CHAPTER XII MARINE MOLLUSCS

Previous

The sub-kingdom Mollusca includes a great variety of soft-bodied animals which differ from the members of the last division in the fact that they are never segmented, and in the possession of a thick outer covering, of a leathery nature, which completely envelops the body, and which usually secretes a calcareous shell of one or more parts. A general idea of the extent of the group may be formed when we state that it contains the Octopus and the Cuttlefish; all Snails and Slugs, and animals of a similar nature; and all those numerous ‘bivalves’ which are represented by the well-known Oysters, Mussels, Scallops, &c.

By far the greater number of the molluscs are aquatic in habit; and of these such a large proportion are marine that the group provides plenty of occupation for the sea-side naturalist. This being the case, we shall devote the present chapter to a description of the general characteristics of these animals, and to the principles of their classification, illustrating our remarks by a few selections from all the chief divisions.

Although, as we have already hinted, the body of a mollusc generally bears but little resemblance to that of the typical elongated and segmented worm, yet the study of the earliest stages of the former shows that a certain relationship exists between the two sub-kingdoms, the newly hatched mollusc being often a minute free-swimming creature with expanded lobes fringed with cilia, and bearing a resemblance to certain of the Rotifers, Moss Polyps, and other animals that are included among the Vermes. But in the adult molluscs this resemblance is lost, these creatures being generally easily distinguished from all others by certain well-marked external features, as well as by internal characters that are peculiar to them and fairly constant throughout the group.

The external shell, where it exists, is usually composed of one or of two parts, and therefore we speak of univalve and bivalve molluscs; and no internal skeleton of any kind is to be found except in the division containing the Cuttlefishes, the ‘bone’ of which is one of the common objects washed up on our shores by the breakers.

In all the molluscs there is a well-formed digestive tube, and often a complex arrangement of small teeth which sever the food by a rasp-like action. There is also a well-formed heart, consisting of two or more cavities, by means of which the blood is forced through the body; but, as a rule, blood vessels are either few or absent, the blood being driven through spaces between the tissues that serve the same purpose.

Fig. 126.—LarvÆ of Molluscs

v, ciliated ‘velum’; f, rudimental foot

The nervous system consists of a few masses of nerve substance (ganglia), connected by nerve cords, and sending off fibres to various parts of the body, the principal ganglion being one situated close to the mouth, and often surrounding the first portion of the digestive tube.

The animals of this sub-kingdom are grouped into three principal and well-marked divisions—the Lamellibranchs, or Plate-gilled molluscs, the gills of which are composed of plate-like layers, and the headless bodies enclosed in a bivalve shell; the Cephalophora, or head-bearing molluscs, protected by a univalve shell; and the Cephalopoda, or Head-footed molluscs, so called because the mouth is surrounded by tentacles or arms by which the animal can cling to objects or seize its prey.

We shall deal with these three divisions in the above order, taking first the bivalves, the shells of which are found in great variety along our shores.

The general nature of a lamellibranch is easily made out by the examination of one of the common species that may be obtained alive on any part of the coast, such as the Edible Mussel, the Cockle, or the Oyster, and the reader will do well to secure a few specimens and examine them with the aid of the following description of the principal distinguishing features.

The shell is formed of two valves, united by a hinge which is sometimes of the simplest possible description, but which often exhibits a beautiful arrangement of interlocking teeth. A ligament of flexible and elastic substance often holds the two valves together.

Fig. 127.—Shell of the Prickly Cockle (Cardium aculeatum) showing Umbo and Hinge; also the interior showing the Teeth

The reader has probably observed that the valves of a dead lamellibranch usually gape. This is due either to the pull exerted by a ligament that is attached to the valves outside the hinge, or to the pressure of an internal cartilage which unites the valves within, and which is compressed when the shell is closed. When the animal is alive, it has the power of closing its shell by the contraction of the adductor muscles, to be presently described, and when the valves are brought together by this means the external ligament is more or less stretched, or the cartilage within, which is also an elastic material, is compressed.Examining the shell from the exterior we observe that each valve has a nucleus (the umbo) close to the hinge, round which are usually a number of more or less distinct concentric lines, extending to the lower or ventral margin. This nucleus represents the whole shell of the young mollusc, and the lines are the lines of growth, each one marking the extreme limit of the valve at a particular period of the animal’s existence. Further it will be observed that the lines of growth are often wider apart in some directions than in others, thus denoting the unequal rate of growth that determined the form of the adult shell.

Fig. 128.—Interior of Bivalve Shell, showing Muscular Scars and Pallial Line

The shell of a bivalve is often made up of two very distinct layers, the outer one called the prismatic layer because, when examined microscopically, it is seen to consist of minute vertical prisms of calcareous matter; and the inner one presenting a beautiful pearly iridescence, due to the fact that it is made up of a number of extremely thin and finely waved layers of calcareous substance that have the power of decomposing light. This latter layer is secreted by the whole surface of the mantle that lies in contact with it, while the outer, prismatic portion of the shell is formed only by the free edge of the mantle; and we often find a distinct line (the pallial line), some little distance from the ventral margin that marks the junction of the muscle of the mantle with the shell. The shape of this line is a very important feature of the shell, since it is of great value in the determination of relationships.

Further, the inner surface of each valve is marked by the impressions or scars of other muscles, the number and position of which vary considerably in different species. They include the adductor muscle or muscles (one or two in number) that pull the valve together; the muscle or muscles that withdraw the foot, called the retractor pedis, and the protractor pedis that pulls the foot out. Not only are these scars often very distinct in themselves, but we may frequently observe lines running tangentially from their circumferences towards the umbo, to which they all converge. These lines enclose the areas previously occupied by the muscular impressions; in other words, they show the directions in which the muscles named above shifted their positions as the animal grew.

