumford returned to England, Lady Thompson lived to hear of her husband's high position in Bavaria, but died on January 29, 1792. When Rumford came to London in 1795, he wrote to his daughter, who was then twenty-one years of age, to meet him there, and on January 29, 1796, she started in the Charlestown, from Boston. She remained with her father for more than three years, and her autobiography gives much information respecting the count's doings during this time. While in London, Count Rumford attained a high reputation as a curer of smoky chimneys. One firm of builders found full employment in carrying out work in accordance with his instructions; and in his hotel at Pall Mall he conducted experiments on fireplaces. He concluded that the sides of a fireplace ought to make an angle of 135° with the back, so as to throw the heat straight to the front; and that the width of the back should be one-third of that of the front opening, and be carried up perpendicularly till it joins the breast. The "Rumford It was during this stay in London that Rumford presented to the Royal Society of London, and to the American Academy of Sciences £1000 Three per Cent. Stock, for the purpose of endowing a medal to be called the Rumford Medal, and to be given each alternate year for the best work done during the preceding two years in the subjects of heat and light. He directed that two medals, one in gold and the other in silver, should be struck from the same die, the value of the two together to amount to £60. Whenever no award was made, the interest was to be added to the principal, and the excess of the income for two years over £60 was to be presented in cash to the recipient of the medal. At present the amount thus presented is sufficient to pay the composition fee for life membership of the Royal Society. The first award of the medal was made in 1802, to Rumford himself. The other recipients have been John Leslie, William Murdock, Étienne-Louis Malus, William Charles Wells, Humphry Davy, David Brewster, Augustin Jean Fresnel, Macedonio Melloni, James David Forbes, Jean Baptiste Biot, Henry Fox Talbot, Michael Faraday, M. Regnault, F. J. D. Arago, George Gabriel Stokes, Neil Arnott, M. Pasteur, M. Jamin, James Clerk Maxwell, Kirchoff, John Tyndall, A. H. L. Fizeau, Balfour Stewart, A. O. des Cloiseaux, A. J. ÅngstrÖm, J. Norman Lockyer, P. J. C. Janssen, W. Huggins, Captain Abney. In the summer of 1796 Rumford and his daughter left England to return to Munich. On account of the war, they were obliged to go by sea to Hamburg; whence they drove to Munich, where the count was anxiously expected, political troubles having compelled the elector to leave the city. After the battle of Friedburg, the Austrians retired to Munich, and, finding the gates of the city closed, they fortified themselves on an eminence overlooking the city, and, through some misunderstanding with the local authorities, the Austrian general threatened to attack the city if any Frenchman should be allowed to enter. Rumford took supreme command of the Bavarian forces, and so gained the respect of the rival generals that neither the French nor the Austrians made any attempt to enter the city. The large number of soldiers now in Munich gave Rumford a good opportunity to exercise his skill in cooking on a large scale, and this he did, adding to the comfort of the soldiers and reducing the cost of the commissariat. On the return of the elector, Miss Sarah was made a countess, and one-half of her father's pension was secured to her, thus providing her with an income of about £200 per annum for life. Many of the details of the home life and social intercourse during this period of residence at Munich are preserved in the autobiography of the countess, as well as accounts of excursions, including a trip by river to Salzburg for the purpose of inspecting the salt-mines. After two years' stay in Munich, the count was appointed
The history of the remaining period of Rumford's residence in London is the early history of the Royal Institution. For many years Rumford had had at his disposal for his philanthropic projects all the resources of the electorate of Bavaria, and he had done everything on a royal scale. His original plan for the The philanthropic objects with which the institution was started are apparent from the fact that it was the Society for Bettering the Condition of the Poor which appointed a committee to confer with Rumford, to report on the scheme, and to raise the funds necessary for starting the project; and one of Rumford's hopes in connection with it was "to make benevolence fashionable." It was arranged that donors of fifty guineas each should be perpetual proprietors of the institution; and that subscribers should be admitted at a subscription of two guineas per annum, or ten guineas for life. The price of a proprietor's share was A lecture-room and laboratory were to be fitted The lectures were to include warming and ventilation, the preservation of food, agricultural chemistry, the chemistry of digestion, of tanning, of bleaching and dyeing, "and, in general, of