The Wright Brothers and Their Problem

Previous

The dawn of the twentieth century was to immortalize new names in the annals of aviation. In the city of Dayton, Ohio, two brothers in a modest way were conducting a bicycle repair shop. From youth they had been inseparable in their aims and work. They were the sons of Bishop Milton Wright of the United Brethren Church. They had each a high school education but had not attended college. In 1878, when they were boys of seven and eleven years respectively, their father brought them one evening a little flying toy, a small helicopter, the motive power of which was furnished by a rubber band wound around the shafts of two propellers so as to drive them, when “wound up” and released, in opposite directions. The toy was made of light material to resemble a bird. When the father released it in the presence of the wondering boys, to their astonishment it flew upward in the room, rose to the ceiling and after fluttering there for a little while fell to the floor. They did not concern themselves much about the name of the toy, but properly called it what to their minds it most closely resembled--“the bat.” They afterward made other toys like it and discovered that as they were increased in size they flew less successfully. They early developed a fondness for kite flying and in this were regarded as experts. When they grew to manhood, however, they abandoned these boyish sports and devoted themselves industriously to their machine and repair shop. “The bat” and the kite became memories, but the memories of youth have power to shape the thoughts of manhood, and this early observation and experience with aerial toys gave to Wilbur and Orville Wright an interest in the attempts at aviation that were chronicled in the press from time to time through the decade immediately preceding this new century.

In the year 1896 Orville, the younger of the two brothers, was convalescing from a serious attack of typhoid fever. Wilbur, who had been carefully attending him, was one day reading aloud an account of the death of Otto Lilienthal, the German aviator, who was killed while experimenting with his glider. The details of the tragic accident, together with an account of what he had accomplished by years of investigation and experiment, interested the brothers, who resolved as soon as possible to apply themselves to the construction of a glider in which flights could be made with comparative safety. The enthusiasm of Orville over the project ran so high that it almost caused a return of the fever. As soon as he had fully recovered, the two brothers returned to their bicycle shop and applied themselves with increasing zeal to the study of aeronautics, and after a time began the construction of a glider.

The Wright brothers were peculiarly well equipped for the work upon which they had entered. They were men of unflagging industry, abstemious habits, few words and the happy faculty of keeping their own counsel. Wilbur was unusually reticent. It is said of him that he spoke only when he had something to say and then in a manner singularly brief and direct. “He had an unlimited capacity for hard work, nerves of steel and the kind of daring that makes the aviator face death with pleasure every minute of the time he is in the air.” Orville, while much like his brother, is more talkative and approachable. Both were modest and unassuming when they began their work and continued so when the world applauded their achievements.

In the study of the problem upon the solution of which they ventured, they had of course the advantage of all that had thus far been achieved by those who had preceded them in this field of investigation and experiment. Professor Langley had already perfected his first monoplane to such an extent that short flights were successfully made with a light steam-propelled model. He was continuing his experiments and the Wright brothers read with avidity the results of his work. Every scrap of information that they could gather from others who had essayed the solution of the problem was now collected and made the subject of critical study. At first taking up aeronautics merely as a sport, they soon afterward with zest began its more serious pursuit. “We reluctantly entered upon the scientific side of it.” they said, “but we soon found the work so fascinating that we were drawn into it deeper and deeper.”

In their efforts to construct a practical flying machine they adopted the plan of Lilienthal and Chanute. They sought to construct a machine which they could control and in which they could make glides with safety. This they built in the form of a biplane glider and with it they experimented industriously for years. The successful construction of the machine required a high degree of skill. The length and width of the planes, their distance apart, the materials to be used, the shape, size and position of the rudder and numerous other details were to be worked out only by patient study and frequent tests. They were now in the field of original experiment and soon found that they had to reject as useless many theories that had been carefully elaborated by scholarly writers.

The brothers soon learned that a long narrow plane in a position nearly horizontal, moved in a direction at right angles to one of its lateral edges and inclined or “tipped” slightly upward would develop greater lifting power than a square or circular plane. This discovery was not indeed original with them, but their experiments confirmed the conclusions of their predecessors.

The surface shape of the plane is an important consideration. It has been found that a slight upward arch from beneath, making the under surface concave, gives the best results. The concavity should reach its maximum about one-third of the distance from the front or entering edge to the rear edge of the plane and should be the same whether one or more planes are used. In flight the forward or entering edges of the planes are tipped slightly upward to give the machine lifting power for the same reason that the top of a kite is given an angle of elevation so that the air will lift it as it is drawn forward by the string.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page