PART III

Previous

APPENDIX I
BRITISH SUBMARINES

“The tendency of the Admiralty is to follow and not to lead other great nations. I hope that one of these days we shall not follow just a little too late.”—W. E. Arnold Forster.

Probably the first occasion of recent years that mention was made of submarine boats in Parliament was subsequent to the trial of the Nautilus, a diving boat invented by Messrs. Campbell and Ash, during a trial of which several exalted personages nearly lost their lives. Lord George Hamilton described the incident to the House of Commons, and created some amusement by his relation, and there is no reason to believe that the submarine was looked upon by members other than as an erratic toy to whose mercy no wise man would entrust his person.

Mr. Nordenfelt built several submarine boats, one of which was bought by the Turkish and another by the Greek Government, but though in several quarters the advisability of the Admiralty purchasing one or more Nordenfelt boats was suggested, nothing came of it.

Mr. Edmund Robertson, K.C., dealing in the Nineteenth Century, of May, 1900, with the question of submarine boats remarked that five or six years ago he knew the opinion of the technical advisers of the Admiralty, and that they did not see their way to recommend the Admiralty or the Government to make any provision for submarine vessels of war.

Since that time, however, very few weeks passed but some writer took up the cudgels on behalf of the submarine and urged the Admiralty to consider the advisability of constructing boats.

The keen interest taken in France in under-water warfare was reflected to a certain extent in this country, and on the 9th of February, 1899, Mr. Charles McLaren addressed a question to the First Lord of the Admiralty in which he referred to the “extraordinary value” assigned by the French minister to the new vessels, and asked “whether the British Admiralty attached any importance to these experiments, or had any intention of adding any such vessels to the British Navy?” Viscount Goschen’s answer was: “It would be inexpedient at this stage for me to express the opinion of the Admiralty as to the reported performances of the new submarine boats. With reference to any action which the Board of Admiralty may take, I am not at present prepared to make any statement.”

The position of the Admiralty in the early part of 1900 may be ascertained from an answer given by Viscount Goschen to a question put by Captain Norton on the 6th of April. “Close attention has been given by the Admiralty to the subject of submarine boats. The submarine boat, even if the practical difficulties attending its use can be overcome, would seem so far as the immediate future is concerned to be eventually a weapon for maritime Powers on the defensive, and it is natural that those nations which anticipate holding that position should endeavour to develop it. The question of the best way of meeting its attack is receiving much consideration, and it is in this direction that practical suggestions should be valuable. It seems certain that the reply to this weapon must be looked for in other directions than in building submarine boats ourselves, for it is clear that one submarine boat cannot fight another.” In the debate on the Ship-building vote the First Lord made a further statement. “The importance of submarine boats had been pointed out, and it had been said that it was their duty to make experiments. The nations which were likely to have the greatest use for these boats might gain from their experiment more than others. He did not propose to make publicly any declaration as to these boats. Of course he did not wish to encourage or discourage other nations, but he must ask the Committee to excuse him going into the question.”

In the same debate Mr. Arnold Forster, who a few months later was appointed Parliamentary and Financial Secretary to the Admiralty, made some remarks on this “somewhat cryptic utterance,” as Mr. Robertson called it. “If in the matter of submarine boats the First Lord of the Admiralty had said that in the opinion of the engineering advisers of the Admiralty to design and work a submarine boat, was so remote of accomplishment that there was no reasonable probability of being able to work it, he would have been slow to contradict him; but that was not the line taken by him. The First Lord said that the Admiralty had not designed a submarine boat, and did not propose to design one, because such a boat would be the weapon of an inferior power. But if it could be produced as a working article, the Power which possessed such an article would no longer be an inferior but a superior Power. We, above all nations, were exposed to the attacks of this engine. He submitted that it was not a satisfactory thing to stand by and allow others to carry out this problem without making some attempt to solve it for ourselves. He admitted the tendency of the Admiralty to follow and not to lead other great nations. He hoped that one of these days we should not follow just a little too late. If we had been compelled to learn our lesson with regard to ironclads, breechloaders, and armoured cruisers in the face of an active enemy we should have experienced the same lessons which the Austrian army underwent in 1866 when they were compelled to learn the merits of the breechloader by studying it on the field of battle. There was room for improvement in the attitude we had taken up in regard to submarine navigation.”

During the short session of December, 1900, after the General Election, the Admiralty was again questioned, and the reply was that the “attention of the Admiralty had been called to the additional provision for submarine boats in the French naval programme, and a statement will be made when the estimates are laid before the House.” Between this date and the introduction of the Navy Estimates endless rumours regarding the position the Admiralty would take as to the submarine boat question found their way into the daily press. While, on the one hand, it was “confidently asserted” that, the Government were making secret trials with all kinds of wonderful craft, on the other hand it was stated “on the highest authority” that the Lords of the Admiralty had no intention of altering their minds as to the advisability of taking any action whatever in the matter.

The statement of the First Lord of the Admiralty explanatory of the Navy Estimates for 1901–2, published on the 1st of March, 1901, contained the following item:—

“Five submarine vessels of the type invented by Mr. Holland have been ordered, the first of which should be delivered next autumn. What the future value of these boats may be in naval warfare can only be a matter of conjecture. The experiments with these boats will assist the Admiralty in assessing their true value. The question of their employment must be studied, and all developments in their mechanism carefully watched by this country.”

In the discussion on the Navy (Supplementary) Estimates on March 4, 1901, Mr. Flynn asked whether the policy of the Admiralty in constructing battleships “as to the strength of which they knew nothing,” when other nations were turning their attention to submarine vessels, was quite wise. This same notion as to the advisability of going in for small submarines instead of big battleships is to be found in a speech by Mr. O’Shee on March 23rd, who said that if these boats were able to do half what was claimed for them, then the present gigantic expenditure for naval construction was entirely uncalled for. A submarine boat could be built for £25,000, and manned by ten men, and if it were true they were able to combat the big ships which the Government were building, those ships would be absolutely useless except for carrying the submarine boats to places where they were to work. If submarines were all that was claimed for them it would render unnecessary the £9,000,000 which was then being expended on new battleships.

Mr. Arnold Forster in the House on March 18, 1901, said:—

“I will not say much about submarine vessels, but I will say that I am glad that the Admiralty, under the advice of Lord Goschen, took the view that it was wise not to be found unprepared in regard to this matter. We have a great amount of information about these boats, but we do not attach an exaggerated value to it. But we believe that an ounce of practice is worth a ton of theory, and that when we get officers and men to see these boats, they will learn more from them than from many reports which come from foreign countries. One thing stands between the submarine boat and efficiency, and that is the motor by which it is propelled. But there is no disguising the fact that if you can add speed to the other qualities of the submarine boat, it might in certain circumstances become a very formidable vessel. We are comforted by the judgment of the United States and Germany, which is hostile to these inventions, which I confess I desire shall never prosper.—(Commander Young, M.P., said that if the Admiralty built any submarine boats, all he would ask would be that he might not be ordered to serve on one.)—But we cannot regard our position as the same as that of other nations. The United States to-morrow, if a perfect submarine were invented, would not only have more secure protection for their harbours. In Germany the harbours are no doubt carefully protected now. But we live in the narrow waters of the Channel, and our problem is not precisely that of any other nation, and I am glad that Lord Goschen did give this instruction to the Board which has now borne fruit in the determination to put this experiment into execution, and we shall see the result of it during the next financial year.”

Mr. Edmund Robertson, K.C., in the debate on the Navy Estimates on March 21, 1901, remarked that as the building of the submarine boats was only a matter of experiment, he thought it might have been introduced upon a somewhat smaller scale. If its value was purely conjectural, he should have said that one boat would have been enough to experiment with. Two should have been quite enough, but we generally did things on a large scale, and after having refused to say one word for many years about submarine boats, we now found the Admiralty launching out into quite a little fleet of them. “What,” asked Mr. Robertson, “had become of the control of the House of Commons? What had become of that control when the Admiralty of the day, having refused to tell them their policy, come forward shortly afterwards and say they will build five of these boats?” He could not help protesting against this, for a new departure of this nature ought not to have been made except with the sanction of the House, and at the very least it ought not to have been done without being divulged to the House.

It may be noted that Mr. Arnold Forster, speaking in the House of Commons in January, 1902, explained that when the decision to construct submarine boats was arrived at, only one type was available for purchase, that the right to build boats of this type was in the hands of one firm, and that it was therefore necessary to entrust the work to that firm.

The first British Submarines.—The first five British submarines are almost identically the same as the six Holland boats ordered by the U.S. Congress on June 7, 1900.

They are cigar-shaped vessels 63 feet 4 inches long; beam, 11 feet 9 inches; and displacement submerged, 120 tons. The plating and frames are of steel and of sufficient size and thickness to withstand the pressure of depths not exceeding 100 feet. The bulkheads are located to provide safety in event of collision, and to stiffen the hull as a whole; decks are provided throughout the whole length of the interior of the vessel, combined with beams and floors to carry the weight of machinery; the tanks are of steel, and they are braced, stiffened, rivetted, and caulked absolutely tight, and man-holes are located to allow access to the interior of all tanks.

When the vessel is in light condition for surface running, an above-water deck, 31 feet long, is available, and there are means of stowing anchor and lines and of affording mooring facilities to the vessel. Rudders of steel plates are provided, and they are supported by skegs at the stern of the vessel. The conning tower is of armoured steel; its outside diameter is 32 inches, and its minimum thickness 4 inches; it is provided with ports for observation by the steersman. In the construction of the vessel care has been taken that all portions of the exterior of the hull shall be free from projections of a kind that might be entangled by ropes or other obstacles when submerged, and the lines of the vessels have been designed so that there shall be a minimum of resistance when it is running at the surface.

Propulsion.—On the surface the vessel is propelled by a 160 h.p., single screw, four-cylinder, Otto gasoline engine, capable of giving a speed of 8 knots, while when submerged it is driven through the water by a 70 h.p. electric waterproof motor giving a speed of 7 knots. The radius of action at the surface is about 400 knots, while the storage batteries have sufficient capacity for a speed of 7 knots on a four hours’ submerged run. Gearing is provided for the charging of the batteries by using the motor as a dynamo, and running it from the gasoline engine when at the surface, and from connecting the propeller either to the engine or the motor; these operations are effected through clutches. Switchboards and switches are provided for the safe and efficient distribution of the electric current throughout the vessel. The lighting system consists of portable incandescent electric lamps, together with several ports and openings in the hull to admit the outside light. The hull is circular, in cross sections, and is divided by the watertight bulkheads into three separate compartments. There is also a thorough subdivision of the bottom and every precaution is taken to localise any injury to the hull which might threaten the buoyancy.

In the forward compartment is one torpedo expulsion tube, located at the extreme forward end of the vessel, opening outward two feet below the light water-line. The tube is placed with its muzzle in the nose of the craft and its axis inclined somewhat to the longitudinal axis of the vessel. The muzzle of the tube is closed by a watertight door, and this can be lifted from within for the discharge of the five Whitehead torpedoes, each 11 feet 8 inches long, which are carried in the interior. One torpedo is placed in the tube, and the other four are placed side by side above the storage batteries. When the first torpedo is fired a sufficient amount of water to compensate for the loss of weight is automatically and almost instantaneously admitted into the tube, causing only a slight change of time for a few seconds. Such compensation is necessary, as the submarine boat is lighter than the amount of water it displaces and any alteration in its weight tends to send it up to the surface or down towards the bottom. When the second torpedo is placed in the tube the water is run into a special torpedo compensating tank; of these tanks there are four, and they are filled as each torpedo is fired. When the last torpedo has been ejected the expulsion tube is filled with water and is kept thus until the end of the run.

Besides the torpedo tube there is in the forward compartment a series of air flasks, a gasoline tank of 850 gallons capacity, and a trimming tank.

The central compartment contains in its double bottom the main ballast tanks and a circular compensating tank placed between the two sets of batteries. Above the double bottom and below the axis of the vessel are located the storage batteries, and above these are carried the four torpedoes, which are 45 centimetres in diameter and 11 feet 8 inches in length. In the same compartment are a series of air flasks in which air at 2,000 lbs. to the square inch pressure is stored for the purpose of keeping pure the living spaces of the crew.[9]

9. Also for firing the torpedoes and for blowing the water out of the ballast tanks when it is desired to navigate as a surface boat.

In the rear compartment is the four-cylinder gasoline engine, which is rated at from 160 to 190 actual horse-power, and at from 320 to 390 revolutions per minute. Its net weight is 1,300 lbs., its length over all is 9 feet 7 inches, and its total height above the crank-shaft centre is 5 feet 6 inches. In these engines, which gave satisfaction in the first Holland boat, the distribution of the cranks and the timing of the valves and igniters are so arranged that the operations in the four-cylinders alternate, so that while one is at the expansion stroke the other three are at the suction, compression, and exhaust strokes respectively. By this arrangement the engine is perfectly balanced and vibration is reduced to a minimum.

Submersion.—The first operation to be performed when it is desired to submerge the vessel is the admission of water into her ballast tanks. When these are full she runs “awash” with her conning tower alone above the waves.

In order to completely submerge the boat she is steered below the surface by means of her pair of horizontal rudders at the stern. When at the required depth (normally from 20 to 30 feet) she is brought up on an even keel by the inclination of the horizontal rudders, which may be controlled automatically (by some such arrangement as is found in the Whitehead torpedo) or by hand. All modern submarine craft go under at an angle, and are steered below the waves by rudders: the principle of submersion on an even keel by down-haul propellers, advocated by Mr. Nordenfelt, has been abandoned by all latter-day designers, as has also the submersion of the drawing in of cylinders adopted in the Campbell-Ash boat.

When running submerged the submarine is lighter than her displacement, and is only kept under by her horizontal rudders, which, of course, only act when she is moving.

The great drawback to all under-water craft has been their lack of longitudinal stability, for they have a tendency to rise or sink at the slightest provocation. In our account of the Nordenfelt boats this disagreeable quality is illustrated. In order to keep the vessel at a regular depth recourse must be had to the horizontal rudders and to the two trimming tanks and the one circular compensating tank carried.

In a general way it will probably be found possible to keep the boat on an even keel by means of her rudders, but if she shows any decided tendency either to dive to the bottom or to rise to the surface or to heel over to one side water may be admitted into the above-mentioned tanks, and the admission may be effected either automatically or by hand. A hydrostatic valve will prevent the vessel passing the safe limit of depth.

Air Supply and Ventilation.—Compressed air is stored aboard the vessel with means of allowing a supply of air into the interior of the vessel. Ventilators are provided for the circulation of outside air throughout the vessel; the gasoline vapours from the engines and all noxious gases are carefully excluded by suitable devices, while safety valves are provided to prevent the pressure to the vessel from exceeding that of the atmosphere.