Fig. 129.—Diagram of the Anatomy of a Lamellibranch

f, mouth, with labial palps; g, stomach; i, intestine, surrounded by the liver; a, anus; r, posterior adductor muscle; e, anterior adductor muscle; c, heart; d, nerve ganglion; m, mantle (the right lobe has been removed); s, siphons; h, gills; ft, foot

Now let us obtain a few species of live lamellibranchs, put them in a vessel of sea water, and observe them after they have been left undisturbed for a time. The shell will be seen to gape slightly, exposing the edges of the two lobes of the mantle which lie closely on the inner surface of the valves, thus completely enveloping the body of the animal; and at one end, usually the narrower end in the case of irregular shells, we shall observe two openings—the siphons, sometimes enclosed within a tube formed by a prolongation of the united mantle lobes, and protruding from between the valves, and sometimes formed by the mere contact of the mantle lobes at two adjacent points. If now we introduce a little carmine or other colouring matter by means of a glass tube, setting it free near the lower siphon—the one more remote from the umbo of the shell, we observe that it enters the body of the mollusc through this opening, and reappears shortly afterwards through the upper or dorsal siphon. Thus we see that water currents are incessantly circulating in the body of the animal, entering by the inhalent or ventral siphon, and leaving by the exhalent or dorsal siphon. These currents are maintained by the vibratile action of thousands of minute cilia belonging to cells that line the cavities of the body, and serve to supply the animal with both air and food; for lamellibranchs, being gill-breathers, derive the oxygen necessary for respiration from the air held in solution by the water, and their food consists entirely of the minute living creatures that always abound in natural waters.

Again, we shall find that some of our live bivalves have protruded a thick, conical, fleshy mass—the foot, from the opposite end of the body. This organ is the means of locomotion in the case of the burrowing and other free-moving bivalves, but is developed to a less extent in those species that lead a sedentary life. Thus, the common Edible Mussel secretes a tuft of strong silky fibres (byssus) by means of which it fixes itself to a rock or other body, and therefore does not need the assistance of a muscular foot; and an examination of its body will show that the foot is very small in proportion to the size of the animal, as compared with that of the wandering and burrowing species. The same is true of the oyster, which lies fixed on its side, the lower valve being attached to the surface on which it rests.

Fig. 130.Mytilus edulis, with Byssus

We have made use of the terms dorsal and ventral in speaking of the shell of a bivalve, and it is important that these and a few other similar terms be well understood by those who are about to read the descriptions of the animals, or who may desire to describe them themselves. To do this, take a bivalve in your hand, and hold it before you in such a position that the hinge is uppermost, and the siphons turned towards you. The foot of the animal is now pointing in the direction you are looking, and the mouth, situated at the base of the foot, is also directed the same way. You have now placed the shell, and, of course, also the animal, in such a position that its dorsal side is uppermost, the ventral side below, the anterior end turned from you, the posterior (often narrower) end towards you, the right valve on your right, and the left valve on your left. Knowing the exact uses of these few terms you are in a better position to understand the descriptions of bivalves, and to locate the exact situations of the various internal organs named in such descriptions.

A great deal of the internal anatomy of a bivalve mollusc may be made out by easy dissections, and although the structure of the different species varies in several details, the general characteristics of the group are practically the same in all and may be gathered by the examination of a few specimens.

Fig. 131.—A Bivalve Shell
(Tapes virgineana)

a, anterior; p, posterior; l, left valve; r, right valve; u, umbo, on dorsal side

For this purpose the shell should be prised open by means of some flattened but blunt implement, such as the handle of a scalpel, and then, after inserting a piece of cork to keep the valves apart, gently remove the mantle lobe from the valve which is held uppermost with the same implement, being careful to separate it from the shell without doing any damage to the soft structures. Separating the mantle from the shell in this way we meet with one or more hard masses of muscle that are joined very firmly to the latter. These are the adductor muscles that pass directly from valve to valve, and on cutting them through close to the uppermost valve, the latter can be raised so as to expose the body of the animal, mostly hidden by the overlying mantle lobe.

Before raising the upper mantle lobe we observe the heart, on the dorsal margin of the body, near the hinge of the shell, situated in a transparent cavity (the pericardium) containing a colourless fluid. It consists of at least two cavities—a thick-walled ventricle and a thin-walled auricle, and its slow pulsations may be watched with or without the use of a hand lens. On opening the pericardium the heart is still better seen, and if we carefully cut into the thick-walled ventricle we find a tube running completely through its cavity. This is the rectum—the last part of the digestive tube, that commences at the mouth, and terminates in a cavity at the posterior end communicating with the exhalent siphon.After noting the nature and position of the one or two adductor muscles previously cut through, we turn the upper mantle lobe upwards, laying it back over the hinge of the shell, cutting it through at the bases of the siphons if we find it is united with the opposite lobe at those points; or, if not united, we observe two points at which the lobes touch each other in order to form the siphonal openings.

Several organs are now exposed to view. The lower mantle lobe is seen in close contact with the valve below it, and if we touch its edge we shall probably observe that it is retracted slightly by the contraction of its own muscular fibres. The tip of the foot is also seen projecting towards the anterior end, its base being hidden between the two sets of plate-like gills that extend along the length of the body. On touching the tip of the foot we find it retract by the contraction of the muscular fibres of which it is composed, aided, perhaps, by the action of one or more retractor pedis muscles with which it is supplied. On raising the upper gill-plates we may observe the dark colour of the digestive gland (liver) at the base of the foot, and also see two or more tentacles or labial palpi on the anterior side of the same.

Between the labial palpi is the mouth, which leads into the stomach by a short, wide tube, and then into a convoluted tube which finally passes through the heart, and terminates near the exhalent siphon as above described. The whole length of this tube may be followed by careful dissection, its direction being determined at short intervals by probing it with a bristle that has been tipped with a little melted sealing wax. It will be seen to wind through the base of the foot, surrounded through the greater part of its course by the digestive gland, from which a digestive fluid enters it through small ducts.

The diagram on p. 194 shows the general internal anatomy of a lamellibranch, parts of which have been removed to reveal the underlying structures. The animal lies in its left valve, the right valve, the right mantle lobe, and the right set of gill-plates having been completely dissected away. The whole course of the digestive tube has also been exposed, and the positions of the three nerve ganglia, with their connecting nerve cords, constituting the central portion of the nervous system, are also indicated.

It will be interesting, finally, to learn the direction taken by the water currents which supply the animal with air and food in their course through the system. Passing in through the inhalent siphon, the water immediately enters a large cavity between the mantle lobes. This cavity (the branchial cavity) contains gills, as we have already seen, and also extends to the mouth. The water, urged on by the motion of myriads of minute ciliated cells in the walls of the cavity, passes in part through the digestive tube, and in part around, between, and through the gill plates, which are perforated by numerous holes. After thus completely bathing the gills, and supplying the oxygen necessary for respiration, this latter current passes into a second cavity above the gills, and thence into the exhalent siphon, where it mingles with the fluid from the digestive tube as well as with other excretory matter.