all the mechanical arts as they apply to the various branches of manufacture." The institution was to be governed by nine managers, of whom three were to be elected each year by the proprietors; and there was also to be a committee of visitors, the members of which should not be the managers. The king became patron of the institution, and the first set of officers was nominated by him. The Earl of Winchelsea and Nottingham was President; the Earls of Morton and of Egremont and Sir Joseph Banks, Vice-Presidents; the Earls of Bessborough, of Egremont, and of Morton, and Count Rumford, were among the Managers; the Duke of Bridgewater, Viscount Palmerston, and Earl Spencer the Visitors; and Dr. Thomas Garnett was appointed first Professor of Physics and Chemistry. The royal charter of the institution was sealed on January 13, 1800. The superintendence of the journals of the institution was entrusted to Rumford's care. For some time the count resided in the house in Albemarle Street, which had been purchased by the institution, and while there he superintended the workmen and servants. Dr. Thomas Garnett, the first professor at the institution, was highly respected both as a man and a philosopher, and seems to have been everywhere well spoken of. But Rumford and he could not work together, and his connection with the institution was consequently a short one. Rumford was then authorized to engage Dr. Young as Professor of Natural Philosophy, editor of the journals, and general superintendent of the house, at a salary of £300 per annum. Shortly before this the count's attention had been directed to the experiments on heat, made by Humphry Davy, and on February 16, 1801, it was "resolved that Mr. Humphry Davy be engaged in the service of the Royal Institution, in the capacity of Assistant-Lecturer in Chemistry, Director of the Chemical Laboratory, and Assistant-Editor of the Journals of the Institution; and that he be allowed to occupy a room in the house, and be furnished with coals and candles, and that he be paid a salary of one hundred guineas per annum." In his personal appearance, Davy is said to have been at first somewhat uncouth, and the count was by no means charmed with him at their first interview. It was not till he had heard him lecture in private that Rumford would allow Davy to lecture in the theatre of the institution; but he afterwards showed his complete confidence in the young chemist by ordering that all the resources of the institution should be at his service. Davy dined with Rumford at the count's house in Auteuil, Rumford's life in London now became daily more unpleasant to himself. Accustomed, as he had been in Bavaria, to carry out all his projects "like an emperor," it was difficult for him to work as one member of a body of managers. One by one he quarrelled with his colleagues, and at length left England, in May, 1802, never to return. When distinguished men of science are placed at the head of an institution like that which Rumford founded, there is always a tendency for the technical teaching of the establishment to become gradually merged into scientific research; and in this case, after Rumford's departure, the genius of Davy gradually converted the Royal Institution into the establishment for scientific research which it has been for more than three quarters of a century. Probably the man who has come nearest to realizing all that Count Rumford had planned for his institution is the late Sir Henry Cole; but he succeeded only through the resources of the Treasury. On leaving England in May, 1802, Rumford went to Paris, where he stayed till July or August, when he revisited Bavaria and remained there till the following year, when he returned to Paris. He was again at Munich in 1805; but under the new elector, though an old friend of the count, relationships do not seem to have been all that they were with his uncle, and at length the elector himself was compelled to leave Munich, and soon after the Bavarian sovereign became a vassal of Napoleon. On October 24, 1805, Rumford married Madame Lavoisier, a lady of brilliant talents and ample fortune. That his position might be nearly equal to hers, the Elector of Bavaria raised his pension to £1200 per annum. A house, Rue d'Anjou, No. 39, was purchased for six thousand guineas, and Rumford expended much thought and energy in making it, with its garden of two acres, all that he could desire. But the union was not so happy as he anticipated. The count loved quiet; Madame de Rumford was fond of company: to the former the pleasure of the table had no charms; the latter took delight in sumptuous dinner-parties. As time went on, domestic affairs became more and more unpleasant, and at length a friendly separation was agreed upon, after they had lived together for about three years and a half. The count then retired to a small estate which he hired at Auteuil, about four miles from Paris. The Elector of Bavaria was crowned king on January 1, 1806, and in 1810 Rumford was again at Munich, for the purpose of While resident at Auteuil, Rumford frequently read papers before the Institute of France, of which he was a member. He complained very much of the jealousy exhibited by the other members with reference to any discoveries made by a foreigner. He died in his house at Auteuil, on August 21, 1814, in the sixty-second year of his age. In 1804 he had made over, by deed of gift to his mother, the sum of ten thousand dollars, that she might leave it by will to her younger children. As before mentioned, Harvard College was his residuary legatee, and the property so bequeathed founded the Rumford Professorship in that institution. Cuvier, as Secretary of the Institute, pronounced the customary eulogy over its late member. The following passages throw some light on the reputation in which the count was held:—