Pumps and Pumping.—All tanks and compartments are connected with the pumps, the valves are located to allow of quick manipulation, and pumps with independent means of operation are furnished in duplicate. The tanks can also be emptied by flowing out.

Navigating Apparatus.—In communication with the interior of the vessel there are bells and speaking tubes, while there are provided gauges, indices, and clinometers for indicating pressure, depth, positions, quantities, and weights.

Two compasses are carried, each compensated and adjusted. It is said that the first of the British submarines exhibited certain defects in its compasses, which it was thought were due to the steel conning tower. This was replaced by a brass construction, and on being tested the compasses acted more satisfactorily. After a few trials a new steering-wheel was fixed in the boat close to the conning tower, which could be worked from above and below alike.

The first British submarine was launched on November 2, 1901, at Barrow without any ceremony, although representatives of the Admiralty were present. The trials were placed under the direction of Captain R. H. S. Bacon, D.S.O.

Before launching “No. 1” was by means of a floating dock placed on the gridiron. A crew of six men were put on board, and she was then hermetically sealed for three hours, air being supplied by compressed air cylinders. The trial was quite successful, and the men suffered no inconvenience. On her first “sea trial” “No. 1” started from the floating dock and proceeded along the Devonshire and Buccleuch docks and back to her moorings. On subsequent trials she attained a surface speed of 10 knots.

The first submersion trials of “No. 1” were carried out on February 5, 1902. She went under water with some officers of the Hazard t.g.b., the mother ship to the submarines (Captain R. H. S. Bacon, D.S.O.) on board, and most satisfactory results were obtained. Her appliances for the purification of the air were used to maintain atmospheric conditions without any need of her cylinders of compressed air being requisitioned. The first deep sea trials of “No. 1” took place at the beginning of April last in the Irish Sea. The submerging was accomplished in less than six seconds. From the “awash” conditions she suddenly disappeared and then came again into sight some yards’ distant with great rapidity and ease, and the diving was continued at intervals for several hours at a time without any perceptible hitch.[10]

10. Mr. Arnold Foster, in the House of Commons on May 29, 1902, said that the submarines had been a pronounced success, performing all that could be expected from them in the way of evolution and manoeuvring.

Submarine “No. 2” was launched on February 21, 1902. Certain alterations were made in her construction, rendered advisable by defects which had been discovered during the testing of “No. 1.” “No. 3” took the water on May 9th, and “No. 4” on May 23 last.

During April last No. 42 t.b. was commissioned at Portsmouth as tender to the Hazard t.g.b., and was sent to Barrow for a series of experiments with the submarines.

The Navy Estimates for 1902–1903 provided for four further submarines, which Mr. Arnold Forster said would be an improvement on those already constructed at Barrow. The Admiralty, he added, proposed to continue the process of adding submarines to our fleet. Details of the new boats are not obtainable.

APPENDIX II
THE AMERICAN SUBMARINES

“The Submarine Boat is a small ship on the model of the Whitehead, subject to none of its limitations, improving on all its special qualities, excepting speed, for which it substitutes incomparably greater endurance. It is not, like other small vessels, compelled to select for its antagonist a vessel of about its own or inferior power; the larger and more powerful its mark the better its opportunity.”—Mr. J. P. Holland.

“In my judgment, as a constructor of these boats (the new Hollands for the United States Government), and from my long experience in designing and constructing war vessels for the Government, and as the constructor of the original Holland, I have no doubt whatever of the endurance, habitability, durability, and reliability of these boats.


“No type of boat in the navy has received such crucial tests as the Holland. The submarine boat to-day is further advanced in its development than any type of naval vessels that I am aware of. I desire to say that in my opinion the Holland, without any improvements, is to-day the greatest vessel for harbour and coast defence ever known.”—Mr. Lewis Nixon, builder of the Holland.

When the British Admiralty decided to experiment with submarine boats, the type chosen was that invented by Mr. John P. Holland. It is therefore fitting that some account should be given of the various stages through which the Holland boat has gone in the course of its evolution.

Although Mr. John P. Holland, of Paterson, New Jersey, U.S.A., made a number of experiments in the sixties, his first real submarine boat was not built until 1875.

Holland No. 1 may be described as an under-water canoe, for there was only room for one occupant, who propelled the vessel along by means of pedal-acting mechanism, a small screw being fitted at the stern.

The dimensions were:—

Length 16 feet
Beam 20 inches
Depth 2 feet

MR. HOLLAND’S EARLIEST SUBMARINE.
(1875.)

It was divided into three parts; the two end ones were used as air reservoirs and submersion tanks, and that in the centre contained the operator, whose head was encased in a diver’s helmet. The vessel was driven by a small propeller projecting from the stern joist, and beneath this was the rudder.

Holland No. 2 was constructed in 1877 at the Albany City Iron Works of New York.

Its dimensions were:—

Length 10 feet
Beam 3·5 feet
Depth 3 feet

It had a double shell, and in the space between water ballast could be admitted for submersion. The motor was a petroleum engine of 4 h.p., working a screw at the stern. Two rudders, one vertical, the other horizontal, were carried, and experiments showed that the latter acted better when placed at the stern than when on the side. After a series of trials on the Passaic River, Mr. Holland removed the machinery and sank his boat under Falls Bridge at Patterson, where it probably remains at this day.

Holland No. 3 was commenced in 1879 in the yards of the Delamater Iron Company of New York City, and finished in 1881.

Its dimensions were:—

Length 31 feet
Beam 6 feet
Depth 6 feet
Displacement 19 tons

It was propelled by a 15 h.p. petroleum engine of the Brayton type; as armament a submarine cannon, 11 feet long and 9 inches in diameter, was carried, and the projectile was expelled by means of a charge of compressed air. “She was the first submarine since Bushnell’s time,” writes Admiral Hichborn, “employing water ballast and always retaining buoyancy, in which provision was made to ensure a fixed centre of gravity and a fixed absolute weight. Moreover, she was the first buoyant submarine to be steered down and up inclines in the vertical plane by horizontal rudder action, as she was pushed forward by her motor, instead of being pushed up and down by vertically acting mechanism. Her petroleum engine, provided for motive power and for charging her compressed air flasks, was inefficient, and the boat therefore failed as a practical craft; but in her were demonstrated all the chief principles of successful brain-directed submarine navigation. After the completion of the boat, Holland led the world far and away in the solution of submarine problems, and for a couple of years demonstrated that he could perfectly control his craft in the vertical plane. Eventually, through financial complications, she was taken to New Haven, where she now is.” In 1896 her air-compressor was removed to work a forge, and she is now nothing but an empty hull.

Holland No. 4 was constructed in the yard of Gammon and Cooper, of Jersey City. It was simply meant as a model, being only 16 ft. 4 in. long, 28 in. in diameter, and displacing a ton. The motor was an explosive engine, which was to serve for propulsion above and below the surface. The life of this model was unfortunately short, for on one occasion she was submerged with her cupola open, with the result that the water entered and she sank.

Holland No. 5, commonly known under the name of the “Zalinsky Boat,” owing to its dynamite guns, was built at Fort Lafayette.

It was—

30 feet long,
7 feet beam,
7 feet in diameter,

and was armed with two Zalinsky pneumatic dynamite guns. Owing to an error in construction, she was shipwrecked on the rocks, but was afterwards rescued and used for some experiments in the docks.

Holland No. 6 never got further than the design stage; it was not a true submarine, not being capable of total submergence.

Holland No. 7 was known as the Plunger.

BOW VIEW OF THE “HOLLAND.”

Whilst Mr. Whitney was Secretary of the Navy he was anxious to provide some kind of protection against gun-fire for torpedo-boats, and under suggestion he invited proposals for submarine boats. A great many designs were sent in, and two propositions to build were made by the famous Cramp firm, the designs being those of Holland and Nordenfelt. It will not be necessary to enter into any detailed comparison between the two types. Suffice it to say that while Mr. Nordenfelt screwed his boat down by using vertical screws, and held the opinion that the keel of a submarine must always be kept parallel to the surface of the water, Mr. Holland steered his boat down and up an incline by the action of horizontal rudders placed in the stern. The Holland design was accepted, because “it embodied the ideas of a fixed centre of gravity, of an exact compensation for expended weights, of a low longitudinal metacentric height, and of quick diving and rising by the effort of the propeller pushing the vessel against the resistance of her midship section only down and up inclines, the angles of which were to be determined by horizontal rudder action.” Difficulties in regard to guarantees of performance prevented the closing of a contract that year—1888—and the next year, after all preliminaries were arranged, a change in administration caused the matter to be put aside. After the lapse of some years interest in submarine boats was again aroused, and on March 3rd, 1893, Congress authorised the building of a single experimental vessel, and after a third competition of designs and other delays a contract for a Holland boat was signed two years later with the Holland Torpedo-boat Company (formed in 1895). The new vessel was to be called the Plunger. The long delay was owing, Mr. Holland has said, to the opposition of a few officers of Conservative spirit, who preferred to see the value of submarine boats fully established by their employment in other navies, and their place in schemes of attack and defence properly located before they could recommend their adoption in their own navy.

The dimensions of the Plunger are as follows:—

Length 85 feet
Beam 11½ feet
Diameter 11½ feet
Displacement 140 tons on the surface
Displacement 165 tons submerged
Guaranteed speed 15 knots on the surface for two hours
Guaranteed speed 14 knots submerged to one foot with the conning tower above water
I.H.P. (surface) 1,625
I.H.P. (submerged) 200
Motor Steam engine on surface, fed with liquid fuel
Electric motor, completely submerged, giving speed of 8 knots for six hours

Although the Plunger was actually launched on the 7th of August, 1897, she was never completed, although for three years various alterations were carried out. The steam engines were removed and were replaced by oil motors, but by the time these modifications had been effected the Holland Torpedo-boat Company came to the conclusion that the Plunger, when completed according to the terms of the contract, would be so inferior to the more modern Hollands that they offered to refund the Government all it had paid them upon the Plunger, and all expenses connected with the contract, provided the Navy Department would enter into a contract for a new Holland. The proposition was accepted, and the money, some $94,000 odd, was accordingly refunded. A short time ago it was announced that the Plunger was being broken up.

Holland No. 8 resembled very much the later types, but as she was not entirely satisfactory, Holland No. 9 was built. This latter vessel is generally referred to as the Holland. She was the prototype of the British submarines, and her performances have excited a vast deal of interest all over the civilised world.

The dimensions of the Holland, which was constructed at Elizabeth Port, New Jersey, by Mr. Lewis Nixon, at the expense of the Holland Company, and whilst the alterations to the Plunger were still in progress, are as follows:—

Length 53 ft. 10 ins.
Diameter 10 ft. 3 ins.
Height (bottom to superstructure deck) 10 ft. 7 ins.
Displacement 75 tons
Water ballast 10 tons
Reserve buoyancy 250 lbs.

On the surface the motor is a gasoline engine of the Otto type of 50 h.p., giving a speed of about 7 knots an hour, and under water an electric motor, capable of giving 50 h.p. for 6 hours or 150 h.p. for 2 hours, is used. The battery of accumulators consists of 66 cells, giving 350 amperes for 4 hours, and allowing a speed of 8 knots an hour. The radius of action on the surface is 1,500 miles at 7 knots without a renewal of gasoline, and it can go 50 knots under water without coming to the surface. In order to dive water ballast is admitted until the boat is flush with the water, and it is then steered down an incline by her two horizontal rudders at the stern, carried in addition to the ordinary vertical rudder. It has a reserve buoyancy which tends to bring it to the surface in case of accident. It can dive to a depth of 28 feet in 8 seconds. The armament was intended originally to consist of three tubes—two at the bows and one at the stern; two were to throw aerial torpedoes and shells, while the third was to discharge Whitehead torpedoes. The submarine gun aft, which was worked by pneumatic power, and was capable of throwing 80 lbs. of dynamite a distance of about half a mile, was, however, abandoned. The aerial gun at the bows is 11·25 ft. long and 8 in. in diameter, and each of the projectiles weighs 222 lbs., and carries 100 lbs. of gun-cotton. This gun can shoot these projectiles a distance of one mile. The torpedo tube is 18 in., and three torpedoes are carried; they have a running capacity of more than half a mile at a speed of 30 knots. On the top of the boat a flat superstructure is built to afford a walking platform, and underneath this are spaces for exhaust pipes, and for the external outfit of the boat, such as ropes and a small anchor. From the centre of the boat a turret extends upward through the superstructure about 18 inches. It is about 2 feet in diameter, and is the only means of entrance to the boat; it is also the place from which the boat is operated.

As Mr. Holland had been experimenting with submarine craft for 25 years, and as he now considered that he had secured a practical result, and that his newest boat would do all that he claimed, he requested the United States Admiralty to make a series of exhaustive trials with the Holland. These trials accordingly took place, and having been found to be satisfactory, the Holland was purchased by the U.S. Government on April 11, 1900. The price paid was $150,000, and the Company stated that the vessel had cost them, exclusive of any office expenses, or salaries of officers, $236,615,427. The Holland was formally placed in commission under the command of Lieut. Harry H. Caldwell, U.S.N., on October 13, 1900, but the boat had been under the charge of this officer since June 25, 1900.

An Act making appropriations for the Naval Service for the fiscal year ending June 30, 1901, which was approved on June 7, 1900, contained the following item:—

“The Secretary of the Navy is hereby authorised and directed to contract for five submarine torpedo boats of the Holland type, of the most improved design, at a price not to exceed one hundred and seventy thousand dollars each: Provided, That such boats shall be similar in dimensions to the proposed new Holland, plans and specifications of which were submitted to the Navy Department by the Holland Torpedo-boat Company, November twenty-third, eighteen hundred and ninety-nine. The said new contract and the submarine torpedo-boats covered by the same are to be in accordance with the stipulations of the contract of purchase made April eleventh, nineteen hundred, by and between the Holland Torpedo-boat Company, represented by the secretary of the said company, the party of the first part, and the United States, represented by the Secretary of the Navy, the party of the second part. Towards the completion of the equipment, outfit of the new vessels heretofore authorised 400,000 dollars.”

A contract for the construction of six (not five) submarine torpedo-boats, Nos. 3–8, was finally concluded on the 25th of August, 1900, between the Holland Torpedo-boat Company and the Secretary of the United States Navy.

Their names are as follows:—

1.
Adder.
2.
Moccassin.
3.
Porpoise.
4.
Shark.

These four were to be constructed in the yards of Lewis Nixon, at Elizabethport, New Jersey.

5.
Grampus.
6.
Pike.

These were to be built at the Union Iron Works, San Francisco.