Lamellibranchs are, as a rule, exceedingly prolific, a single individual of some species discharging more than a million ova in one season. The larvÆ swim freely in the water, and are provided with eyes that enable them to search for their food, but the eyes always disappear when the young settle down to a more sedentary life. It is true that adult bivalves sometimes possess visual organs, often in the form of conspicuous coloured spots on the edge of the mantle, these, however, are not the same that existed during the larval stage, but are of a more recent development.

Lamellibranchs are classified in various ways by different authorities, the arrangement being based principally on the number and position of the adductor muscles, or on the nature of the gills. For our present purpose we shall look upon them as consisting of two main divisions—the Asiphonida and the Siphonida, the former including those species which do not possess true tubular siphons, the inhalent and exhalent openings being formed merely by the touching of the mantle lobes; and the latter those in which the mantle lobes are more or less united and tubular siphons formed. Each of these divisions contains a number of families, most of which have representatives that inhabit the sea; and we shall now note the principal characteristics by which the more important families are distinguished, and take a few examples of each, starting with the Siphonida.

Examining the rocks that are left exposed at low tide we frequently find them drilled with holes that run vertically from the surface, seldom communicating with each other within, and varying in diameter from less than a quarter of an inch to half an inch or more. Some of these holes are the empty burrows of a boring mollusc, while others still contain the living animal in situ.

The molluscs in question belong to the family PholadidÆ, which contains a number of species that exhibit very remarkable features both as regards structure and habit. The shell is very thin and fragile, but yet composed of hard material, and its surface is relieved by a series of prominent concentric ridges that bear a number of little rasp-like teeth. It gapes at both ends, has neither true hinge nor ligament, and is often strengthened externally by two or more extra or accessory valves. The hinge-plate is a very peculiar structure, for it is reflected over the exterior of the umbones, above which they are supported by about ten thin shelly plates, the whole thus forming a series of chambers. The accessory valves are supported by these bridged structures, and a long, straight, calcareous plate also fills the space along the dorsal side of the shell in some species. The muscular scars and the pallial line are distinctly seen on the inner surface, and a peculiar curved shelly plate projects from under the umbo of each valve.

Fig. 132.Pholas dactylus

1, ventral aspect, with animal; 2, dorsal side of shell showing accessory valves

The animal inhabiting the shell is somewhat wormlike in general form, and the mantle lobes are united in front—that is at the lower end of the shell as it lies in the burrow—except that an opening is left for the protrusion of the short foot. The siphons are united and much elongated, so that they protrude beyond the mouth of the burrow when the animal is active; the gills are narrow, and extend into the exhalent siphon; and the anterior adductor muscle, being very near the umbones, serves the double purpose of adductor and ligament.

Such are the general distinguishing features of this family, all the species of which burrow into stone or other material. Those more commonly met with on our coasts belong principally to the genus Pholas, and are popularly known as Piddocks.

It was long a puzzle as to how the fragile piddocks could excavate the tubular burrows in which they live, and, since their shells are so thin that it seemed almost impossible for hard stones to be ground away by them, it was suggested that the rocks were excavated by the action of an acid secretion. This, however, would not account for the formation of holes in sandstone and other materials which are insoluble in acids; and, as a matter of fact, no such acid secretion has ever been discovered. The boring is undoubtedly done by the mechanical action of the rasp-like shell, which is rotated backwards and forwards, somewhat after the manner of a brad-awl, though very slowly, by the muscular action of the foot of the animal.

Piddocks are found principally in chalk and limestones, though, as before hinted, they are to be seen in sandstones and other rocks, the material in any case being, of course, softer than the shell that bores it. The largest holes and the largest specimens are to be found in chalk and other soft rocks; while the piddocks that burrow into harder material are unable to excavate to the same extent and are, as a consequence, more stunted in their growth. The burrowing is continued as long as the animal grows, the hole being always kept at such a depth that the shell is completely enclosed; and not only this, for when the rock is soft, and the surface is worn down by the sea, the piddock has to keep pace with this action, as well as to allow for its increase in size.

As a result of the rasping action of the pholas shell on the surrounding rock the space hollowed out becomes more or less clogged with dÉbris. This is ejected at intervals by the sudden contraction of the foot of the animal, which brings the shell quite to the bottom of the burrow, thus causing the water with its sediment to shoot upwards, It is not usually an easy matter to obtain perfect specimens of the pholas by simply pulling them from their burrows, the shells being so thin and fragile, and the mouth of the burrow being often narrower than the widest part of the shell. The best plan is to chip away the rock with the aid of a mallet and chisel, or to break it into pieces with a hammer, thus laying open the burrows so that the molluscs fall from their places.

The Common Piddock (Pholas dactylus) may be identified by the illustrations, and the other members of the family may be recognised at once by the similarity in structure and habit. The principal species are the Little Piddock (P. parva), the shell of which is wider in proportion to the length, with only one accessory valve; and the White Piddock (P. candida), also with a single accessory. In all the above the foot is remarkable for its ice-like transparency.

Fig. 133.Pholas dactylus, interior of Valve; and Pholadidea with Animal

There is another genus—the Pholadidea—the species of which are very similar to pholas both in structure and habit. The shells are, however, more globular in form, and are marked by a transverse furrow. The gape at the anterior (lower) end is also very wide, and covered over with a hardened plate in the adult. Also, at the posterior (upper) end of the shell is a horny cup through which the siphons protrude, and the latter, which are combined throughout their length, terminate in a disc that is surrounded by a fringe of little radiating appendages.

In the same family are the molluscs popularly known as ship worms, which are so destructive to the woodwork of piers and jetties, or which burrow into masses of floating timber. Some of these, belonging to the genus Xylophaga—a word that signifies ‘wood eaters’—have globular shells with a wide gape in front, and burrow into floating wood, nearly always in a direction across the grain. The burrows are about an inch deep, and are lined with a calcareous deposit. The siphons, combined except at the ends, are slender and retractile; and the foot, which is thick, is capable of considerable extension.