In front of the new Government offices and the National Museum in the Maximilian Strasse, in Munich, stand, on granite pedestals, four bronze figures, ten feet in height. These represent General Deroy, Fraunhofer, Schelling, and Count Rumford. The statue of Rumford was erected in The bare enumeration of Rumford's published papers would occupy considerable space, but many of them have more to do with philanthropy and domestic economy than with physics. We have seen that, when guest of Lord George Germaine, he was engaged in experiments on gunpowder. The experiments were made in the usual manner by firing bullets into a ballistic pendulum, and recording the swing of the pendulum. Thompson suggested a modification of the ballistic pendulum, attaching the gun-barrel to the pendulum, and observing the recoil, and making allowance for the recoil due to the discharge from the gun of the products of combustion of the powder, the excess enabled the velocity of the bullet to be calculated. Afterwards he made experiments on the maximum pressure produced by the explosion of powder, and pointed out that the value of powder in ordnance does not depend simply on the whole amount of gas produced, but also on the rapidity of combustion. While superintending the arsenal at Munich, Rumford exploded small charges of powder in a specially constructed receiver, which was closed by a plug of well-greased leather, and on this was placed a hemisphere of steel pressed down by a 24-pounder brass cannon weighing 8081 pounds. These investigations were followed by a very interesting series of experiments on the conducting power of fluids for heat, and, although he pushed his conclusions further than his experiments warranted, he showed conclusively that convection currents are the principal means by which heat is transferred through the substance of fluids, and described how, when a vessel of water is heated, there is generally an ascending current in the centre, and a descending current all round the periphery. Hence it is only when a liquid expands by increase of temperature that a large mass can be readily heated from below. Water below 39° Fahr. contracts when heated. Rumford, in his paper, enlarges on the bearing of this fact on the economy of the universe, and the following extracts afford a good specimen of his style, and justify some of the statements made by Cuvier in his eulogy:—
He then goes on to explain how large bodies of water are prevented from freezing at great depths on account of the expansion which takes place on cooling below 39° Fahr., and the further expansion which occurs on freezing, and mentions that in the Lake of Geneva, at a depth of a thousand feet, M. Pictet found the temperature to be 40° Fahr. "We cannot sufficiently admire the simplicity of the contrivance by which all this heat is saved. It well deserves to be compared with that by which the seasons are produced; and I must think that every candid inquirer who will begin by divesting himself of all unreasonable prejudice will agree "But I must take care not to tire my reader by pursuing these speculations too far. If I have persisted in them, if I have dwelt on them with peculiar satisfaction and complacency, it is because I think them uncommonly interesting, and also because I conceived that they might be of value in this age of refinement and scepticism. "If, among barbarous nations, the fear of a God, and the practice of religious duties, tend to soften savage dispositions, and to prepare the mind for all those sweet enjoyments which result from peace, order, industry, and friendly intercourse; a belief in the existence of a Supreme Intelligence, who rules and governs the universe with wisdom and goodness, is not less essential to the happiness of those who, by cultivating their mental powers, HAVE LEARNED TO KNOW HOW LITTLE CAN BE KNOWN." Rumford, in connection with his experiments on the conducting power of liquids, tried the effect of increasing the viscosity of water by the addition of starch, and of impeding its movements by the introduction of eider-down, on the rate of diffusion of heat through it. Hence he explained the inequalities of temperature which may obtain in a mass of thick soup—inequalities which had once caused him to burn his mouth—and, applying the same principles to air, he at once turned his conclusions to