As the specification for these six boats resembles in almost every particular that for the five British submarines of the Holland type, details need not be given here.

The contract price of the hull and machinery of each boat was $34,000.

The first of the six submarine boats ordered from the Holland Company by the United States Government, to be launched was the Adder, the launching ceremony being performed by Mrs. E. B. Frost, wife of the Secretary of the Holland Company.

The Porpoise, Moccassin, and Shark were all launched in 1901; at the time of writing the Grampus and the Pike were still on the stocks.[11]

11. The Naval Committee of the United States Senate in June, 1902, amended the Appropriation Bill, and provided for the purchase of five further submarines of the latest Holland type, and for investigation into other types.

The “Fulton.”

The Fulton is an exact duplicate of the six boats the Holland Torpedo-boat Company have built for the United States. She has been built at the expense of the company with the object of experimenting, to see if it is possible to get smaller engines with less weight and greater power.

Mr. Holland said that he could not build his boats any longer and could not get any more speed, simply for the reason that he could not get engines with enough power. It was his intention to subject every part of the equipment and motive power of the Fulton to thorough test, and to incorporate the experience thus gained in the six Government boats.

The Fulton was launched on June 2, 1901, from the yards of Lewis Nixon.

In the autumn of last year the vessel, with seven officers and men on board, remained for fifteen hours at the bottom of Peconie Bay, whilst a bad storm was raging above, without having the air in the interior renewed. The turret-hatch was closed at seven o’clock on November 23rd, and at the expiration of fifteen hours it had not been found necessary to draw off any of the compressed air contained in the four flasks taken down with the boat. The atmosphere was said to be as pure as in the cabin of an ordinary yacht. A glass of water filled to the brim stood on the cabin table during all the time of submersion, and not a drop was spilled in spite of the gale blowing above water. The new submarines of the Fulton type carry 59 cubic feet of air compressed by a pressure of 2,000 pounds to the square inch. With the supply to fall back on, Captain Cable said that six men could probably live in the Fulton for something like eight months. It was, according to him, more a matter of food than air.

STERN VIEW OF THE “HOLLAND.”

In December, 1901, the Fulton gave an exhibition for the benefit of the Norwegian naval officers who were deputed to inquire into the capabilities of the Holland boats. Whilst travelling under water it discharged dummy torpedoes at targets with perfect accuracy, and dived repeatedly once in three seconds, or quickly enough to dodge a shell aimed at it. Commander Geelmuyden, who was aboard, said that when he inspected the Holland it was quite incapable of the Fulton’s performances. There is indeed little doubt that the newest Holland boats represent all that is newest and best in submarine boat construction.

She does not, however, appear to be perfect in every particular. On Monday, April 28, 1902, the Fulton left New York for Washington, convoyed by the steamer Norfolk. Her course was to have been to Hampton Roads, up Chesapeake Bay and the Potomac River to the Federal capital, where she was expected to arrive on the Saturday following her departure. She had on board, besides stored electricity for her submarine trials, 750 gallons of gasoline for surface propulsion. She put in at Delaware Breakwater on Monday morning, and shortly afterwards an explosion occurred. Lieutenant Oscar Kohen, of the Austrian Navy, who was on board at the time, was severely bruised, while a lieutenant of the American Navy and several others were injured. The boat itself was not seriously damaged. It transpired that the accident was due to a slight explosion of hydrogen gas caused by the spilling of the acid from the batteries. It was stated that during the trial the engine ran twenty hours in a very heavy sea without stopping, and the speed of the boat averaged 87
10
knots, and behaved extremely well.

The Holland Torpedo-boat Company intended, so it is stated, to build a couple of boats to go to the lakes and to be carried on battleships. Mr. Lewis Nixon, the builder of the Holland, said recently that Congress should provide one submarine boat at least for every battleship and cruiser small enough to be swung by a derrick, and lowered into the water before going into action. He remarked that it was perfectly feasible to design a successful submarine boat for such service. Admiral Dewey had said that big vessels could be fitted to carry diving torpedo-boats, and that special transport steamers would be the best for this purpose.

“By reason of her submarine division the navy of France is the most dread and the most powerful in the world” (A French journalist, after the torpedoing of the battleship Charles Martel by the Gustave ZÉdÉ in Ajaccio Harbour in July, 1901).

Jamais nous n’aurions trop de sous-marins.”—(M. V. Guillouse in Le Yacht).

Had it not been for the keen and abiding interest displayed by Admiral Aube in the question of under-water warfare, it is extremely unlikely that the French Navy would be in possession of its present fleet of submarines.

It was in 1886 that Admiral Aube, being then Minister of Marine, requested designs for submarine boats. In most quarters his ideas were received with ridicule, and the experts of the day did not hesitate to declare that such vessels would never become warships, that at best they would serve only as diving bells, and that submarine navigation was a subject more fitted for romancers like Jules Verne than for serious marine architects.

The Admiral held his own, however, and contrary to the advice of the Director of Material, ordered from M. Goubet on the 12th of September, 1886, a small boat, and in the same year, in face of the protests of all his colleagues, he signed an order directing the SociÉtÉ des Forges et Chantiers de la MÉditerranÉe to build a larger vessel from the plans of M. Gustave ZÉdÉ.

M. A. Saissy, a French journalist who has warmly advocated the constructing of submarines by France, has written a preface to Messrs. Forest and Noalhat’s treatise, “Les bateaux sous-marins” (1900), in which he pays a tribute to the endeavours of the late Admiral to provide his country with a submarine fleet. “Had we but followed his ideas,” he writes, “had we but carried out his plans, not only would the defence of our coasts and of our colonies be assured against attack, but France would be at this hour the greatest naval power in the world.”

Admiral Aube argued that in the naval war of the future France would most certainly act on the defensive, and that it was therefore the business of the nation to prepare, to organise, and to bring to the highest state of efficiency its weapons of defence. He blamed the Admiralty for spending the millions which had been voted for the navy in the creation of “mastodons” which “had neither speed, nor teeth to bite.”

M. Saissy says that the Admiral’s plans were put on one side and that his warnings appealed to deaf ears, but the time came when they were brought to light again.

“On the morrow of Fashoda, after the insolent behaviour of the English, the Minister of Marine saw his duty plain before him, and set to work with zeal. M. Lockroy was surrounded by officers to whom the programme of Admiral Aube was not a chimera. The study of submarine navigation was actively pushed forward, and if M. Lockroy had remained at the Ministry we should have at this moment an important number of these weapons of naval warfare, so precious and so indispensable; but he was superseded and, according to custom, his successor began to undo the good work of his predecessor, so that we find ourselves to-day in a most difficult situation. Our habit is always to act as if we had plenty of time before us, and the enormous budget of the Navy and its supplementary estimates will, unless we are on our guard, be wasted in a useless expenditure.


“If war had broken out last year, all our maritime ports and our arsenals would have been bombarded and burned, before our squadrons could have attempted to defend them.

“Is the situation better now than it was then? Have the means of defence been strengthened as they should be?

“The Ministry of Marine is aware of the gravity of the situation. Our legislators cannot be ignorant of the facts, and yet nothing is done. Our only hope is in the individual initiative of those honest men of science who give some thought to what the morrow may bring forth.”

M. Fleury Ravarin in a report written in November, 1900, supporting the Ministerial programme for the building of large battleships, remarked:—

“If we are now asked what a fighting navy should really be we must say that it should be capable of fighting upon the high seas with the navies of rival nations, and that it is the business of the technical boards of the Navy to indicate the nature and composition of the fleet required for the purpose. It is for the Parliament to decide if we shall be content with a modest defensive navy which would be unable, we cannot repeat too often, to do more than delay defeat in case of war, or whether on the other hand France is resolved to enforce her position as a great Power and to make the heavy but remunerative sacrifices necessary to give weight to her voice in the councils of Europe, thus attracting to herself commerce and riches, and spreading throughout the world her influence and her traditional ideal of justice and generosity.”

Recent French naval activity in ship construction, deepening the anchorages in home waters and protecting them against torpedo attacks, organising torpedo stations, enlarging dry docks, creating vast depÔts of coal, war stores, &c., facilitating the rapid coaling of vessels, providing bases of operation in different parts of the world, &c., is avowedly aimed at Great Britain, and the idea that was uppermost in the minds of those who counselled these preparations was that France should be able, when a favourable moment arose, to strike a swift and sudden blow at British supremacy.

Writers in France openly acknowledge that all French manoeuvres embrace the idea that the “enemy” is Great Britain, and the manoeuvres of 1901 took the form of an attempt to prevent a junction of the British Channel and Mediterranean squadrons.

Baron de Coubertin has lately warned England in the plainest and most emphatic way that France will support Russia in any war with England, and it is now well known that Russia was prepared to support France in the Fashoda crisis.

Opinion in France is divided on the question of the shipbuilding programme; whilst, on the one hand, there are those who regard the construction of large battleships and cruisers as absolutely necessary, on the other hand, there are others who look upon this type of warship as inferior to the smaller class of fighting ship.

Just now the former party is in the ascendant. M. de Lanessan has contrasted the short range of the torpedo with the long range of the gun, and has deduced from the conditions the necessity for two classes of vessels (a) torpedo craft, and (b) battleships and armoured cruisers. He has explained that in order that the gun should be given its full value it is essential that the platform should be stable and that a vessel of considerable dimensions was thus called for. It was impossible upon such a platform to place many powerful guns, but a necessary consequence was that these should be protected, and hence came the need of heavy armouring. In short, the two qualities of offence and defence were indissoluble, but they were not the only qualities called for; speed and range in action were also necessary, and these again led inevitably to the heavy battleship.

M. Fleury-Ravarin, commenting on the fact that many advocates of the guerre de course had asked if there did not exist a more economical means of making war than that which consisted in opposing to certain ships others of a like character, told the French Parliament that it (the guerre de course) had never brought an enemy to submission, and that in the existing conditions of naval warfare it was very costly, whilst speed, its essential element, was of all elements at sea the most elusive. Moreover, the organisation of the guerre de course required many naval bases so that not only was it more costly in the beginning, but it demanded greater charges for maintenance. For these reasons this system of warfare could not be raised to a method; it must remain an accessory.

There can be no doubt that the popularity of the submarine craft with ministers, writers, journalists, and populace is due very largely to the idea that these vessels will in warfare prove capable of meeting and defeating the battleships and cruisers which Great Britain will send against France when the “Real Thing” arrives.

A writer who adopts the nom de plume of “Armour” points out the probable course of action in a naval war between France and Great Britain. British squadrons would be deprived of value by giving them no object to attack and preventing the possibility of establishing an effective blockade. The French ships would be withdrawn to the forts, which would be strongly fortified so as to secure them against attack. The close watching of a port would be too dangerous to be undertaken, and at night the squadrons would be obliged to withdraw to great distances in order to escape the menaces of the submersible boats: and at the same time the ingress and egress of cruisers—the only large vessels that would put to sea—would be easy.

In theory the British fleet should be equal in strength to the combined fleets of any two Powers, and although there are times when our strength is below the requisite, this ideal standard should be ever before those responsible for the condition of the navy. In the opinion of a certain class of Frenchmen the submarine will at a comparatively small expense, and in a very short space of time, satisfactorily neutralise all that England can do.

They hold that the use of the torpedo greatly strengthens an inferior but enterprising enemy, and that the tendency of torpedo warfare is to reduce the maritime forces of states differing considerably in power to the level of equals.

The opinions of a few of the most ardent believers in submarines among Frenchmen may be given here.

A French naval writer commenting on the sums expended by the French Government on the construction of submarines writes—

“The cruiser which can guard itself from the ordinary torpedo-boat will be without defence against the invisible enemy slowly creeping up to it to discharge its torpedo. It will be no longer possible for it to enter narrow waters and to approach the enemy’s coast. Its only safety will be in flight, and it will become a relic of the past. The naval battles of the future will take place not on the surface but in the depths of the ocean.”

M. Lockroy, in 1899, speaking in explanation of the French navy estimates, said that whilst formerly France had but one naval rival, she now had four, and the Triple Alliance could muster but sixty-seven battleships, while England had ninety-four, and France sixty. Could France ensure superiority over her rivals? Yes; submarine navigation ensured her a considerable advantage. The achievements of the ZÉdÉ might lead to a revolution in naval equipment and warfare. Meanwhile France had a terrible weapon—just what she wanted. “Everything,” said Vice-Admiral Jurien de la GraviÈre, “which threatens les colosses and tends to emancipate les moucherons should be warmly welcomed by the French Navy, for by such means we can double in a few years our forces and our power.” One might be forgiven for supposing that all French writers were on the side of the smaller fighting vessel. There are, however, quite as many who are opposed to this policy and who believe that France would be better with more battleships and cruisers and less torpedo craft, but they do not state their views in the emphatic and picturesque language of the other party, and as a consequence their influence is less felt. In 1888 Admiral Bourgois in his book on Torpedoes emphatically stated that the torpedo and the torpedo-boat could not take the place of the ironclad.

Says another writer: “Qu’on se rappelle les mitrailleuses de 1871. Nous souhaitons sincerement que le sous-marin aprÈs avoir inspirÉ la meme confiance exagerÉe ne cause pas les mÊmes dÉceptions que les mitrailleuses de 1870!

Again the same writer reminds his countrymen that a naval battle cannot be compared to a manoeuvre when everything is arranged beforehand. The submarine cannot venture to sea in foul weather without exposing itself to dire accidents, but will the enemy wait until the sea is calm before commencing battle? What would happen if he chose the moment to attack when a troubled sea forces the submarine to remain in port and no other defence can be utilised?

The submarine, he says, is still in the rudimentary condition, and the problem of submarine navigation has not yet been solved.

“Other navies possess submarines and have made experiments, and we cannot be certain that we are ahead of them, although we make the most fuss.

“A means of defence from the attack of submarines, if ever they become really dangerous weapons, will assuredly be found, and the country which is so imprudent as to rely chiefly on such vessels will be quickly disarmed by a stronger foe.

“To sum up, submarine navigation, like aerial navigation, is as yet only in the experimental stage—let us follow its progress carefully and encourage experiments; but to make a radical transformation in our navy on the strength of certain manoeuvres would be an act of imprudence both perilous and criminal.”

The attitude of the saner class of Frenchmen may be gathered from the following extract from a speech delivered in the Senate on the 4th of December, 1900.

“At the present time we are certainly all of us believers in the submarines; I am as keen a believer as you, but it must be recognised that it is still the vessel of the future rather than of to-day.

“The day may come when it will cause all the cruisers to disappear, but to-day the submarine is a weapon about whose efficiency one cannot be very certain, or at least whose use in warfare is limited to special circumstances. For the present, then, we needs must accept the proposals of the Admiralty and wait to substitute these new engines of warfare for our present bigger vessels until the future has given to submarines the power and the value which some already claim for them.”