Fig. 134.—The Ship Worm

Fig. 135.—1. Teredo navalis. 2. Teredo norvegica

Other ship worms belong to the genus Teredo, and are very similar in general characters. The shell is small and globular, with a wide gape at both ends, and consists of two three-lobed valves with concentric furrows. It is so small in proportion to the size of the animal that it encloses but a small portion of the body, and lies at the bottom of the burrow, which is of considerable length—often from one to two feet. The animal is very wormlike in form; and although the shell is so small, yet all the internal organs are enclosed by it. The mantle lobes are united in front, except where the sucker-like foot passes through them; the gills are long and narrow, and extend into the siphonal tube; and the two very long siphons are united almost throughout their length. It is also interesting to note that in these animals the rectum does not pass through the heart, as it does in nearly all molluscs, and that a pair of horny or calcareous ‘styles’ or ‘pallets’ project from the place where the two siphonal tubes begin to diverge.

Several species of Teredo are to be met with on our coasts, but they are so similar in general structure that the above brief description applies almost equally well to all.

Other boring molluscs frequent the British shores, but they belong to quite a distinct family called the GastrochÆnidÆ because their shells gape widely on the ventral side. Their valves are equal in size and very thin, the hinge has no teeth and the pallial line is sinuated. The margins of the mantle lobes are thickened and united except where a small aperture is left for the protrusion of the finger-like foot. The siphons are very long and retractile, and the gills extend into the inhalent tube. These animals burrow into mud, shells, or stone, often dwelling together in such numbers that their galleries cross one another and form a most intricate network, and the different species are to be found from low-water mark to a depth of a hundred fathoms or more.

Fig. 136.GastrochÆna modiolina

1, Animal in shell; 2, shell; 3, cell

The British species belong to two genera—the typical genus GastrochÆna, and the Saxicava or stone-borers.

The former contains the Common Flask shell (G. modiolina) which burrows into limestone and shells, in the latter case passing generally through the shells into the ground below, and completing its home by cementing together any fragments of hard material that come in its way into a flask-shaped cell. The opening of the burrow is shaped like an hour-glass, the two expansions serving for the protrusion of the siphonal tubes, and the neck of the flask-shaped abode is usually lined with a calcareous layer that projects slightly to afford further protection to the extended siphons. Although this species is very common on some parts of our coast, it is seldom obtained without the aid of a dredge, for it usually lives at a depth of from five to ten fathoms; and when found it is generally no easy matter to extricate them from their holes, to the sides of which they often cement their shells.

The genus Saxicava contains a few species that drill holes, often several inches deep, in shells and stone, and frequently do great damage to breakwaters and other artificial structures. The foot is usually provided with a byssus by which the animal fixes itself to a little projection on the side of its burrow. The species are to be found from low-water mark to a depth of one hundred fathoms or more.

The next family, named AnatinidÆ, contains a number of molluscs that burrow in mud or sand or live in seclusion in the crevices of rocks. Their shells are thin, with a granulated outer surface, and the valves are united by a thin external ligament. The inner surface is pearly, the pallial line usually sinuated, and both valves are pitted for the reception of the somewhat stout internal cartilage. The mantle lobes are united, as are also the siphons to a greater or lesser extent; and there is only one gill on each side.

Fig. 137.—1. Thracia phaseolina. 2. Thracia pubescens, showing Pallial Line

Some of the common species of this family are popularly known as Lantern shells, and perhaps the most familiar of these is Thracia phaseolina, the specific name of which is given on account of a fancied resemblance of the shell to a bean. The shell is very fragile, and although large numbers may often be seen stranded on sandy beaches, but few of them are perfect specimens.The family MyacidÆ may be recognised by the thick, strong, opaque shells, usually gaping at the posterior end; the wrinkled epidermis which covers the whole or part of the shell; and the united siphons, which are more or less retractile. The mantle cavity is also closed with the exception of a small hole left for the protrusion of the small foot. The pallial line of the shell is sinuated.

Fig. 138.—1. Mya truncata. 2. Interior of Shell. 3. Mya arenaria. 4. Corbula nucleus

In the above illustration we represent the Common Gaper (Mya arenaria), which burrows to a considerable depth in the sand or mud, especially in the estuaries of rivers, from between the tide-marks to a depth of twenty fathoms or more. It may be readily distinguished, in common with the other species of the same genus, by the characteristic wrinkled, membranous tube that encloses its fringed siphons, the membrane being a continuation of the epidermis that extends over the shell. Another characteristic feature of the genus is the large, flat process inside the left valve for the attachment of the internal cartilage. An allied species, Mya truncata, is often found abundantly in company with the above, and may be known by the abruptly squared posterior end.

Other species of the MyacidÆ inhabit our shores, including the little Basket shell (Corbula nucleus), the left valve of which is much smaller than the right, which overlaps it. The latter, also, is covered with epidermis, while the former, which is flat, is quite naked.

Fig. 139.Solen siliqua

The valves have been separated and the mantle divided to expose the large foot

We now come to the interesting family of Razor shells (SolenidÆ), specimens of which are washed up on almost every sandy beach, while the living molluscs may be dug out of their burrows at low-water mark. The shells are elongated, gaping at both ends with an external ligament; and the hinge has usually two teeth in one valve and three in the other. The foot of the animal is cylindrical, large and powerful; and the siphons are short and united in the long species, but longer and only partially united in the shorter ones. The gills are long and narrow, and are prolonged into the inhalent siphon.

These molluscs lie vertically in their deep burrows at low-water mark, the opening of the burrow having a form resembling that of a keyhole. While covered with water they occupy the upper portion of their abode, but sink to a depth of a foot or more when the tide goes out. As we walk along the water’s edge at extreme low tide we may observe jets of water that are shot into the air before us. These are produced by the sudden retreat of the ‘Razor-fish’ to the bottom of its burrow when alarmed by the approaching footsteps. Owing to this wariness on the part of the mollusc, and to the considerable depth of its burrow, specimens cannot be obtained by digging without much labour; but if a little salt or some other irritant be dropped into the hole, the animal will soon rise to eject it, and may then be shut out from the lower part of the burrow by sharply driving a spade below it. This is undoubtedly the best method of securing perfect specimens for study or preservation, but fishermen often obtain large numbers, either for food or for bait, by suddenly thrusting a long hook down into the gaping shells, and then pulling them out. This method always does injury to the soft body of the animal, and often damages the shell, but answers the fisherman’s purpose exactly.