practical account in the matter of warm clothing. After an attempt to determine, if possible, the weight of a definite quantity of heat—an attempt in which very great precautions were taken to exclude disturbing causes, while the balance employed was capable of indicating one-millionth part of the weight of the body weighed—Rumford, finding no sensible effect on the balance, concluded that "if the weight of gold is neither augmented nor lessened by one-millionth part, upon being heated from the point of freezing water to that of a bright red heat, I think we may very safely conclude that ALL ATTEMPTS TO DISCOVER ANY EFFECT OF HEAT UPON THE APPARENT WEIGHTS OF BODIES WILL BE FRUITLESS." The theoretical investigations of Principal Hicks, based on the vortex theory of matter and the dynamical theory of heat, have recently led him to the conclusion that the attraction of gravitation may depend to some extent on temperature. A series of very valuable experiments on the radiating powers of different surfaces showed how that power varied with the nature of the surface, and the effect of a coating of lamp-black in increasing the radiating power of a body. In order to determine the effect of radiation in the cooling of bodies, Rumford employed the thermoscope referred to by Cuvier. The following passage is worthy of attention, as the truth it expounds in the last thirteen words appears to have been but very imperfectly recognized many years after it was written: "All the heat which a hot body loses when it is exposed in the air to cool is not given off to the air which comes into contact with it, but ... a large proportion of it escapes in rays, which do not heat the transparent air through which they pass, but, like light, generate heat only when and where they are stopped and absorbed." Rumford then investigated the absorption of heat by different surfaces, and established the law that good radiators are good absorbers; and recommended that vessels in which water is to be heated should be blackened on the outside. In speculating on the use of the colouring matter in the skin of the negro, he shows his fondness for experiment:— "All I will venture to say on the subject is that, were I called to inhabit a very hot country, nothing should prevent me from making the experiment of blackening my skin, or at least, of wearing a black shirt, in the shade, and especially at night, in order to find out if, by those means, I could contrive to make myself more comfortable." In his experiments on the conduction of heat, Rumford employed a cylinder with one end immersed in boiling water and the other in melting ice, and determined the temperature at different points in the length of the cylinder. He found the difficulty which has recently been forcibly pointed out by Sir Wm. Thomson, in the article "Heat," in the "EncyclopÆdia Britannica," viz. that the circulation of the water was not sufficiently rapid We must pass over Rumford's papers on the use of steam as a vehicle of heat, on new boilers and stoves for the purpose of economizing fuel, and all the papers bearing on the nutritive value of different foods. The calorimeter with which he determined the amount of heat generated by the combustion, and the latent heat of evaporation, of various bodies has been already alluded to. Of the four volumes of Rumford's works published by the American Academy of Arts and Sciences, the third is taken up entirely with descriptions of fireplaces and of cooking utensils. Before deciding on the best way to light the military workhouse at Munich, Rumford made a series of experiments on the relative economy of different methods, and for this purpose designed "This result can be easily explained if we admit the hypothesis which supposes light to be analogous to sound.... The particles ... were so rapidly cooled ... that they had hardly time to shine one instant before they became too cold to be any longer visible." An argand lamp, when compared with a lamp One of the latest investigations of Rumford was that bearing on the effect of the width of the wheels on the draught of a carriage. To his own carriage, weighing, with its passengers, nearly a ton, he fitted a spring dynamometer by means of a set of pulleys attached to the under-carriage and the splinter-bar. He used three sets of wheels, respectively 1-3/4, 2-1/4, and 4 inches wide, and, introducing weights into the carriage to make up for the difference in the weights of the wheels, he found a very sensible diminution in the tractive force required as the width of the wheels was increased, and in a truly scientific spirit, despising the ridicule cast upon him, he persisted in riding about Paris in a carriage with four-inch tyres. But the piece of work by which Rumford will be best known to future generations is that described in his paper entitled "An Inquiry concerning the Source of the Heat which is excited by Friction." It was while superintending the boring of cannon in the arsenal at Munich that Rumford was struck with the enormous amount of heat generated by the friction of the boring-bar against the