“It has been the crowning misfortune of France,” said Sir G. Clarke, “that every fresh invention has resulted to the advantage of the principal naval Power, from whom it has ever been her ambition to wrest the command of the sea. A closer study of the problem of the submarine boat will probably reveal the fact that the boat will be of little use against moving targets, but, having been convoyed to its destination, may be of service against fixed targets. The Power able to blockade its enemy can so convoy the submarine boat without risk, and then it can be sent on its adventurous enterprise in the crowded harbours of the enemy.”

It will be only an instance of the irony of fate if submarines come to be employed by Great Britain against France in the next great war, but the French writers who declare that England reaps where France has sown must remember that no nation can hope in these days to possess the monopoly of any one particular weapon of warfare.

“We have seriously believed,” says a writer in the Journal de la Marine, “that in all the great modifications that have been brought about in the construction of submarines is the result of the important changes which the last fifty years of the century have produced in the art of naval warfare. All these changes have been sought out, experimented upon, studied, and finally realised by France, who has also been the first to apply them. These results have established in a brilliant and incontestable manner the skill of our engineers; but our rivals have not only appropriated the results of our labours, but they have not been slow to place themselves on equal terms with us, and finally to excel us in the application of these discoveries.... We have been only the humble artisans working for them to establish their superiority.”

All this, it is added, is due to the industrial supremacy of England. France built a commerce-destroyer, D’Entrecasteaux, of 8,000 tons, and with a speed of 19 knots. She was to prey on English ships of commerce like a second Alabama. And Great Britain replied to the threat by building the Powerful and the Terrible, each of 14,000 tons and 22 knots, and the efforts of France were thus brought to naught, and the Journal wearily complains that, “It is easy for England to place three armed cruisers for service where we can only place one.”

In the question of submarines Great Britain has pursued the same perfidious conduct. Very quietly the British sat still until France had done all the preliminary work of experiment and trial, and now, after something of the nature of a real engine for naval war has been produced by their engineers, Britain quietly steps in and begins at the point France had reached.

“The English Government have not chosen to contribute by their own researches and work to upset a state of things to which the supremacy of the British Navy is due; the appearance of a boat which will plunge under the water and act on the offensive within a considerable radius of action has enlarged the question. At present all they wish is the protection of coasts and harbours.”

But it was the intention of France to place herself in a position of offence towards England.

“In the near future the types Narval and Holland, being invisible enemies, would be in a position to operate against the English coasts and carry destruction into the midst of the naval forces which protect them. They would be able to seek and hunt out these same forces even in the harbours and roads where they are lying at anchor.”

But the ability of England to reply with some other equally good engine and protect herself as she has always done oppresses the writer’s mind.

“On the other hand, if England with any chance of success is able to oppose with the torpedo destroyer or some other force of an equalising nature, she will render all this impossible to the submarine. There will be some other means of defence against these redoubtable engines, though the solution does not appear to be near. England will find her best means of protection to attack the coasts of the enemy.... Anyway, she has five submarines on the stocks, and it is believed that these will be followed shortly by others.... The English have kept it a great secret. They have allowed a time of serious observation and attention to pass not with indifference before entering on the path opened by other nations.”

The writer takes consolation from the reflection that, although when England does begin it is easy for her to put three armed cruisers where France can only put one, yet the start in submarines which France has will revolutionise the conditions of naval war, and, he hopes, is such that she need not fear what England can do for a long time to come. “Doubtless,” he says, “more than a year will pass before the Holland or vessels of that class, however perfect they may be, can really be placed on service.” Then follows an enumeration of France’s fleet of submarines:—

“We possess already four submarines in service actually employed on the same work as torpedo boats—the Gymnote, the Gustave ZÉdÉ, the Morse, and the Narval. The FranÇaise and the Korrigan will follow the Gnome and the Lutin at Rochefort. At Cherbourg four are now on the stocks—the Silure, Triton, SirÈne, and Escapadon. During this year twenty-three more will be placed on the stocks, which will make altogether thirty-seven submarines.”

These will make a most formidable fleet, sporting like porpoises round the English warships in the Channel and along her shores, and holding them at the mercy of France. “The fact that England should launch into their construction shows that they are more menacing to her than to us,” adds the writer complacently. But France is not to sit down quietly:—

“But since we have made a very real advance in that which concerns the submarine, let us work without ceasing to preserve this superiority. Our engineers, who have succeeded so brilliantly, will be able to work for themselves new improvements while profiting by the experience already acquired.”

PART I.
French Submarines Proper, i.e. those Dependent entirely on Electricity for Motive Power.

Gymnote.

The first submarine built for the French navy was the Gymnote. The original plans of this vessel were worked out by the celebrated engineer, Dupuy de LÔme, but unfortunately he never lived to execute his project, for he died just when he had finished the details.

Some years later M. Gustave ZÉdÉ, a Marine Engineer, revived the ideas of his friend, and after making some modifications in Dupuy de LÔme’s original design, he brought it before Admiral Aube, the Minister of Marine, who accepted it at once, and signed a contract for its construction by the SociÉtÉ des Forges et Chantiers de la MÉditerranÉe. M. ZÉdÉ was one of the directors of this society, and thus he was able to superintend the work, which was carried out under the direction of M. Romazzotti, then first-class Assistant Engineer of Marine.

The Gymnote is built of steel in the shape of a cigar. It is 59 feet long, 5·9 feet beam, and 6 feet in diameter, just deep enough to allow a man to stand upright in the interior; its displacement is 30 tons, a total weight a little less than the weight of the water displaced by the boat when completely immersed, and its speed about 6 knots; leaden plates placed on each side of the boat in two hollows regulate its draught of water. The top of the vessel affords a narrow platform, and on this are a manhole and a little cupola, with windows.

The motive power was originally an electro-motor of 55 h.p., driven from 564 accumulators. It was designed by Captain Krebs and built in the workshops of the SociÉtÉ des Forges et Chantiers at Havre.

It was of extraordinary lightness, weighing only 4,410 lbs., and drove the screw at the rate of 2,000 revolutions a minute, giving a speed of 6 knots an hour, its radius of action at this speed being 35 knots; reduced to 4 knots its radius of action was 100 miles.

This motor was afterwards replaced by a much simpler machine.

Immersion is obtained by the introduction of water into three reservoirs, placed one forward, one aft, and one centre.

The water is expelled either by means of compressed air or by a rotary Behrens pump worked by an electro-motor.

Two horizontal rudders steer the boat in the vertical plane and an ordinary rudder steers it on the horizontal. Originally one horizontal rudder only was carried at the stern, but this did not answer well and was given up.

The behaviour in the sea of the boat when subjected to the influence of this rudder was somewhat unsatisfactory. For rather prolonged “dives,” such as would be necessary, for example, in forcing a blockade, the instability of the boat became very great, and the man at the helm was unduly fatigued without succeeding in retaining the mastery of his craft. On account of this instability no greater speed in submersions than 6 knots was attained. For this speed the inclination of the axis of the boat was from three to five degrees forward. The difference in the draught of water between the bow and the stern was 0·88 metre (about 34 inches) for an inclination of 3 degrees; for 5 degrees it reached 1·50 metres (nearly 5 feet).

Photo by] [M. Bar
THE “GYMNOTE.

Another system of “dip” rudder, proposed in 1891, executed in 1893, and tested towards the end of 1894, consists in the employment of two horizontal floatboards, placed on each side of the boat at the height of the midship frame. Their use, combined with that of the stern rudder, has given better results. The boat is inclined less for the “dive,” dips more regularly, and lurches or “yaws” less.

When navigating on the surface or when her hull is immersed to the water-line the Gymnote carries a cupola, or movable shell with sidelights.

This apparatus is composed essentially of a metal shell provided with sidelights all round its circumference. A cylinder of strong tarred canvas fixed on steel springs, which ensure rigidity, bind the shell itself to the upper part of the hull. Horizontal folds in front permit this canvas to double up regularly upon itself after the style of a Venetian lantern, and in such a way that when the doubling up is complete the height of the shell (or “casque”) comes exactly on a level with the upper platform of the boat. During navigation at the surface or on the water-line the whole structure can be raised or lowered by means of a vertical screw moved by a horizontal hand-wheel of which the movable nut constitutes the lower part of a vertical frame formed of metallic uprights, which go to rejoin the hull. When the system is at the end of an upward course the canvas is completely stretched and the observatory is at its maximum height; when, on the contrary, it is at the end of a downward run, the canvas is completely contracted and the “kiosk” has externally disappeared.

Such a system (as a French writer has pointed out) is very faulty and dangerous, as may be easily conceived. In the first place, considering the feeble resistance which a canvas can oppose even when mounted on steel springs, it was indispensable to protect it against the pressure of the water during the “dive.” This was believed to have been accomplished by providing the shell with an indiarubber crown, forming a sort of beak, which, when the system was completely folded up and closed, came to rest on another washer of indiarubber placed at the bottom of a groove, where it formed a watertight joint. This would have been very good if there had been certitude that the beak or cap fixed on the shell rested exactly at the bottom of the groove. To make sure of that there had been arranged a small opening, which ought to give water when the closure was not sufficient, but this only gave an almost illusory means of control, the opening being found almost always obstructed by some detritus, dÉbris of sea-wrack, and other foreign bodies encountered by the vessel. It will be seen what permanent danger was created by this apparatus—danger which on two occasions just missed causing the loss of the craft, an unlooked-for chance alone preventing it from foundering.

It would further be easy to show that in spite of its danger the movable shell, with canvas folded in accordion pleats, was almost unusable—that it could not serve when there was a slight sea on; that it caused, even during progress on the water-line, infiltrations capable of sinking the boat; and finally that, even in a calm sea and under the best conditions, the length of the manoeuvre of raising and lowering made the operations of the “dive” slow and wanting in precision—operations which demand so much rapidity and delicacy, and to which alone it is allowable to sacrifice something on a submarine boat. This movable shell was 0·35 metre (about 13½ to 14 inches) in diameter; it was abandoned after all the Commandants had successively condemned it, and to-day it is never used.

For use below the surface the Gymnote carries an optical tube with two inclined mirrors and a periscope, but these have so far given but poor results.

The Gymnote was first tried on September 24, 1888, in Toulon harbour. The French Press was enthusiastic about the qualities of the new boat. According to Le Temps she was a complete success: “She steers like a fish both as regards direction and depth; she masters the desired depth with ease and exactness; at full power she attains to anticipated speed of from nine to ten knots; the lighting is excellent, there is no difficulty about heating. It was a strange sight to see the vessel skimming along the top of the water, suddenly give a downward plunge with its snout and disappear with a shark-like wriggle of its stern, only to come up again at a distance out and in an unlooked-for direction. A few small matters connected with the accumulators have to be seen to; but they will not take a month.”

At the trials which took place before the Maritime Prefect of Toulon in 1888, the Gymnote behaved very well, as far as speed and stability were concerned, but it was found difficult to keep her at a constant level when submerged.

The Gymnote was commanded by several officers, and for some time served as a training school for officers and men in the management of the new type of craft, and many suggestions and improvements were suggested by them, and in some cases carried out. She is now used as an instructional boat.

At first the vessel carried no armament, but afterwards two torpedo tubes were fitted.

Gustave ZÉdÉ.

The Gymnote being intended merely as an unarmed, experimental craft, the next step was to construct a larger vessel carrying a submerged torpedo tube.

M. Barbey, the Minister of Marine, took the initiative in this project and M. Romazzotti, Naval Constructor, was ordered to draw up the plans for the boat and to place it on the stocks in the yard of Mourillon.

The construction of the boat (which was to be named the SirÈne) was decided upon in 1890.

During the building M. ZÉdÉ, the inventor of the Gymnote, died, and the Minister of Marine conceived the happy idea of paying a last tribute of respect to the famous engineer by giving the name of Gustave ZÉdÉ to the first armed submarine of the French fleet.

The Gustave ZÉdÉ was launched at Toulon on June 1, 1893; she is 159 feet in length, beam 12 feet 4 inches, and has a total displacement of 266 tons. Her shell is of “Roma” bronze, a non-magnetic metal, and one that cannot be attacked by sea water.

Photo by] [M. Bar
THE “GUSTAVE ZÉDÉ.

The motive power, of 720 h.p. is furnished by two independent electro-motors of 360 h.p. each of the Thury type, constructed by M. Sautter-HarlÉ and fed by accumulators of the Laurent-CÉly type. The screw revolves at the rate of 250 revolutions a minute.

In order to endow the boat with a wide radius of action a battery was provided composed of 720 cells, each containing 29 plates and having an output of 400 amperes and a capacity of 1,800 amperes an hour. The Gustave ZÉdÉ had scarcely been placed in the water before the motive power gave out owing to the short-circuiting of most of the cells.

To remedy this, two plates were removed from each cell in order that each plate might be wrapped in a “chemise en toile d’amiante.” The result was no better for the covers, and the ebonite joints burst into flames and the boat was in danger of being consumed by fire. It was then decided to reduce it to 360 cells; this gave a speed of eight knots, though originally it was hoped that sixteen would be obtained.

The successive crews of the Gustave ZÉdÉ have suffered much from the poisonous fumes of the accumulators, and during the earlier trials all the men on board were ill.

In the bows is a torpedo tube and an arrangement is used whereby the water that enters the tube after the discharge of the torpedo is forced out by compressed air. Three 17½ Whitehead torpedoes are carried. In spite of the fact that a horizontal rudder placed at the stern had not proved serviceable on the Gymnote, such a rudder was fitted in the Gustave ZÉdÉ. With this rudder she usually plunged at an angle of about 5°, but on several occasions she behaved in a very erratic fashion, seesawing up and down, and once when the Committee and Experts were on board, she proved so capricious, going down at an angle of 30°–35°, often throwing the poor gentlemen on to the floor, that it was decided to fix a system of six rudders, three on each side.

Four water tanks are carried, one at each end and two in the middle, and the water is expelled by four Thirion pumps worked by a little electro-motor; these pumps also furnish the air necessary for the crew and for the discharge of the torpedoes.

For steering on the surface there was placed on the Gustave ZÉdÉ at first a movable shell with folded canvas similar to that of the Gymnote. It was found even more dangerous there than on the smaller boat; it was, therefore, taken away and replaced by a fixed kiosk, immovably attached to the hull, and of a shape tapering away fore and aft. The Gustave ZÉdÉ possesses, for under-water vision, an optical tube and a periscope.

The crew consists of an officer and eight men.