We give illustrations of two shells belonging to the typical genus (Solen), including one on Plate V.; also a British representative of each of two other genera of the family—Cerati-solen and Solecurtus, the latter of which, as the name implies, contains shorter species.

Fig. 140.—1. Solen ensis. 2. Cerati-solen legumen. 3. Solecurtus candidus

The next family—the TellinidÆ—contains a number of well-known molluscs that burrow into sand or mud, and are enclosed in shells that are often very prettily marked; and although the family includes several genera, all may be recognised by the following general features. The shell is compressed, composed of two equal valves, with little or no gape, and the ligament situated on the shortest side. The central or cardinal teeth never exceed two in number in each valve, and the adductor impressions are round and polished. The mantle is quite open at the anterior end, and its margins are fringed; the foot is flattened and tongue-shaped; and the siphons, which are quite separate, are generally long and slender.

In the typical genus (Tellina), of which we represent two very common British species, the ligament is very prominent, and the slender siphons are often much longer than the shell. The members of this group move very freely, travelling about by means of a broad, flattened foot.

Fig. 141.TellinidÆ

1. Psammobia ferroensis. 2. Donax anatinus. 3. Tellina crassa. 4. Tellina tenuis. 5. Donax politus

The shells of the genus Psammobia are popularly known as Sunset shells, being prettily marked with radiating bands of pink or other tint, reminding one of the beams of the sun when setting in a cloudy sky. In these, too, the ligament is very prominent, and the shell gapes slightly at both ends.

The same family contains the pretty little Wedge shells, which are so called on account of their triangular form, and constitute the genus Donax. These shells, which are seldom much over an inch long, are very common on some of our sandy beaches, being washed up in considerable numbers after the animals have died, but the specimens are seldom perfect. The molluscs themselves are burrowers, and live in the sand, at and just below low-water mark; and, as they usually burrow to a depth of only a few inches, are easily obtained alive.The shells are rather thin, closed at both ends, blunt and rounded at the anterior end, but straight and more pointed at the shorter posterior end; and the margins of the valves are very finely grooved in such a manner as to resemble the milling of a coin. Each valve has two central hinge teeth, with one long lateral tooth on each side; and the ligament is external and prominent. The lobes of the mantle are fringed; the siphons are separate and diverging, but shorter and thicker than in most of the other TellinidÆ, and the foot is comparatively large, flattened, and pointed.

The genus contains many species, the commonest being, perhaps, D. anatinus, the colour of which is yellowish, banded with brown, and marked by a number of radiating white lines. This colour, however, is due entirely to the thin, shining epidermis that completely covers the valves; and if this is rubbed off the shell itself will exhibit a pale pinkish tint. Another common species (D. politus) may be recognised by the broad patch of white running from the hinge to the margin, on the posterior side of the middle of each valve.

The family MactridÆ contains some British shells popularly known as Trough shells, and the family name itself is derived from the word mactra, which signifies a kneading trough. In this group the shells are all more or less triangular in form, with the valves equal, and are either closed or very slightly gaping. The ligament, perhaps more correctly designated the cartilage, is generally internal, and contained in a deep triangular hollow; and the shell is covered with epidermis. The mantle of the animal is open in front, and the siphonal tubes are united and fringed. The foot is usually large and flattened.

The typical genus, Mactra, contains some common molluscs that bury themselves just beneath the surface of sandy beaches; and these are so abundant in some parts of Great Britain that they are used largely for feeding pigs. Some of the mactras are remarkable for the great power and extensibility of the foot, which, in some cases, is used so vigorously that the animal turns itself quickly over, or even leaps on the ground.

Our example of this genus is M. stultorum, which is a very common object of the shore. Its colour is very variable, usually some shade of grey or brown, and marked by radiating white lines.

The Otter shells (Lutraria), of which we figure one species, are much like the MactrÆ in structure, and are usually included in the same family, but in some respects they resemble the MyacidÆ or Gapers. The shell is oblong rather than triangular, and gapes at both ends; and the animal buries itself deep in sand or mud, principally in the estuaries of rivers, from low-water mark to a depth of about ten fathoms. The shells are not very common objects of the shore, for they are found only in muddy places, and those of the commonest species (L. elliptica) are too large and heavy to be washed ashore in the sheltered estuaries where they abound.

Fig. 142.—1. Lutraria elliptica. 2. Part of the Hinge of Lutraria, showing the Cartilage Pit. 3. Macra stultorum. 4. Interior of same showing Pallial Line

We now leave the burrowers, to consider a family of molluscs that move about somewhat freely by means of a flattened tongue-shaped foot, and which only rarely fix themselves in any way. The shells of the group are popularly known as Venus shells, probably on account of the beauty of some of the species, and the family in question as the VeneridÆ.The shells of the various species are usually of a graceful oval or oblong form, frequently marked by chevron-shaped lines in pretty colours, and distinctly grooved along the lines of growth. The ligament is external, the hinge has usually three diverging teeth in each valve, and the pallial line is sinuated.

The principal genus is Venus, in which the shells are ovate in form, thick, and smooth, and the margins of the valves are minutely crenulated. The genus is a very large one, and contains several British species, two of which we represent in the accompanying illustrations.

Allied to these is the larger but pretty shell Cytherea chione, which inhabits deep water off the southern coasts, to about one hundred and fifty fathoms. It is much like the Venus shells in form, but the margins are not crenulated.

Fig. 143.—VeneridÆ

1. Venus fasciata. 2. Venus striatula. 3. Tapes virgineana. 4. Tapes aurea

The same family (VeneridÆ) contains the large genus Tapes, so called because many of its shells are marked in such a manner as to recall the patterns of tapestry. The general form of these shells is oblong, and the margins are quite smooth. They are frequently washed up on the beach, especially during storms, but the animals may be found alive at low water, buried in sand, or hiding in the crevices of rocks or among the roots of the larger sea weeds. The mantle is open at the anterior end, and the siphons are either quite distinct or only partly united.

Some of the shells are very prettily coloured. One (T. aurea) receives its name from the yellow ground, which is variously marked by deeper tints; another (T. decussata) is so called on account of the cross grooves with which the shell is sculptured; and a third (T. virgineana), which inhabits the muddy bottoms of deep water, is prettily marked by radiating bands that run from the umbones to the ventral margins.