metal. In order to determine whether the heat had come from the chips of metal themselves, he took a quantity of the abraded borings and an equal weight of chips cut from the metal with a fine saw, and, heating them to the temperature of boiling water, he immersed them in equal quantities of water at 59-1/2° Fahr. The In order to prevent the honeycombing of the castings by the escaping gas, the cannon were cast in a vertical position with the breech at the bottom of the mould and a short cylinder projecting about two feet beyond the muzzle of the gun, so that any imperfections in the casting would appear in this projecting cylinder. It was on one of these pieces of waste metal, while still attached to the gun, that Rumford conducted his experiments. Having turned the cylinder, he cut away the metal in front of the muzzle until the projecting piece was connected with the gun by a narrow cylindrical neck, 2·2 inches in diameter and 3·8 inches long. The external diameter of the cylinder was 7·75 inches, and its length 9·8 inches, and it was bored to a depth of 7·2 inches, the diameter of the bore being 3·7 inches. The cannon was mounted in the boring-lathe, and a blunt borer pressed by a screw against the bottom of the bore with a force equal to the weight of 10,000 pounds. A small transverse hole was made in the cylinder near its base for the introduction of a thermometer. The cylinder weighed 113·13 pounds, and, with the gun, was turned at the rate of thirty-two revolutions per minute by horse-power. To prevent loss of heat, the cylinder was covered with flannel. After thirty minutes' To exclude the action of the air, the cylinder was closed by an air-tight piston, but no change was produced in the result. As the air had access to the metal where it was rubbed by the piston, and Rumford thought this might possibly affect the result, a deal box was constructed, with slits at each end closed by sliding shutters, and so arranged that it could be placed with the boring bar passing through one slit and the narrow neck connecting the cylinder with the gun through the other slit, the sliding shutters, with the help of collars of oiled leather, serving to make the box water-tight. The box was then filled with water and the lid placed on. After turning for an hour the temperature was raised from 60° to 107° Fahr., after an hour and a half it was 142° Fahr., at the end of two hours the temperature was 178° Fahr., at two hours and twenty minutes it was 200° Fahr., and at two hours and thirty minutes it ACTUALLY BOILED! "It would be difficult to describe the surprise and astonishment expressed in the countenances of the bystanders on seeing so large a quantity of cold "Though there was, in fact, nothing that could justly be considered as surprising in this event, yet I acknowledge fairly that it afforded me a degree of childish pleasure which, were I ambitious of the reputation of a grave philosopher, I ought most certainly rather to hide than to discover." Rumford estimated the "total quantity of ice-cold water which, with the heat actually generated by the friction and accumulated in two hours and thirty minutes, might have been heated 180 degrees, or made to boil" at 26·58 pounds, and the rate of production he considered exceeded that of nine wax candles, each consuming ninety-eight grains of wax per hour, while the work of turning the lathe could easily have been performed by one horse. This was the first rough attempt ever made, so far as we know, to determine the mechanical equivalent of heat. In his reflections on these experiments, Rumford writes:—
It has been stated that, if Rumford had dissolved in acid the borings and the sawn strips of metal, the capacity for heat of which he determined, and had shown that the heat developed in the solution was the same in the two cases, his chain of argument would have been absolutely complete. Considering the amount of heat produced in the experiments, there are few minds whose conviction would be strengthened by this experiment, and it is only those who look for faultless logic that will refuse to Rumford the credit of having established the dynamical nature of heat. Davy afterwards showed that two pieces of ice could be melted by being rubbed against one another in a vacuum, but he does not appear to have made as much as he might of the experiment. Mayer calculated the mechanical equivalent of heat from the heat developed in the compression of air, but he assumed, what afterwards was shown by Joule to be nearly true, that the whole of the work done in the compression was converted into heat. It was Joule, however, who first showed that heat and mechanical energy are mutually convertible, so that each may be expressed in terms of the other, a given quantity of heat always corresponding to the same amount of mechanical energy, whatever may be the intermediate stages through which it passes, and that we may therefore define the mechanical equivalent of heat as the number of units of energy which, when entirely converted into heat, will raise unit mass of water one degree from the freezing point. |