The first journey of any length undertaken by the Gustave ZÉdÉ was from Salins d’HyÈres to Toulon. The sea was choppy, and a fresh breeze was blowing, and yet no mishap of any kind occurred. She navigated for the greater distance at the surface, with her cupola above the water, but when the water became too rough she plunged under the waves, occasionally emerging to take bearings. The distance between Toulon and Salins is short, and so the next journey was from Toulon to Marseilles, a distance of forty-one miles, and this the Gustave ZÉdÉ covered also in a rough sea without accident of any kind at the rate of six knots. Although accompanied by a tug, the Utile, it had no occasion for its services. She navigated on the surface all the way, but by reason of the swell everything was hermetically closed, and for more than seven hours the crew were kept in conditions exactly the same as if the vessel had been really under water.

On reaching Marseilles the accumulators had sufficient power left to perform the return journey.

The trials of the Gustave ZÉdÉ resulted in stimulating the interest of the French in submarine warfare. Writers vied with one another in extolling the qualities of under-water craft and the popular imagination saw already the powerful fleets of Great Britain and Germany destroyed by the attacks of the French submarine flotilla.

“Jamais nous n’aurions trop de sous-marins,” wrote M. V. Guilloux in Le Yacht. “The twelve years of consecutive efforts and studies continued in order to obtain a solution of the question of submarine navigation have at length been crowned with success,” said a writer in the Moniteur de la Flotte.

Lieutenant Maurice Loir writing in the Moniteur of a later date remarked that Frenchmen went too fast in proclaiming that these isolated trials sounded the knell of the battleships.

He nevertheless believed the submarine boat to be a real element in naval war because the very fear of its invisible attack would keep at a distance adversaries who might have an object in approaching the coasts.

So great was the interest taken in France in submarine boats that the Matin opened a “Patriotic Subscription Fund” in 1898, to raise money for building submarine boats of the Gustave ZÉdÉ type. The journal itself headed the list with a subscription of 5,000 francs. In a long article the Matin dwelt on the utility of these engines of warfare, and asked the French public to furnish the funds necessary for the construction of at least one more Gustave ZÉdÉ. It urged the Government to build a fleet of these boats as an effectual protection for the French ports and the harbours of the French Colonies, against the most powerful navies of the world.

The result of the opening of the fund was that two submarines were presented to the nation—the FranÇais and the Algerien—and the sum of 300,000 francs, mostly in small sums, was contributed by the French nation for these vessels.

The history of the Gustave ZÉdÉ shows how much in earnest the French were in the matter of submarines. When it was first launched it was a distinct failure in almost every respect, and it was only after some years during which many alterations and improvements were carried out, that she became a serviceable craft. At first nothing would induce the Gustave ZÉdÉ to quit the surface, and when at last she did plunge she did it so effectually that she went down to the bottom in 10 fathoms of water at an angle of 30°. The Committee of Engineers were on board at the time, and it speaks well for their patriotism that they did not as a result of their unpleasant experiences condemn the Gustave ZÉdÉ, and advise the Government to spend no more money over these monsters of the deep.

Morse.

Before the Gustave ZÉdÉ was completed M. Romazzotti prepared designs for a smaller submarine, which should be intermediary between the Gymnote, displacing 30 tons, and the Gustave ZÉdÉ of 266 tons.

This vessel, the Morse, is 118 feet long, 9 feet beam, 8 feet 3 inches diameter, is made of “Roma” bronze, and displaces 146 tons. Amidships is a circular conning tower rising about 18 in. from the top of the boat.

The sole motive power, as in the Gustave ZÉdÉ and the Gymnote, is electricity. The motor is of the Thury type, and develops 350 h.p., rotating the screw at 250 revolutions a minute. The current is derived from a battery of accumulators by the SociÉtÉ anonyme pour le Travail Electrique des MÉtaux. It is claimed that a means of recharging the batteries while at sea has been discovered; it is described as being a “combination of motors,” doubtless an intentionally vague description of a method which seems to be like an attempt to solve the impossible problem of creating energy.

The Morse is submerged and steered in the same way as the Gustave ZÉdÉ in her most improved form. Water is admitted into three separate compartments until a certain amount of buoyancy has been overcome, and the boat is then steered below the surface by her horizontal rudders. A false keel of lead can be detached if necessary from the inside.

The armament consists of a bow torpedo tube and two special carriers on the side, each holding one torpedo. Her crew consists of a commander and 8 men, and her range of action is 150 miles.

Although the Morse was taken in hand many years previously she was not launched until the 5th of July, 1899. One of the reasons for this delay was the question whether an oil engine should be fitted in the vessel for surface navigation. She has cost in all 648,000 francs.

The Morse is steered on the surface and awash from the conning tower, and underneath by means of a periscope that rises above the surface and allows (theoretically) of her seeing everything at a depth of 20 feet. In fine weather the periscope reflects everything within its field of vision, and can be turned round so as to cover the whole horizon.

The French naval authorities believe that they have in the Morse a vessel which fulfils all the conditions of coast defence torpedo-boats, with the further advantage of invisibility, which makes it a specially dangerous weapon of attack upon hostile vessels in day-time.

Early in January, 1901, the French Minister of War visited Cherbourg and went for a trip in the Morse.

Although a considerable sea was running outside the harbour the submarine rolled very slightly. The operation of submerging took but two minutes. During the voyage four torpedoes were fired, and each was said to run straight and true.

“The feeling experienced,” says a writer in the Temps, “at the moment the vessel is making her descent is most peculiar; it is one of expectancy, but nothing happens, one is astonished at the quiet, the absolute calm, there is no movement, not even a tremble, the waves wash overhead without causing the least vibration, the motor works silently, and the vessel glides through the water without causing any bow wave or leaving any track. Above, the voice of the captain is heard, who, standing by the periscope, gives his orders for so many degrees of helm and so many revolutions of the engine. The little vessel is now almost in equilibrium, and would sink deeper or rise to the surface were it not for the ‘ailettes’ on each side which serve to prevent this. Before an instrument which indicates the depth stands a petty officer with his eye fixed and his attention concentrated on the pointer, and by turning a wheel he causes the ‘ailettes’ to act so as to maintain the vessel at the required depth. Should she for any reason continue to descend or refuse to ascend, a pig of lead ballast can be detached which would cause her immediately to rise to the surface, but after this the buoyancy would be so much increased that she could no longer be submerged even with all her ballast tanks full. Orders had been given to remain a quarter of an hour under water, and at the expiration of the time pumps are set in motion and the water is forced out of the ballast tanks (situated forward, aft, and amidships) and the Morse commences to rise, the conning tower and the small platform emerge, and the man-holes are opened. No commotion takes place at the entering of the external air and no inconvenience has been felt by those on board during the dive, the act of breathing being as free and regular as in the open air.

“Trials to ascertain the habitability of the Morse had already been made, and she has remained for eight hours under water, the crew experiencing no difficulty in breathing and no buzzing sensation in the ears, no excitation or inconvenience of any sort, and it was considered they could have remained double the time if necessary, the chemical analysis of the air showing also that it would have been possible to considerably prolong the trial if required.”

M. Calmette, of the Figaro, who accompanied General AndrÉ on the trial trip of the Morse, sent to his journal a long account of his experiences during the two hours which the trial lasted. He said the defect of the Morse lay in the fact that the motive power was supplied by electric accumulators, the premature exhaustion of which might deprive the vessel of all means of action. A combination had, however, been effected, which enabled accumulators to be recharged on the spot. This system would be utilised on the submarines FranÇais and Algerien. As was already known, the commander directed the navigation of the vessel by means of a periscope, the extremity of which, resting on the surface, gave him—no matter at what depth—an absolutely faithful and distinct image of all that was taking place on the surface. The immersion was effected easily and without shock, in exactly seventy seconds. Breathing in a submarine was as easy as in an ordinary room. The vessel could remain in the water for sixteen hours without inconvenience to the occupants, and could rise to the surface very rapidly. The correspondent went on to say that after the trial the Morse, in conjunction with the Narval, went through a series of manoeuvres lasting eight hours. The Morse discharged a torpedo with remarkable precision by a process which was a profound secret.

M. Calmette’s account furnishes interesting reading. He says:—

“General AndrÉ, Dr. Vincent, a naval doctor, and I enter the submarine boat Morse through the narrow opening in the upper surface of the boat. Our excursion is to begin immediately; in two hours we are to come to the surface of the water again three miles to the north to rejoin the Narval. Turning to the crew, every man of which is at his post, the commandant gives his orders, dwelling with emphasis on each word. A sailor repeats his orders one by one, and all is silent. The Morse had already started on its mysterious voyage, but is skimming along the surface until outside the port in order to avoid the numerous craft in the Arsenal. To say that at this moment, which I had so keenly anticipated, I did not have the tremor which comes from contact with the unknown would be beside the truth. On the other hand, calm and imperturbable, but keenly curious as to this novel form of navigation, General AndrÉ had already taken his place near the commandant on a folding seat. There are no chairs in this long tube in which we are imprisoned. Everything is arranged for the crew alone, with an eye to serious action. Moreover, the Minister of War is too tall to stand upright beneath the iron ceiling, and in any case it would be impossible to walk about.

“The only free space is a narrow passage, 60 centimetres broad, less than two metres high, and 30 metres long, divided into three equal sections. In the first, in the forefront of the tube, repose the torpedoes, with the machine for launching them, which at a distance of from 500 to 600 metres are bound to sink, with the present secret processes, the largest of ironclads. In the second section are the electric accumulators which give the light and power. In the third, near the screw, is the electric motor which transforms into movement the current of the accumulators. Under all this, beneath the floor, from end to end, are immense water ballasts, which can be emptied or filled in a few seconds by electric machines, in order to carry the vessel up or down. Finally, in the centre of the tube, dominating these three sections, which the electric light inundates, and which no partition divides, the navigating lieutenant stands on the look-out giving his orders.

“There is but one thing which could destroy in a second all the sources of authority, initiative, and responsibility in this officer. That is the failure of the accumulators. Were the electricity to fail everything would come to a stop. Darkness would overtake the boat and imprison it for ever in the water. To avoid any such disaster there have been arranged, it is true, outside the tube and low down a series of lead blades which can be removed from within to lighten the vessel. But admitting that the plunger would return to the surface, the boat would float hither and thither, and at all events lose all its properties as a submarine vessel. To avoid any such disaster a combination of motors has been in course of construction for some months, so that the accumulators may be loaded afresh on the spot, in case of their being used up. I betray no secret in stating that this new scheme is already completed, and the next submarine vessels, the FranÇais, the Algerien, and the Matin, will be fitted with the result.

“The Morse, after skimming along the surface of the water until outside the port, is now about to sink. The commandant’s place is no longer in the helmet or kiosque whence he can direct the route along the surface of the sea. His place is henceforth in the very centre of the tube, in the midst of all sorts of electric manipulators, his eyes continually fixed on a mysterious optical apparatus, the periscope. The other extremity of this instrument floats on the surface of the water, and whatever the depth of the plunge it gives him a perfectly faithful and clear representation, as in a camera, of everything occurring on the water.

“The most interesting moment of all now comes. I hasten to the little opening to get the impression of total immersion. The lieutenant by the marine chart verifies the depths. The casks of water are filled and our supply of air is thereby renewed from their stores of surplus air. In our tiny observatory, where General AndrÉ stations himself above me, a most unexpected spectacle presents itself as the boat is immersed.

“The plunge is so gentle that in the perfect silence of the waters one does not perceive the process of descent, and there is only an instrument capable of indicating, by a needle, the depth to which the Morse is penetrating. The vessel is advancing while at the same time it descends, but there is no sensation of either advance or roll. As to respiration, it is as perfect as in any room. M. de Lanessan, who since entering office has ordered eight more submarine vessels, has concerned himself with the question as a medical man also, and, thanks to the labours of a commission formed by him, the difficulties of respiration are entirely solved. The crew can remain under water sixteen hours without the slightest strain. Our excursion on this occasion lasted scarcely two hours. Towards noon, by means of the mysterious periscope, which, always invisible, floats on the surface and brings to the vessel below a reflection of all that passes up above, the captain shows us the Narval, which has just emerged with its two flags near the old battery Impregnable. From the depths in which we are sailing we watch its slightest manoeuvres, until the admiral’s flag, waving on the top of a fort, reminds us that it is time to return.”

FranÇais and Algerien.

Two sister vessels, submarines proper, the FranÇais and the Algerien, designed by M. Romazzotti, were laid down at Cherbourg in 1900. They were built with the proceeds of a subscription opened by the Matin at the time of the Fashoda dispute. They are almost identical with the Morse, though in some respects they are improvements on their prototype. They are built of steel, and the sole motive power is electricity. The cost of each is £32,972. The FranÇais was launched on January 29, 1901, and the Algerien on February 15, 1901.

Farfadet Class.

The Farfadet class, designed by M. Maugas, consists of four submarines all laid down simultaneously at Cherbourg on September 27, 1899, viz., Farfadet, Gnome, Korrigan, and Lutin.

In size they are between the Gustave ZÉdÉ and the Morse, the measurements being—length 135 feet 8 inches, beam and also draught 9½ feet, displacement 185 tons. Each has a single screw, and the sole motive power is electricity, supplied by accumulators. On the surface the speed is 12·25, and submerged 9 knots. The complement is a lieutenant and eight men. The hull is of steel and not of Roma metal, like the Gustave ZÉdÉ and the Morse. The armament consists of four torpedoes carried on the exterior of the vessel.

The cost of each of the Farfadet class is about £32,000. The Farfadet was launched on May 17, 1901, and the Korrigan on February 2, 1902.

The Perle Class.

The Budget of 1901 made provision for 23 submarines, 20 of the “defensive,” 3 of the “offensive” class.

The names of the 20 defensive boats are: (1) Perle; (2) Bonite; (3) Esturgeon; (4) Thon; (5) Souffleur; (6) Anguille; (7) Alose; (8) Dorade; (9) Truite; (10) Grondin; (11) NaiÄde; (12) ProtÉe; (13) Lynx; (14) Ludion; (15) Loutre; (16) Castor; (17) Phoque; (18) Otarie; (19) MÉduse; (20) Oursin.

All these twenty boats (which were laid down in 1901) will be constructed of steel, will have a displacement of 68 tons, a length of 77 feet, a beam of 7½ feet, and draught 8 feet.

The sole motive power will be electricity supplied by accumulators, and the motor will actuate a single screw.

The maximum speed will be 8 knots, and their crew will consist of an officer and four men. The price of each is £14,616, which is less than any previous submarine boat.

Of these twenty vessels five are building at Cherbourg, six at Rochefort, and the rest at Toulon. They are to unite all the best points of the existing vessels, and are intended primarily for harbour and coast defence.