We now come to the family CyprinidÆ, in which the shell is regular in form, oval or elongated; and the valves, which are equal in size, are thick and solid, and fit closely. The teeth are beautifully formed, the central ones numbering from one to three in each valve, and the pallial line is not sinuated. The mantle lobes are united on the posterior side by means of a kind of curtain that is pierced by two siphonal openings. There are two gills on each side, united posteriorly, and the foot is tongue-shaped and thick.

The typical genus—Cyprina—contains a large mollusc (C. islandica), which is moderately common round our shores, especially in the north, but is not often seen above low-water mark, except when washed up by storms. The shell is oval and thick, with the umbones prominent and turned towards the posterior side, and the ligament is strong and prominent. It is entirely covered with a thick epidermis, of a rich brown colour, often exhibiting a fine silky gloss, especially near the margins. The interior of the shell is white, and the adductor impressions oval and polished.

The same family includes some smaller shells that inhabit deep water, and are therefore not commonly seen on the beach. Among these are two species of the genus Astarte, one of which is deeply furrowed in a direction parallel with the margins; also Circe minima, which seldom exceeds half an inch in length. Although so small compared with Cyprina, these shells may be identified by their clothing of epidermis, together with the family characteristics given above.

The CyprinidÆ also contains the interesting Heart Cockle (Isocardia cor), the form of which is so characteristic that identification is easy. The heart-shaped shell is thick and strong, and is swollen out in such a manner that the umbones are wide apart. These latter are also curved into a spiral form, and the ligament between them is prominent. The colour of the shell is variable, the epidermis being of any shade from a yellow to a dark brown. The foot is small and pointed, and the siphons fringed.

The Heart Cockle burrows in sand by means of its foot, going down just far enough to bury the whole of its shell, and always leaving its siphons exposed at the surface. It inhabits deep water, and is not likely to be obtained without the use of the dredge or trawl.

Fig. 144.CyprinidÆ

1. Cyprina islandica. 2. Teeth of Cyprina. 3. Astarte compressa. 4. Circe minima. 5. Isocardia cor

The molluscs of the family LucinidÆ are found principally in tropical and sub-tropical seas, ranging from the shore to a very great depth, but a few are moderately common in our own waters. They are closely allied to the CyprinidÆ, but the shell is round rather than oval, and is obliquely grooved inside. The mantle lobes of the animal are not united on the ventral side, but at the posterior end they are continuous, except where they form one or two siphonal openings. The foot is long and of almost the same thickness throughout when extended; and the gills, numbering either one or two on each side, are large and thick. In all the members of this family, as in the last, the pallial line of the shell is simple. None of the shells are really common objects of our shores, since the animals inhabit deep water, some of them moving about freely on the bottom, while others moor themselves by means of a byssus.

We shall take only one example of the family—Galeomma Turtoni—the generic name of which means ‘weasel eye.’ This pretty little mollusc may be found on our southern coasts, where it often moors itself to the rocks or weeds by means of its silken byssus; or, having broken itself away from its temporary place of rest, creeps freely on the bottom by a long, flattened foot, applied closely to the surface over which it travels, and used much in the same way as the broad foot of a snail or whelk, its valves being all the time spread out nearly in the same plane.

Fig. 145.Galeomma Turtoni

The shell itself is oval, with central umbones, and is covered with a thick epidermis. The mantle lobes are united behind, where they form a single siphonal opening; and the margins are double, with a row of eye-like spots on the inner edge of each.

The true Cockles, some few species of which are known to almost every one, constitute the family CardiadÆ, so called on account of the cordate or heart-shaped form of the shell as viewed from the anterior or posterior side. The shell is regular, or nearly so, and the valves, which are equal, are ornamented with prominent rays that run from the umbones to the margin. The ligament is short, strong and prominent, and the valves fit closely by the interlocking of their crenulated margins, or gape slightly on the posterior side. There are two central teeth in each valve, and a long lateral tooth both on the anterior and posterior sides. The mantle lobes are open in front, with the margins plaited, and the siphons, which are usually short, are provided with a number of little tentacles. The foot is large and powerful, and is usually curved into the form of a sickle.

Fig. 146.—1. Cardium pygmÆum. 2. Cardium fasciatum. 3. Cardium rusticum

Although the general nature of the common edible cockle (Cardium edule) is so well known even to the inhabitants of inland towns that a description may seem out of place here, yet it is possible that but few of our readers have ever taken the trouble to place the animal in a vessel of sea water, either obtained direct from the sea or artificially prepared, for the purpose of studying its movements or other habits; and it will be well to remember that this and several other species of edible molluscs which reach our towns alive may be very conveniently studied at home, and often at times and seasons when work at the sea-side is undesirable or impossible.

The edible species referred to lives in banks of sand or mud, buried just below the surface, and frequently in spots that are exposed for several hours between the tides. They are usually obtained by means of a rake similar to that used in our gardens.

Fig. 147.Cardium aculeatum

On the coasts of Devon and Cornwall we find a much larger species, also valued as an article of diet, and known locally as the Prickly Cockle (C. aculeatum). Its shell is beautifully formed, the rays being very prominent, each bearing a number of calcareous spines arranged in a single row. We give an illustration of this species, together with two sketches to show the nature of the teeth of the shell.

In addition to the two species named, we have the red-footed, C. rusticum, which can suddenly turn itself over by the action of its powerful pedal organ; the Banded Cockle (C. fasciatum), a very small species distinguished by the brown bands of the shell; and a still smaller one (C. pygmÆum), with a triangular shell, occurring on the Dorset and Devon coasts (fig. 146).

Passing now to the Asiphonida, we deal first with the family ArcadÆ. These include a number of shells which, though very variable in general form and appearance, may all be recognised by the long row of similar comb-like teeth that form the hinge. The shells of this group are regular in form, with equal valves, and are covered with epidermis. The mantle of the animal is open, the gills are united by a membrane behind, and the foot is large, curved, and grooved.

