I. JAMES SYMINGTON.

Previous

Of the many triumphs of enterprise achieved by the agency of that tremendous power which James Watt tamed and put in harness for his race, perhaps the greatest and most momentous is that which has reversed the old proverb, that "time and tide wait for no man," given ten-fold meaning to the truth that "seas but join the regions they divide," and enabled our ships to dash across the trackless deep in spite of opposing elements,—

"Against wind, against tide,
Steadying with upright keel,"

in a fraction of the time, and with a fraction of the cost and peril of the old mode of naval locomotion. How amply realized has been James Bell's prediction more than half a century ago, "I will venture to affirm that history does not afford an instance of such rapid improvement in commerce and civilization, as that which will be effected by steam vessels!"

Towards the close of the last century, a number of ingenious minds were in travail with the scheme of steam navigation. The Marquis de Jouffroy in France, and Fitch and Rumsey in America, were successful in experiments of its feasibility; but it is to the efforts of Miller and Symington in Scotland, followed up by those of Fulton and Bell, that we are chiefly and more immediately indebted for the practical development of the project.

Having a natural bent for mechanical contrivances, and abundance of leisure and money to indulge his tastes, Mr. Miller of Dalswinton, in Dumfriesshire, somewhere about the year 1785, was full of schemes for driving ships by means of paddle-wheels,—by no means a novel idea, for it was known to the Romans, if not to the Egyptians, and had often been tried before.

All he aimed at originally was, to turn the wheels by the power of men or horses; and this he managed to do successfully enough. Single, double, and treble boats were often to be seen driving along Dalswinton Lake, moved by paddle-wheels instead of oars. On one occasion, at Leith, one of the double boats, sixty feet long, propelled by two wheels, each of which was turned by a couple of men, was matched against a Custom-house boat, which was reckoned a fast sailer. The paddle-wheels did duty very well; but the men were soon knocked up with turning them, and the want of some other motive power was strongly felt. A young man named Taylor, who was tutor to Mr. Miller's boys, is said to have suggested the use of steam; but whether this be so or not, it was not till Miller met with James Symington that the idea assumed a practical form. In 1786 James Symington, then joint-engineer with his brother George, to the Wanlockhead Mines, was struck with the idea which, as we have seen, several other ingenious minds were also busy with about the same time,—of rendering the steam-engine available for locomotion both on land and sea. After much study and reflection, he succeeded in embodying the idea in a working model. It was supported on four wheels, which were moved in any direction by means of a small steam-engine, and could carry 16 cwt., besides coals, water, &c. It was exhibited in Edinburgh in the summer of 1786, and made a considerable sensation. Mr. Miller, fond of all such inventions, did not fail to get a sight of Symington's locomotive engine, the first time he was in town. He was delighted with its ingenuity and completeness, and procured an interview with the author. Of course, Miller was full of his own experiments, and told Symington the whole story of his efforts to propel vessels by paddle-wheels, and the want of some stronger, and more constant power than that of men to turn the capstan, upon which the motion of the wheels depended. Symington at once expressed the opinion he had formed,—that steam was equally available for vessels as for carriages, and showed him how the steam-engine which he had devised for his locomotive could be applied to the paddle-wheels. Miller was so much struck by his statements, which he illustrated by reference to the model, that he determined to have an engine made on the same plan, and fitted into one of his double boats. Accordingly, an engine was built under Symington's directions and superintendence, sent to Dalswinton, and put together in October 1788. The engine, in a strong oak frame, was placed in the one half of a double pleasure-boat, the boiler occupying the other half, and the paddle-wheels being fixed in the middle.

The autumn was withering into winter, the yellow leaves were swirling to the ground with every little breath of wind, and the boughs were beginning to show forth bare and grim, when the little boat was launched upon the bosom of Dalswinton Loch. At length all the preparations were finished, and on the 14th November Mr. Miller had the delight of seeing the vessel gliding over the mimic waves of the lake at the rate of five miles an hour. The company on board the boat on that memorable occasion were—Mr. Miller himself, of course, nervous with pleasure and exultation; Taylor, the tutor; Alexander Nasmyth (the well-known landscape painter, and father of the man who, in the next generation, was to invent the wonderful steam-hammer, that knocks masses of iron about like putty, and can yet so moderate its force as to crack a nut without bruising the kernel); a brisk stripling with strongly marked features, by name Harry Brougham, afterwards to be Lord Chancellor of England, and perhaps the most many-sided genius of his time; and—last and greatest of the group—there was one of Mr. Miller's tenants, the farmer of Ellisland,—Robert Burns, the great bard of Scotland, enjoying to the full, no doubt, the novelty of the expedition, but, we must suppose, unconscious of its import and grand future consequences, since he has accorded it no commemorative verse. "Many a time," says Mr. James Nasmyth, son of the distinguished painter, "I have heard my father describe the delight which this first and successful essay at steam navigation yielded the party in question. I only wish Burns had immortalized it in fit, clinking rhyme, for, indeed, it was a subject worthy of his highest muse."

The experiment was next tried on a large scale with a canal boat, on the Forth and Clyde Canal, but one of the wheels broke. Not to be balked, Symington had stronger wheels made, and the next time the steam was put on, the vessel went off at the rate of seven miles an hour. The experiment was several times repeated with success. The vessel, however, was so slight, that many more trips would have knocked it to pieces; and it was therefore dismantled. The fitting up of these vessels, and the working of them, formed a heavy drain upon Mr. Miller's purse; and having laid satisfactory proof before the world that the thing could be done, he relinquished the enterprise, and left it to be worked out by others. Just then, however, no one came forward to fill his place; and for some years the idea slumbered.

In 1801 Symington could not afford to indulge in further efforts at his own expense, but he found a patron in Lord Dundas, who commissioned him to construct a steam-tug for dragging canal boats. A stout, serviceable tug was built; and a series of experiments entered upon to test her efficiency, which cost upwards of £3000. One bleak, stormy spring-day in 1802, the people on the banks of the Forth and Clyde Canal might have been seen staring with wonder, at the short, stumpy little tug pushing gallantly on at the rate of three or four miles an hour, with a strong wind right in her teeth, that no other vessel could make head against, and two loaded vessels (each of more than 70 tons burden) in tow. By itself, the tug could do six miles an hour without any great strain. The company made some objection, however, about the banks of the canal being injured, and the tug fell into disuse. It served an important end, though, in giving both Fulton and Bell a basis for their operations, and must be considered the parent of our modern steam-craft.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page