PART II.
French “Submersibles,” i.e., those Fitted with Two Sources of Motive Power, One for Surface, and One for Sub-surface Propulsion.

The Narval Class.

In February, 1896, M. Lockroy, Minister of Marine, acting in conjunction with M. Bertin, Director of Material, invited designs for a submarine torpedo-boat from Frenchmen and foreigners. The commission appointed to examine the various projects decided in favour of the one sent in by M. Laubeuf. This decision was approved by the Minister, who ordered the construction of the vessel to be taken in hand, and awarded a gold medal to its inventor.

The Narval was commenced at Cherbourg in 1897, and launched on October 26, 1899, but it was not until certain modifications had been made that it was considered to be (in 1900) in a satisfactory condition to run her trials.

While the Gymnote, the Gustave ZÉdÉ, and the Morse rely solely on electricity for their motive power, the Narval can navigate in three different ways.

1. As an ordinary torpedo-boat, with water, ballast tanks empty.

2. Awash, with the dome and chimney alone above the waves, carrying a certain amount of ballast.

3. Entirely submerged with tanks full of water.

Some French writers have divided under-water craft into three classes. The first is the “Submersible”: this type is represented by the Mute of Fulton, the Stromboli, the Spuyten Duyvil, the Porter, &c. Such boats are never completely submerged, but only take in sufficient ballast to keep their decks flush with the water.

The second is the “Sous-Marin”: this type, represented by the Gymnote, Gustave ZÉdÉ, and Morse, has no sphere of action except as a totally submerged craft.

The third is the “Sous-Marin autonome À grand rayon d’action,” and is represented by the Narval type of vessel. They can be used both as ordinary torpedo-boats or submarines. We have in our classifications adopted the terms “submarine” and “submersible.”

In designing the Narval M. Laubeuf aimed at producing a disappearing vessel, which should correspond with the sea-going torpedo-boat in the same way as the Morse is partly designed to replace the torpedo-boat for coast defence.

The Narval possesses various radii of action.

1. On the surface and propelled by its steam engine—
252 miles at a speed of 12 knots for 21 hours
624 miles at a speed of 8 knots for 78 hours
2. Submerged and propelled by electricity—
25 miles at a speed of 8 knots
72 miles at a speed of 5 knots

The hull of the Narval is peculiar, being double. The interior hull is of thick steel sheets: it has a circular section, and ends in a point at its two extremities. The outer hull which envelopes it is of thin sheets; its form is that of the Gustave ZÉdÉ. The external hull is pierced with holes above and below, and at the two ends, and the sea water circulates freely between the two hulls, which allows the ship to receive a hail of small projectiles without suffering from them, the rents in its outer hull making no change in its situation.

The boat is brought to the awash condition by taking in water ballast and is steered below the surface by four horizontal float-board rudders, arranged systematically on each side of the ship, two towards the bows and two towards the stern. These “dip-rudders” are manipulated by means of a hand-wheel placed at the centre of the ship.

The Narval is not cylindrical in shape like the Morse, and her upper works are flat and form a deck.

The principal dimensions of the Narval are as follows:—

Length 111 ft. 6 in.
Extreme beam 12 ft. 4 in.
Displacement { 106 tons when light.
{ 200 tons completely submerged.

The motive power on the surface is supplied by a triple-expansion steam engine of 250 horse-power constructed by Messrs. Brule and Co. It has a water-tube boiler of the Seigle type having five injectors for stoking with heavy petroleum.

In the original project the boat was to have been propelled on the surface by steam machinery of 300 i.h.p., the stoking being with compressed coal, but it was afterwards decided to supply liquid fuel.

Submerged the motive power is an electro-motor, the current being supplied by 158 accumulators of the Fulmen type, which can be recharged by the motor, worked as a dynamo by the petroleum motor.

Before going below the chimney is to be unshipped and all the openings are hermetically closed. Sufficient time is allowed for the motor to cool and for the air to be cleared of the hot gases. The steam engine has to be replaced by the electric motor and water ballast has to be pumped in.

At first these operations took at least a quarter of an hour, but the newer vessels of the Narval class are said to be able to disappear beneath the waves in some five moments only.

Photo by] [M. Bar
THE “NARVAL.”

The armament consists of four 17½ inch Whitehead torpedoes, and there are two Drzewiecki torpedo tubes on each side and towards the upper part of the boat, which launch the torpedoes in the direction of the beam.

“As long ago as 1893,” says a French writer, “Mr. Drzewiecki invented a method of firing a torpedo which is quite different from the torpedo tubes commonly used, and which is, therefore, peculiarly suited for submarine vessels. By it the torpedo could be fired at any angle from 30 to 120 degrees from the bow, and experiments with it were carried out in 1894 at Cherbourg. The system may be briefly explained as follows: At the side of the boat a horizontal spar is placed, which works on a hinge at an angle to the bow. The torpedo is fastened to this spar by two pairs of clamps, and when not in use lies along the side of the boat in a recess cut in the side. A swing-out rod, fastened at one end to the spar and at the other to the boat, enables the desired angle for firing to be obtained. A lever worked from inside the vessel pushes the spar and the torpedo away from the side of the boat, and the pressure of the water stiffens the swing-out rod, and by so doing frees the torpedo from the clamps, and opens the air lever which sets the torpedo in motion. It is, therefore, necessary that the vessel should be under way when the torpedo is fired.

“The principle of the invention is very simple, and at the same time very ingenious; and the experiments which were made at Cherbourg proved that torpedoes could be fired by this system with perfect precision. Since 1894 Mr. Drzewiecki has made alterations in his invention. For example, he has done away with the spar and the clamps, and by so doing has greatly lightened his apparatus. The tail of the torpedo is now seized by two claws, which grip it firmly and hold it in position. The contrivance is placed on the deck of the submarine boat, which is not submerged except on going into action. The torpedo rests on cushions fixed to the deck, with its axis parallel to that of the boat, but as soon as it is moved by a lever to the position for firing, the water pressing against it frees the torpedo by opening the air valve. The only inconvenience of the system is that it is not easy to fire at the exact angle required, but it has the great advantage of doing away with all the machinery of valves and safety appliances which are necessary when submerged tubes are employed. Further experiments will doubtless make the system still more efficacious.”

Commenting on the Narval class a writer in the Temps said:—

“Their range of action will be large, they will be self-controlling, and they will realise Admiral Aube’s theory of the empire of the sea, invisibility, divisibility and number. The estimate for each is 600,000 francs, which is not one-fortieth of the cost of a battleship. Are not the Mediterranean experiments calculated to lead to changes in our naval construction, and would not the present situation justify the devotion of all the efforts of the dockyards to submarine torpedo-boats without stopping the programme now in progress?”

THE “NARVAL” AS A SURFACE TORPEDO-BOAT.

On the 6th of January, 1901, M. de Lanessan, Minister of Marine, and General AndrÉ, Minister of War, visited Cherbourg to witness comparative trials between the two submarine vessels, Morse and Narval, with a view to determining the relative merits of the two systems for guidance in the construction of the new under-water vessels provided in the programme for 1901.

Before embarking the Minister inspected the crews, who wear ordinary uniform with the addition of a red cap ribbon bearing the words “Sous-Marins.”

M. Calmette, who was allowed to accompany the Minister during the trial, wrote:—

“The submerging of the Narval is a rather delicate operation: the motive power has to be changed, the funnel, &c., have to be drawn in, sufficient time must be allowed for the unused steam to cool down, and a much greater quantity of water than in the case of the Morse has to be introduced into the ballast tank to overcome her buoyancy. Great progress has been made in these respects since her first trial, and the operation of submerging has been much accelerated, but it still takes considerably longer than in the case of the Morse. On the present occasion submergence was effected in a quarter of an hour, and when submerged the only thing visible above the water is the periscope.”

In May, 1901, the Narval made a voyage from Cherbourg to St. Malo.

The Figaro declared that the trip was completely successful. “The Minister of Marine had ordered a cruise of forty consecutive hours. The Narval left Cherbourg at 1 o’clock in the afternoon of May 23rd, in a very heavy sea, caused by strong north-easterly gale. She returned to St. Malo on the Saturday at 5 o’clock in the morning. That was the sole departure from her programme. The Narval had been navigated for 40 hours without stopping, covering 260 miles at an average speed of 6½ knots in a very rough sea. During the trip the Narval remained below the surface for several hours at a time, and twice recharged her accumulators. On Sunday she left St. Malo, without taking in fresh provisions, and made Cherbourg. On her arrival there she made excellent practice with her four torpedoes. It was proved that the torpedo mechanism, regulated five days previously, had not been in the least put out of order by the trial. During the return voyage to Cherbourg the Narval had an accident to her pump, and was towed for three hours by the t.b. Zouave. The damage was repaired, and the submarine returned with her own motive power. It has to be pointed out, however, that the crew suffered greatly from discomfort. When fresh trials are conducted everything will be done to remedy the defects which have been reported.” The Figaro, in conclusion, protested against the decision of the Ministry of Marine to build henceforth vessels of 68 tons burden and with a radius of action of 100 miles only, pointing out that such boats can only be used for defensive purposes, whereas if the tonnage were increased the radius of action and the accommodation would also be increased, and the submarine could be employed offensively. On the other hand, the Petit Parisien said that the results of the recent trial of the Narval for 48 hours were not satisfactory. “The navigation of the vessel on the surface was defective and difficult, and she sustained an accident, in consequence of which she had to be towed back to port. The crew were suffering from exhaustion and nausea, the cause of which it is impossible to explain.”

THE “NARVAL” IN THE “AWASH” CONDITION.

The Narval in June, 1901, made the experiment of remaining for twelve hours under water.

The Ministry of Marine were represented by Naval Surgeon Gibrat, who wrote a full and detailed report on the condition of the crew after their twelve hours’ submersion.

From notices published in the French papers it would appear that “the trial succeeded without incident,” but the impression seems to be general that the crew were in a more or less exhausted condition after their prolonged sojourn beneath the waves, which after all is not to be wondered at.

It appears that after six hours under water the inhaling of artificial air became difficult; the long exclusion of natural atmosphere caused a painful irritation of the nerve centres which even the coolest of the officers could not resist, and anÆmia set in accompanied by cerebral compression and sick headache. Trouble was also caused by the working of the accumulators, which liberated among the crew salts of lead and sulphur, causing digestive and intestinal complaints. Dr. Gibrat is reported to have expressed to them that, in the present condition of knowledge, 12 hours is the outside limit of efficient work on a submarine under water.

The Narval class, besides the eponymous vessel, comprises four other submersibles—the SirÈne (launched May 4, 1901), the Triton (launched July 13, 1901), the Espadon (launched August 31, 1901), and the Silure (launched October 29, 1901). These four resemble the Narval in most particulars, though in some respects they are improvements on their prototype.

The outer hull of each is made of steel, but the inner hull is made of nickel steel. The choice of the metal is a matter of importance, for the difficulty is to build a hull which possesses sufficient strength to resist the pressure of the water, and yet at the same time is not too expensive. Between the two hulls in the interior of the vessel are seven compartments for water ballast. There are also four water tanks, which are used to regulate the trim of the vessel by introducing water at the last moment.

The inconvenient points of the SirÈne and her sister vessels are the same as those of the Narval. A few minutes are sufficient to fill the water-ballast compartments, but, according to a recent article in La Patrie, it takes a good half-hour to empty them in order to rise to the surface. The operation is begun with compressed air, and continued with a pump worked by electricity. For steaming on the surface of the sea the SirÈne uses a triple-expansion engine and a Normand boiler heated by petroleum. For submarine navigation she uses two dynamos connected with the main shaft. These dynamos recharge the accumulators, which are on the Laurent Cely system, in less than 7 hours. The vessel can steam on the surface 21 hours at 12 knots with the petroleum engine, and 625 miles at 8 knots. Under water, making use of the accumulators, she can do 25 miles at 8 knots, or 70 miles at 5 knots. Her armament consists of four torpedoes 17¾ inches in diameter, which are fired by the Drzewiecki system. As the torpedoes are placed on the deck, the vessel must be under the water in order that they may be fired. The crew consists of twelve men, including the lieutenant commander and his sub-lieutenant.

The SirÈne recently underwent a 24 hours’ trial at Cherbourg. Twenty hours were devoted to evolutions on the surface, and the remaining four hours spent under water.

The SirÈne afterwards carried out successful experiments in discharging torpedoes. “The SirÈne,” said the Petit Journal, “is at present the most perfect of the submarines. She possesses rapidity of submersion (the time being five minutes), perfect stability and habitability, wide radius of action, and a powerful armament. In a word, she is the true type of an independent submarine capable of acting on the offensive.”

The Triton made a trial trip at Cherbourg in October, 1901. Though the sea was rough, she totally submerged herself in 6½ minutes, and remained under water for an hour and a half.

The Espadon made her trial plunge on October 18, 1901. She took 8 minutes to sink to a depth of 26 feet, and she remained submerged for 2½ hours.

The cost of the SirÈne was £32,000, of the Triton £21,700.

The New Submarines.

Of the three “offensive” boats provided for in the Budget of 1901 the first, Q 35, is to be built at Cherbourg, after the plans of M. Romazzotti, the builder of the Gustave ZÉdÉ and the Morse. Her cost is estimated at 19,592 francs.

The second, Q 36, is to be built at Rochefort to the designs of M. Maugas, the designer of the Farfadet class, and her cost will be 31,973 francs.

The third, Q 37, will be built at Toulon, after the designs of M. Bertin, Director of the Technical Section of Naval Construction, her cost being put down as 36,970 francs.

Up to the time of writing the Department of Construction has refused to divulge the characteristics of these three boats, and has confined itself to mentioning their cost and the name of the designers.

It has been stated in some of the French service journals that Q 37 will be driven on the surface by an alcohol motor, and submerged by compressed air in place of accumulators.

No submarine boats are to be laid down in France in 1902.

In 1903, 13 will be laid down, and by the close of the year 37 are expected to be in commission. By the year 1906 France should be in possession of a submarine flotilla numbering 68 vessels.

Q 38–42 and Q 61–68 are to be built at Toulon, Q 43–50 at Rochefort, and Q 51–60 at Cherbourg.

Of these 31 boats it has been stated that 8 will be submersibles with a double motive power, i.e., a vapour or gas engine and electric accumulators. They are to have a radius of action a little more extended than that of the submarine proper, and will plunge more rapidly than the Narval and SirÈne, which have to fill the ballast tanks between the hulls.

APPENDIX IV
SUBMARINES OLD AND NEW

To give some description, even of the briefest nature, of every submarine boat that has ever been constructed would necessitate a volume three or four times the size of the present work. There are, however, a few vessels that demand some notice here.

Payerne.