Fig. 148.—Pectunculus glycimeris, with portion of Valve showing Teeth, and Arca tetragona

One of the prettiest shells in the family is Pectunculus glycimeris, which reaches a length of about two inches. The shell is grooved in the direction of the lines of growth, and there are also very delicate striations running radially from umbones to margin; and the ground colour of white or pale yellowish is beautifully mottled with reddish brown. We give a figure of this species, together with a drawing of the peculiar and characteristic teeth, but a more typical shell of this family may be seen in the Noah’s Ark (Arca tetragona). This shell is almost quadrate in form, swollen, and strongly ribbed. The hinge is straight, with many comb-like teeth—increasing in number with the age of the shell; and the umbones are separated by a diamond-shaped ligament. The foot of the animal is heeled—that is, it has a creeping surface that extends backwards as well as forwards; the mantle is furnished with minute eyes (ocelli), and the animal has two distinct hearts. We give a figure of this peculiar shell, and the other British members of the same genus, though varying more or less in form, may be recognised at once by the same general characteristics.

In the same family we have the small nutshells (genus Nucula), which are often dredged up from deep water in large numbers; and the elongated shells of the genus Leda, also inhabitants of deep water; and, as before stated, the affinities of all may be readily established by the characteristic nature of the teeth.

We now pass on to the family of Mussels (MytilidÆ), of which the common Edible Mussel (Mytilus edulis) is a typical species. In this interesting group the shell is oval or elongated, with equal valves, and is covered with a dark-coloured epidermis which is often distinctly fibrous in structure. The umbones are at the anterior end of the shell, which end is usually very narrow and pointed, while the posterior is broad and rounded. The hinge has small teeth or none, and the ligament, which is long, is internal. The shells of mussels consist of two distinct layers; on the inner, which is often of a most beautiful pearly lustre, may be traced the simple pallial line and the impressions of the small anterior and the large posterior muscles.

The mantle lobes of the animal are united only at a point between the two siphonal openings. There are two elongated gills on either side, and the foot is thick and more or less grooved.

Fig. 149.Mytilus edulis

Mussels inhabit salt, brackish, and fresh waters, generally attaching themselves by means of a silken byssus, but sometimes concealing themselves in ready-made holes, or in burrows of their own; and some even hide themselves in a nest which they prepare by binding together fragments of shells or sand.

The edible mussel, which forms such an important article of diet, especially among the poorer classes in our large towns, may be easily distinguished from similar species of another genus by the very pointed umbones, and the coarse and strong fibrous byssus by which it clings to any solid object. It is found most abundantly on muddy coasts, and on mud banks in the estuaries of rivers, generally in such situations as are uncovered at low tide. The fry abound just below low-water level, and grow so rapidly that they reach their full size in a single year.

It is well known that a diet of mussels occasionally produces very unpleasant and even dangerous symptoms in the consumer, and this result has been attributed to the action of a particular organ of the animal which has not been carefully removed before eating. This, however, is not the case, as proved by the fact that the eating of these edibles is usually perfectly safe when no such precautions have been taken. It is highly probable that the deleterious character referred to is due to a disease which sometimes attacks the mussels themselves, but the exact nature of this has not been thoroughly made out.

Fig. 150.—1. Modiola modiolus. 2. Modiola tulipa. 3. Crenella discors

There is another genus (Modiola) containing several species commonly known as Horse Mussels, and these may be distinguished from Mytilus by their habit of burrowing, or of constructing a nest by spinning together various fragments. The shell, also, is more oblong in form, and much swollen near the anterior end; and the umbones are not so pointed. The epidermis covering the shell is of fibrous structure, and often extends beyond the edges of the valves in the form of a fringe.

Several species of Horse Mussels inhabit our shores, from low-water mark to a depth of fifty fathoms, but none of them is used for food. The commonest species is Modiola modiolus, which has a particularly strong byssus, and its fibres generally bind together such a number of stones &c. that the shell is completely hidden in the entangled mass. Other British species include M. barbata, so called on account of the peculiar fringed threads of the epidermis; M. phaseolina, in which the epidermis threads are not fringed; and M. tulipa, named from the streaks of crimson or purple that radiate from the umbones of the shell and remind us of the colouring of the tulip flower.

An allied sub-genus (Crenella) includes a few small British molluscs the shells of which are crenulated on the dorsal margin behind the ligament. The shells are short and swollen, and lined by a brilliant pearly layer. One species (C. discors) is pale green, with radiating lines from umbo to margin. It is common on many of our shores, but is not easily found, as it hides at or below low water mark, in a nest formed by binding together small stones. Other species, one of which is black, are less abundant, and are not readily obtained except by the use of the dredge.

Before leaving this family we must refer to the remarkable Dreissena polymorpha, sometimes called the Chambered Mussel, on account of the chamber which is formed in the beak of the shell by means of a pearly plate that stretches across it. This animal is not indigenous to Britain, but was introduced from the East by trading vessels, either attached by its silken byssus to timber that had been left floating in water previous to being shipped, or to the bottoms of the ships. It seems to thrive almost equally well in salt, brackish, and fresh waters, and has spread very rapidly since its introduction. It is more commonly found, however, in docks, canals, and rivers, and is on that account usually described with the fresh-water species.

Fig. 151.Dreissena polymorpha

The form of the shell is very similar to that of Mytilus, but has no internal pearly layer, and the valves are bluntly keeled. The mantle is closed, the siphons short, and the foot small.

Our next family—the AviculidÆ—contains those shells that are distinguished by peculiar flat processes on each side of the umbones, one of which, the posterior, is generally wing-like in form. They are popularly known as Wing Shells, and the family includes the so-called Pearl Oysters. Most of the species are natives of tropical seas, but several are common on our own shores.

Fig. 152.Avicula, and Pinna pectinata

One species of the typical genus is sometimes found off the coasts of Cornwall and Devon. The shell is very oblique, and the valves are unequal, the right one, on which the animal rests, being somewhat smaller than the left; and the epidermis is very scanty. The hinge is long and straight, without teeth, and the cartilage is contained in grooves. The interior of the shell is pearly. The posterior adductor impression is large, and not far from the middle of the shell, while the anterior, which is small, is close to the umbones. The mantle of the animal is open, and the margins of the lobes fringed; and the small foot spins a powerful byssus.

Most of the British species of the family belong to the genus Pinna, so called on account of the fins or wings on the dorsal side of the shell. In this group the shell is more or less wedge-shaped, with equal valves, and the umbones are quite at the anterior end, while it is blunted and gaping at the other end. The hinge has no teeth. The margins of the mantle are doubly fringed, and the byssus is extremely powerful.