The first inventor to propose a mode of propulsion other than by hand-operated mechanism, was Dr. Payerne, who in the fifties proposed a boat which was propelled by a screw driven by a steam engine, furnished with two boilers, an ordinary boiler-furnished steam for surface navigation; whilst the other, which he termed a “chaudiÈre pyrotechnique,” for use beneath the waves, was so arranged as to burn in hermetically closed furnaces a combustible containing in itself the oxygen necessary for its combustion. The products of combustion escaped by raising a plug so devised as to prevent water entering the fire-box. The combustibles to which Dr. Payerne gave preference were:—

Coke 165
Nitrate of Soda 835
Coke 145
Nitrate of Potash 855

The boat was known by the name of L’Hydrostat; but, as its inventors were not able to work out their ideas satisfactorily, it was turned into an ordinary diving-bell, and used for submarine excavations at Cherbourg and at Brest.

Riou.

In 1861 Olivier Riou built two models, one driven by steam (generated by the heat of ether in combustion), and the other by electricity derived from batteries. This is the first occasion that we find electricity requisitioned for the propulsion of an under-water vessel.

Alstitt.

The submarine of Mr. Alstitt, constructed in 1863 at Mobile, in the U.S.A., possesses a great interest in that it was the first to be fitted with two modes of propulsion; the one for navigation on the surface, the other beneath.

Bourgois and Brun.

The Plongeur, invented by Captain Bourgois and M. Brun, and built at Rochefort in 1863, was the most ambitious attempt that had up till then been made to solve the problem of submarine navigation. It was driven by an 80 h.p. compressed-air engine, and underwent numerous trials; these did not satisfy the officials, and it was eventually converted into a water tank. The armament of the Plongeur was a spar-torpedo.

Lacomme.

In 1869 Dr. J. A. Lacomme submitted to Napoleon III. a project for a submarine railway across the Channel. Rails were to be laid on the floor of the ocean, and in the event of an accident the submarine car, by reason of its reserve of floatability, could detach itself from the track and rise to the surface. M. Goubet has since proposed a similar “submarine ferry.”

Halstead.

The Intelligent Whale was built at Newark in 1872 from the designs of Mr. Halstead. Its novel features were two doors in the bottom through which divers could leave the boat when submerged. On one occasion the boat went down in 16 feet of water and General Sweeney, clad in a diver’s suit, passed out through the bottom manhole, placed a torpedo under a scow anchored there for the purpose, and after entering the boat and moving away to a safe distance, exploded the torpedo by a lanyard and friction primer, and blew the scow to pieces.

Constantin.

During the siege of Paris, AndrÉ Constantin, a lieutenant in the French navy, built a vessel which was submerged on an entirely novel principle. Instead of admitting water to sink his boat he immersed it by the drawing in of pistons working in cylinders.

Drzewiecki.

The Russian inventor, Drzewiecki, built a vessel at Odessa in 1877, which had two methods of submersion. Whilst in motion a system of sliding weights inclined the boat either upwards or downwards. To regain the horizontal position the weights were brought to the centre. When at rest submersion was obtained by the introduction of water into a central reservoir.

Campbell and Ash.

The Nautilus of these inventors was submerged on the same principle as the boat of AndrÉ Constantin, viz., by the drawing in of cylinders. The submersion was effected by means of four-cylinders on each side of the vessel, which were drawn in flush and pushed out beyond the side, thus altering the displacement. The Nautilus underwent some trials in Tilbury Docks in 1888, and the following account is from the pen of Mr. Bennett Burleigh: “A few years ago a gentleman invited a number of officials and specialists down to one of the London docks to see a new submarine boat, which, like so many gone before, was to achieve marvels. There were naval men and military men, and journalists there by the score. Among others were the present chief-instructor of the navy, Sir W. H. White, and Lord Charles Beresford. The writer was on board, but felt a strong natural disinclination to go below or permit any of his friends to adventure. It possibly was an excess of natural timidity. That craft was warranted ‘extra special safe.’ She had water tanks, a false keel that could be slipped off, and cylinders or drums which, pushed out or drawn in from her sides, added or took away from her displacement and buoyancy. Charming in theory, but hydrostatics present strange problems, so note the result. The boat, with Sir W. H. White on board, having made all tight, let water into her tanks, and sank into the profound oleaginous mud of the dock. She remained invisible beneath for a protracted period, greater, in truth, than those upon the dock knew was safe, for she had no air or oxygen storage. We could do nothing but wait and look at our watches. Finally, to everybody’s intense relief, she reappeared. It happened that the boat stuck in the mud, and neither sending out the drums nor unloading the tanks made her rise. Sir William White suggested, when the light was turning blue, as were some faces, moving the crew to the higher end of the craft. It had the desired effect, the boat was lifted from the grip of the mud. Once on top, the engineer undid the manhole and shouted with elation to his friends ashore that they were going down again. Several of the visitors had had more than enough, and the gentleman was pulled down by the legs to make way for those who wished to escape upon deck and reach terra firma. That ‘famous’ submarine craft also followed the course of its predecessors, and shortly after passed into the limbo of forgotten failures.”

It appears that the cylinders declined to out-thrust because the power for working them, though amply sufficient for working in water, was not great enough to drive them into mud, and the inventors had not taken into consideration the adhesiveness of mud.

Waddington.

Mr. J. H. Waddington claimed that his vessel the Porpoise (1886) was the first practical submarine to be propelled by electricity. The electric motor was worked by 45 accumulators of 660 ampere-hours capacity; the maximum current taken by the motor was 66 amperes, the e.m.f. being 90 volts, giving an electrical h.p. of 7·96. The speed was to be 8 miles an hour.

THE “PERAL”: SPAIN’S ONLY SUBMARINE.

The Peral.

This vessel was named after its designer Don Isaac Peral, a Spanish lieutenant, on whom, in reward for his labours, the Spanish Government conferred titles of nobility and an indemnity of 500,000 francs. It was constructed at the Arsenal of Caraca, and launched on October 23, 1887. It measured 72 feet from stem to stern, and was 9 feet in beam. The motive power was furnished by two electric motors of 30 h.p. each driving two screws; 600 accumulators supplied the power for all purposes. During its trials in 1889 the Peral was ordered to proceed to sea to blow up an old hull placed at a distance of some two or three miles from shore in Cadiz Bay, running a long distance under water in search of the supposed ironclad. The boat was subsequently reported to have successfully accomplished this feat, and, as a consequence, the Spanish Government would, it was said, order several vessels of this type for the defence of the coasts of the Peninsula. A public subscription was started in Spain. For a time great enthusiasm prevailed, but as Spain made no use of the Peral during the Spanish-American War it may be presumed that the interest in under-water vessels soon died out. On the 28th of June, 1890, a night attack was made by the Peral against the cruiser Colon. The latter, in spite of its powerful electrical projectors, failed to pick out the submarine, which advanced within 10 metres of the cruiser to discharge its torpedo. During the year 1898 several accounts appeared in the papers relating to a wonderful submarine which the Spanish Government was said to have purchased. It consisted of a large steel sphere, so solidly constructed that it could resist the pressure of the water no matter at how great a depth. Its exterior diameter was 9 feet 9 inches, and the shell measured 4 inches in thickness. It weighed 10 tons, and contained sufficient air for a crew of three for 48 hours. Electric accumulators drove it at a speed of 4 to 5 knots. It was suggested that the submarine might be connected by an electric cable with a battleship and a cruiser, thus enabling them to steer a safe course through a channel laid with mines.

A “cutter” was fixed in the bows to destroy submarine cables of all kinds.

Goubet.

M. Goubet has built several submarine boats. Goubet I. was built at Paris in 1888, and like all the vessels designed by this inventor, its weight when submerged equals the weight of the water it displaces. To prevent it diving to the bottom or rising to the surface, water is automatically pumped from the forward to the after tank, or vice versÂ. The sole motive power of all the Goubet boats is electricity. Goubet I. was only 16 feet long and displaced one ton. The crew consisted of two men, who sat back to back on a case containing all the machinery and the air reservoirs. The armament was a torpedo carried on the outside of the hull and released from the interior. By its reserve of buoyancy it rose until it caught on to the enemy’s bottom by spikes; it was then exploded electrically.

Goubet II. was 26 feet long, but its speed was only some 5½ knots. In February, 1901, she underwent some trials in France. According to the Echo de Paris the results were very poor. Her extreme radius was 25 miles, her greatest speed less than 4 knots, and she never succeeded in launching a torpedo. In some books of reference it is stated that 300 Goubet boats were ordered by the Russian Government in 1881, and that 50 had been delivered by 1883, but it is very doubtful if Russia has a single Goubet boat at the present day capable of being used in the event of war. Brazil is also said to be a possessor of some boats designed by M. Goubet, who a few weeks ago was reported to have sold his patents to a British company.

Italy.

The Italian navy is credited with possessing at least two submarines, the Audace and the Delfino. The latter cost £12,000, and is cigar-shaped and of steel. Its length is about 78 feet, and its diameter 9 feet. When wholly immersed its displacement is about 107 tons. The motive power is an electric battery of 300 accumulators. It is propelled by a screw, while above are two smaller screws by which the vessel is immersed or raised. Its armament consists of two torpedo tubes in the bow. The provision of air is sufficient for a crew of 12 men for a period of seven to eight hours.[12]

12. In June, 1902, the sum of 800,000 lire was sanctioned for the construction of a new Italian submarine.

Russia.

It has often been stated that the Russian Government some years since ordered 300 Goubet submarines, the hulls to be built in Russia, and the engines and mechanism to come from France. Whether any of these are to-day possessed by Russia is very doubtful.

Last year the construction of a submarine boat, designed by Lieutenant Kolbassieff and Naval Engineer Konteinikoff, was begun at Cronstadt. She is cigar-shaped with a piece cut-away along the upper part. On the sides forward there are blades which are used in sinking or raising the boat.

Six more submarines are said to be building at Cronstadt. Most of the reports of these are mythical, more especially that which credits one of these, “a vessel which combines in itself the properties of a submarine and an ordinary warship,” with a speed of “60 knots on the surface and 30 knots submerged.”

Brazil.

SeÑor Mello Marques, formerly of the Brazilian navy, has invented a new type of submarine boat, which was tried last year as a model in a tank in the presence of the President of the Republic, the Minister of Marine, and others. The propelling power appears to be electricity solely. It is stated that the Government has decided to have a larger boat built for the final trials.

Germany.

Experiments have been carried out during the past few years with submarines in Germany, but few details are obtainable. A boat designed by an ex-lieutenant of the German navy was built to the order of the Cyclops Company, Messrs. Schwartzkopff and Messrs. Howaldt, in the yards of the last-named firm. It has been stated that this boat has made 16·5 knots on the surface and 9·5 beneath.

Norway.

As some Norwegian naval officers were present at the trials of the Fulton last autumn, it is thought possible that Norway will shortly acquire one or more of the Holland type. Admiral Borreseu is reported to have asked for £35,000 for this purpose.

Sweden.

Mr. Euroth, a Swedish engineer, has offered a submarine to the Swedish Government. Its dimensions are—length, 82 feet; beam, 13 feet; diameter, 11½ feet; displacement (light), 142 tons; (submerged) 146 tons; engines 100 h.p., supplied by two boilers heated by oil; speed 12 knots surface and 6 submerged. The boilers do no function when the boat is submerged, the engines being then partly driven by the steam already generated, and partly by compressed air stored fore and aft.

Portugal.

In October last trials were made with a model of a new submarine invented by Lieutenant Foutes, who designed the Plongeur, built in Portugal, and tried in 1892.

APPENDIX V
THE “LAKE” SUBMARINES

The Right Rev. John Wilkins, from whose book “Mathematical Magick” some extracts have been given, was far-seeing enough to predict that a submarine vessel would prove of great value in the discovery of submarine treasures, “not only,” as he expressed it, “in regard of what hath been drowned by wreck, but the several precious things that grow there, as pearl, coral, mines, with innumerable other things of great value, which may be much more easily found out and fetched up by the help of this, than by any other usual way of the Urinators.” Could newspapers and magazines but find their way to the shades, Dr. Wilkins would be enchanted to find that his dream has been realised, and that a vessel has actually been constructed for the purpose of harvesting some of the treasures of the deep.

The Argonaut, designed by Mr. Simon Lake, of Baltimore, is a vessel which rolls along the floor of the ocean as a carriage rolls along the highway. In this it differs from any other under-water craft either projected or constructed, for all previous inventors have attempted to navigate their boats between the surface and the bottom. In the invention of this type of submarine boat Mr. Lake elaborated an idea which the United States Patent Office described to be absolutely original, and the Argonaut has undoubtedly done things that no other vessel has before accomplished.

Mr. Lake built his first experimental submarine boat, the Argonaut Junior, in 1894. After several successful descents she was abandoned, and now lies at Atlantic Highlands, half buried in the sand. Her dimensions were: length, 14 feet, beam 4½ feet, depth 5 feet. Argonaut No. 2 was a much bigger boat, and proved that Mr. Lake’s theories were substantially correct. She is 36 feet long. Her diameter amidships is 9 feet; her displacement when entirely submerged is about 59 tons; her draught when at the surface is 10 feet, and when submerged 15 feet. She is built of steel plates ? inch in thickness, and double-riveted over strong steel frames. She is provided with a 30 h.p. “White and Middleton” gasoline engine, which propels her both on the surface and while submerged, and runs all the auxiliary machinery. She has two Mannesmann steel reservoirs for the storage of compressed air, which have been tested to a pressure of 4,000 lbs. per square inch. She is provided with air compressors, water-ballast pumps, and hoisting machinery for raising or lowering her two down-haul weights. She is lighted by incandescent electric lamps throughout, and carries a 4,000 candle-power searchlight in her bows, all run by a dynamo. Machinery for driving her side driving-wheels and various gauges for determining depth, rate of speed and air pressure, are also provided, together with a complete outfit for divers, who are equipped with telephones and electric lamps.

The following account of his boat was written by Mr. Simon Lake himself, and we have his permission to reprint it here:—

THE “ARGONAUT” IN DRY DOCK.

The hull of the vessel is mounted on three wheels. Of these E is the rudder, for surface steering, and is also the guiding wheel when the vessel is running on the sea bottom; and C is one of the supporting and driving wheels, of which there are two, one on each side. BB are two anchor weights, each weighing 1,000 pounds, attached to cables, and capable of being hauled up or lowered by a drum and mechanism within the boat: 0000 are water-ballast compartments contained within the boat; H is the diver’s compartment, situated forward, with an exit door opening outward in the bottom; while G is an airlock. When it is desired to submerge the vessel, the anchor weights BB are first lowered to the bottom; water is then allowed to enter the water-ballast compartments until her buoyancy is less than the weight of the two anchors, say 1,500 lbs.; the cables connecting with the weights are then wound in, and the vessel is thus hauled to the bottom, until she comes to rest on her three wheels. The weights are then hauled into their pockets in the keel, and it is evident that she is resting on the wheels with a weight equal to the difference between her buoyancy with the weights at the bottom, and the weights in their pockets, or 500 lbs. Now this weight may be increased or diminished as we please, either by admitting more water into the ballast tanks or by pumping some out. Thus it will be seen that we have perfect control of the vessel in submerging her, as we may haul her down as fast or as slow as we please, and by having her rest in the bottom with sufficient weight to prevent the currents from moving her out of the course, we may start up our propeller or driving-wheels and drive her at will over the bottom, the same as a tricycle is propelled on the surface of the earth in the upper air. In muddy bottoms, we rest with a weight not much over 100 lbs.; while on hard bottoms, or where there are strong currents, we sometimes rest on the wheels with a weight of from 1,000 to 1,500 lbs. Thus the effect of currents and wave motion, and the maintenance of trim and equilibrium are not factors in the successful navigation of the vessel; in fact, navigation becomes surer on the surface, as one is travelling in a medium which does not constantly change like the surface water from the effects of winds, waves, and currents. When the divers desire to leave the vessel they go into the diver’s compartment, located in the forward portion of the ship, and close the door communicating with the living quarters. This door closes on rubber packing, and is air-tight. Air is then admitted into the compartment from compressed-air reservoirs, until the pressure of air equals that of the surrounding water. The bottom door may then be opened, and no water will come into the boat, as the pressure of air contained within the compartment offers an invisible barrier to its entrance, and the divers may pass in and out as frequently as they please. The Argonaut is fitted with a White and Middleton gasoline engine of 30 h.p., which operates the screws the driving wheels, the dynamo, the air compressors, anchor hoists, and derrick-operating machinery. She is provided with two Mannesmann steel tubes, in which sufficient air may be stored, with what is contained in the boat, to last the crew for twenty-four hours without obtaining a fresh supply from the surface. In the Argonaut, however, and probably in all such craft used for commercial pursuits, as a usual thing, there will be a connection with the surface, through which a constant supply of air may be drawn, either by the masts, as shown in the views, one of which supplies air to the interior of the vessel, the other being utilised as an exhaust from the engine, or through suction hose extending to a buoy on the surface. While the engine is running there is about fifty cubic feet of air flowing into the boat per minute; and when the engine is closed down there may be a flow of air maintained by an auxiliary blower, so that it is possible to remain below for days, or even weeks, at a time.

The course is directed by an ordinary compass when on the bottom, and it is found that the needle responds as quickly and is as accurate as when on the surface. Notwithstanding the fact that the Argonaut is quite a small vessel, a crew of five men have lived aboard her during an experimental cruise extending over two months, during which she travelled over 1,000 miles under her own power, partly on the surface and partly on the bottom. The trip was made to demonstrate the practicability of vessels of her type travelling on various kinds of bottoms; also to demonstrate her seaworthiness and capabilities in searching the bottom, in working on sunken wrecks, finding and taking up submerged cables, &c.

We have been in some pretty rough weather, and found that she was perfectly seaworthy. Of course, being so small and of such weight, the seas at times would wash clear over her decks. This, however, caused no inconvenience to those below, as her stability was such that she would roll or pitch very little, even though the seas were breaking over her in great volume. We have been cruising on the bottom in rivers, in Chesapeake Bay and beneath the Broad Atlantic. In the rivers we invariably found a muddy bed; in the bay we found bottoms of various kinds, in some places so soft that our divers would sink up to their knees, while in other places the ground would be hard, and at one place we ran across a bottom which was composed of a loose gravel, resembling shelled corn. Out in the ocean, however, was found the ideal submarine course, consisting of a fine gray sand, almost as hard as a macadamised road, and very level and uniform.

During this trip we investigated several sunken wrecks, of which there are a great many in Chesapeake Bay and on the coast adjacent thereto. The vessels we boarded were coal-laden craft, and of themselves not of much value; but the coal would pay handsomely for its recovery, which could be readily accomplished with the proper equipment. We found one old wreck, said to have gone down some forty years ago near the mouth of the Patuxent River. There was nothing in sight except a few timbers and deck beams, and these were nearly consumed by the teredo—a boring worm which completely honeycombs any timber it may attack. We pulled up some of the planks of this vessel, which had a numerous growth of oysters, mussels, and several kinds of submarine vegetation clinging to them. The portion of the timbers not eaten by the teredo was found to be almost as hard as iron, and thoroughly impregnated with the dark-blue mud in which the hull lies buried. After the timbers were hauled to the surface, in sawing them in two, we noticed a very strong odour of yellow pine, and so learned that they must be of that wood, though they were as black as ebony. Toad-fish had evidently found this old wreck a congenial habitation, and when the diver’s hand comes in contact with the slimy back of one of these horrible-looking, strong-jawed, big-mouthed fish, he pulls it back pretty quickly. The piece we pulled up had within it three of these fish, which had taken up their abode in portions of the timber that had been eaten away, and one was a prisoner in a recess which, evidently, he had entered when small, and had grown too large to get out. In a wreck near Cape Henry, fish were very numerous, principally bass and croakers, though two or three small sharks were seen in the vicinity.

It might prove interesting to copy one day’s experiences from our log-book. This day we submerged for the purpose of discovering how much weight was necessary to prevent the current from moving the Argonaut in a strong tideway (Hampton Roads), and also to discover if there was any difference in starting our machinery again under water after it had been shut down for several hours. I copy verbatim from the log-book under date of July 28, 1898:—

THE “ARGONAUT” AWASH.

“We spent some hours with Hampton Roads as headquarters, and made several descents in the waters adjacent thereto; we were desirous of making a search for the cables which connected with the mines guarding the entrance to the harbour, but could not obtain permission from the authorities, who were afraid we might accidentally sever them, which would, of course, make their entire system of defence useless. It was, therefore, necessary for us, in order to demonstrate the practicability of vessels of this type for this purpose, to lay a cable ourselves, which we did, across the channel leading into the Patuxent River. We then submerged, and taking our bearings by the compass, ran over the bottom, with the door in our diving compartment open, until we came across the cable, which we hauled up into the compartment with a hook only about 4½ feet long, and we could not avoid the impression that it would be a very easy thing to destroy the efficiency of the present mine system. And how many lives might have been saved, and millions of dollars besides, had our navy been provided with a craft of this type to lead the way into Santiago, Havana, or San Juan, off which ports squadrons were compelled to lie for weeks and months owing to fear of the mines.”

I have frequently been asked my sensations on going beneath the water—whether I had any fear of not being able to come up again, and whether it did not require a lot of courage. I usually reply that I have always been too busy and interested for fears or sensations, and that it does not require any courage on my part, as I am so thoroughly satisfied of the correctness of the principles upon which the Argonaut is constructed and the strength of the structure as to have no doubts or fears of any kind; but I do think it requires courage on the part of those who do not understand all the principles involved, and who simply trust their lives in my hands. Quite a number of people have made descents in the vessel, but in only one or two instances have I seen them show any signs of fear.

In one instance, during our trials in the Patapsco, several gentlemen were very importunate in requesting the privilege of making a descent the next time we were to submerge. They were accordingly notified when the boat was to go down. At the appointed time, however, some of them did not appear, and of those who did not one at the last would venture. I have no doubt had we made the descent at the time they made the request all would have gone, but thinking about it for a couple of days made them change their minds.

On another trip we had a college professor on board who could not understand exactly how our men could get out of the boat. I told him to come into the diver’s compartment and I would explain it to him. Accordingly he reluctantly, as I thought, entered the compartment, which in the Argonaut is a little room only four feet long and a little wider. After closing the door I noticed that the colour was leaving his face and a few beads of perspiration were standing out upon his forehead, and had he been any one else than a professor or, possibly, a newspaper man, I would not have gone any further with the experiment. The door, however, was closed and securely fastened. I then opened the valve a full turn, and the air began to rush in with a great noise. He grabbed hold of one of the frames and glanced with longing eyes at the door we had just entered. I then turned off the air and said, “By the way, Professor, are you troubled with heart disease?” He said, placing his hand over his heart, “Why, yes, my heart is a little affected.” Remarking, “Oh, well, this little depth will not hurt you,” I turned on the air again after saying to him, “If you feel any pain in your ears swallow as if you were drinking water.” He immediately commenced swallowing, and during that half-minute or so we were getting the pressure on I believe he swallowed enough to have drunk a bucketful of water. After getting the desired pressure I stooped down and commenced to unscrew the bolts, holding the door which leads out into the water. Our professor said, “What are you doing now?” I answered, “I am going to open this door so that you can see the bottom.” Throwing out his hands he said, “No, no. Don’t do that. I would not put you to that trouble for the world.” However, about that time the door dropped down, and as he saw the water did not come in the colour returned to his face, and he exclaimed, “Well, if I had not seen it I would never have believed it!”

Mr. Lake declares that as a submarine torpedo-boat his vessel will be practically invincible. She could, he claims, approach a stationary enemy on the bottom and rise up under the water and secure a time-fuse torpedo to her bottom, and she could be fitted with tubes to fire automobile torpedoes. She could also find cables to repair or cut them, and could be used for countermining purposes. The Argonaut is, however, intended not so much for warfare as for recovering treasures from the deep, and for the coral, sponge, pearl, and similar industries. It has been calculated that of the cargoes, treasures and vessels lost in the merchant service the aggregate amounts to over one hundred millions of dollars per year, and the loss has, of course, been going on for many years.

“There is every reason to believe,” says a writer, “that the sea is even richer than the earth, owing to the millions of shipwrecks which have swallowed up so many a royal fortune; the wealth lying at the bottom of the ocean transcends the fabulous riches of the Klondyke.”

The recovery of sunken treasure has always exercised a great fascination over certain minds, and much money has been spent in devising means whereby it might be brought again to the surface. Hitherto the results have not been such as might have been desired, but the Argonaut seems to promise success in the future.

Mr. Lake believes that the majority of the great losses on the ocean occur in waters in which it will be practical to operate with submarine boats of the Argonaut type. The bottom around the coast lines of the United States is principally composed of a hard white or grey sand and is very uniform. The depth increases from the shore at the average rate of about 6 feet per mile, and the bottom forms “an ideal roadway.” The Argonaut can descend to 100 feet below the surface. Needless to say, there are ocean depths where the pressure would be so great that man could never live, but Mr. Lake appears to think that exploring the ocean bed, within certain limits, will become in the near future almost as common as travelling on the surface.

Mr. Lake’s third under-water vessel, Argonaut No. 3, is built of steel, is 66 feet long and 10 feet wide, and displaces 100 tons; the motive power is gasoline, and the air chambers contain 13,000 cubic feet of air. She has four large wheels for running on the bottom and also twin screws for the surface.

THE “ARGONAUT” ON THE SEA BOTTOM.

The following is taken from a New York paper, and relates to an entertainment given on Argonaut No. 3:—

“Captain Lake, the inventor of the submarine boat Argonaut, participated yesterday with thirteen other guests in one of the most novel summer entertainments ever devised by the brain of man.

“The party embarked at Bridgeport on Long Island Sound in the boat, which was then submerged, and travelled along the bottom of the sea for several miles. While running at a depth of 35 feet a dinner prepared and cooked on board was served.

“After dinner Captain Lake had the door of the diving compartment opened, and two divers went out and exhibited the patent diving suits. Captain Lake then gave an exhibition of his suction pump, which is designed to raise sunken wreckage. The Argonaut stopped near a sunken coal schooner, and by means of the pump four tons of coal were sent up through the water to a coal barge above. The coal was transferred at the rate of a ton a minute.

“A crew of five men navigated the Argonaut under the inventor’s direction. Slight headaches were experienced by some of the guests, otherwise no inconvenience was suffered from the submarine voyage.”

A SHORT BIBLIOGRAPHY OF SUBMARINE WARFARE

France.

La Navigation Sous-Marine,” by G. L. Pesce. Paris, 1897.

Les Bateaux Sous-Marins,” 2 vols., by F. Forest and H. Noalhat. Paris, 1900.

La Navigation Sous-Marine,” by M. Gaget. Paris, 1901.

La Navigation Sous-Marine À travers les SiÈcles,” by M. Delpeuel. Paris, 1902.

Les Torpilleurs autonomes et l’avenir de la Marine,” by G. Charmes. Paris, 1885.

Les Torpilleurs, la Guerre Navale et la Defense des cÔtes,” by Vice-Admiral Bourgois. Paris, 1888.

Belgium.

La Guerre Sous-Marine,” by L. G. Daudenart. Brussels, 1872.

Les Mines Sous-Marines dans la defense des Rades,” by C. HuËt. Brussels, 1875.

Germany.

Die Unterseische Schiffahrt,” by L. Hauff. Munich, 1859.

Geschichte der Sieminen und Torpedoes,” by F. von Ehrenkrook. Berlin, 1878.

Die Fisch Torpedoes,” by F. von Ehrenkrook. Berlin, 1878.

Great Britain.

“Submarine Boats,” by G. W. Hovgaard. London (Spon), 1887.

“Submarine Mines and Torpedoes as applied to Harbour Defence,” by Major J. T. Bucknill. London, 1889.

“Notes on Submarine Mines, commonly called Torpedoes,” by Capt. H. Steward, R.E. London, 1886.

“Torpedoes and Torpedo Warfare,” by Lt. C. W. Sleeman (2nd ed., 1889). Simpkin, London.

“Torpedoes and Torpedo Vessels,” by Lt. G. E. Armstrong. London, 2nd ed., 1901.

“Submarine Navigation,” a Scientific Quarterly, by Alan H. Burgoyne, 1901.

United States.

“Torpedo War and Submarine Explosions,” by R. Fulton. New York, 1810.

“Submarine Warfare,” by J. S. Barnes. New York, 1869.


TRANSCRIBER’S NOTES
  1. P. 1, added “PART I”.
  2. P. 71, changed “advantages over the second” to “advantages over the first”.
  3. P. 179, changed “built in 1795” to “built in 1775”.
  4. P. 189, changed “General Washington, in a letter to Thomas Jefferson dated September 26, 1875” to “General Washington, in a letter to Thomas Jefferson dated September 26, 1775”.
  5. P. 190, changed “In 1787 Fulton” to “In 1797 Fulton”.
  6. P. 315, changed “On the 28th of June, 1870” to “On the 28th of June, 1890”.
  7. Silently corrected typographical errors and variations in spelling.
  8. Archaic, non-standard, and uncertain spellings retained as printed.
  9. Footnotes were re-indexed using numbers.




<
                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page