The Common Pinna (P. pectinata) is a very large mollusc, sometimes measuring a foot in length, and is very abundant off the south-west coast, where it moors itself vertically at the bottom of the water with the pointed end buried, and the broad end gaping widely so as to expose its body. It has been stated that fishes are frequently tempted to intrude into the open shell for the purpose of devouring the animal within, and that they are immediately crushed by the sudden closing of the valves, which are pulled together by two large and powerful adductors.

We have already referred to the little Pea Crab that inherits the shell of the Pinna, living permanently in the mantle cavity of the animal.

The last family of the Lamellibranchs is the OstreidÆ or Oysters, of which the edible oyster may be taken as a type. In this group the shells are frequently unequal, and they lie on one side either free or adherent to the surface below them; the hinge is usually without teeth. The mantle is quite open, the gills number two on each side, and the foot is either small or absent.

The Edible Oyster is a type of the typical genus Ostrea, its scientific name being Ostrea edulis; and as this mollusc may be readily obtained at any time, it is a convenient species for the study of the general characteristics of its family. Its shell is irregular in form, and the animal always rests on its left valve, which is convex, while the upper or right valve is either flat or concave. The lower valve is also thicker and laminated in structure, and is attached to the surface on which it rests. On examining the interior we find that the shell is somewhat pearly in appearance, and that the edges of the mantle lobes are finely fringed. The gills, too, are united with each other and with the mantle on the posterior side, thus forming a distinct branchial chamber.

Oysters are found on banks at the depth of several fathoms, where they spawn in early summer, and the fry or spats are collected in large numbers and transferred to artificial beds or tanks, where they are kept in very shallow water so as to be easily obtainable when required for food. It is interesting to note, however, that their growth is slow on these artificial grounds, the full size being attained in about seven years, while, in the natural beds, they are full grown in a little more than half that time.

Fig. 153.—1. Anomia ephippium. 2. Pecten tigris. 3. Pecten, animal in shell

Native oysters—those that are reared on artificial beds—are of course removed as soon as they are ready for the market, but those that live on natural banks are often left undisturbed till their shells are thick with age. The latter, too, are often destroyed in large numbers by the boring sponge (p. 124), which so completely undermines the substance of the shell that it finally breaks to pieces.

In the genus Anomia the lower valve is concave, and perforated with a large oval hole very near the hinge, while the upper one is very convex, but the shell is very variable in shape, since the animal sometimes clings permanently to an object, and the shell, during its growth, accommodates itself to the surface of that object. The use of the hole is to allow of the protrusion of a set of muscles which proceed from the upper valve, and give attachment to a plug or button, more or less calcified, by which the animal clings.

One species (A. ephippium), known as the Saddle Oyster, is common on some parts of our coast. It is seldom found on the beach at low water, but the empty shells are often washed up by the waves.

The same family includes the Scallops, which constitute the genus Pecten. In these the shell is nearly round, with ears on each side of the umbones, those on the anterior side being generally much more prominent than the others, and both valves are ornamented by prominent radiating ribs. The shell is often very prettily coloured, and the animal rests on the right valve, which may be distinguished from the left by its greater convexity, and by the presence of a notch under the anterior ear. The hinge is straight, with a very narrow ligament, and the internal cartilage is situated in a central pit.

Plate V.

MOLLUSCS

1. Solen ensis 8. Tellina
2. Trivia EuropÆa 9. Capulus hungaricus
3. Trochus umbilicatus 10. Chrysodomus antiquus
4. Trochus magnus 11. Buccinum undatum
5. Littorina littorea 12 & 13 Scalaria communis
6. Littorina rudis 14. Pecten opercularis
7. Haminea (Bulla) hydatis 15. Pecten varius
16. Pecten maximus

The mantle of the animal is free, with double margins, the inner of which forms a finely fringed curtain all round, and on this curtain are a number of black eyes surrounded by very fine tentacles. The gills are in the form of very thin crescents, and the foot is shaped like a finger.

Although the majority of scallops are inhabitants of tropical seas, several species are to be found off our coasts, where they range from depths of about four to forty fathoms, and the empty shells, often in the most perfect condition, are frequently found on the beach.

The Common Scallop (P. maximus) is largely used as food, and is therefore a common object in the fishmonger’s shop. Its colour is very variable, and the shell has equal ears and about twenty radiating ribs. The Quin (P. opercularis) is also an important article of diet in some parts.

Perhaps the prettiest of the British species is the Variable Scallop (P. varius), so called on account of the very variable colour of the shell, the ground tint of which may be almost anything between a very pale yellow and a dark reddish brown, and this is irregularly patched with some lighter colour. The chief distinguishing features of the species are the spiny projections of the numerous ribs, most prominent near the margin of the valves, and the presence of a permanent byssus, which, in other species, occurs only in the young. Three of the species named above are shown on Plate V.

We may also mention the Tiger Scallop (P. tigrinus), the radiating ribs of which are sometimes slightly formed, and which has only one ear in each valve; and P. pusio, in which the adult shell is often greatly altered in form.

It may be noted, in conclusion, that all the species of this genus have the power of swimming rapidly by flapping their valves—a mode of locomotion very common among the bivalves especially during an early stage of their existence.

Before passing on to the univalve molluscs, we must refer briefly to a group of animals that are enclosed in bivalve shells, and which were once included with the Mollusca, but are now made to form quite a distinct group by themselves. We refer to the Brachiopods, at one time very abundant, as proved by the immense number of fossil shells embedded in various stratified rocks, but now represented by only a few living species.

The shells of these animals are commonly known as Lamp Shells, on account of their resemblance to an antique lamp; and although at first sight they bear a general likeness to certain bivalve shells of lamellibranchs, a close examination will show that not only the shell, but also the animal residing within it, are both of a nature very different from that of the molluscs with which they were at one time supposed to be closely related.

Fig. 154.Terebratulina. The upper figure represents the interior of the Dorsal Valve

The valves of the shell are unequal, and are not placed respectively on the right and left sides of the body of the animal, but rather on the dorsal and ventral or upper and lower sides. The ventral shell is the larger, and is produced into a beak which sometimes has a round hole corresponding in position with the hole for the wick of an antique lamp, and the dorsal or smaller valve is always imperforate. The hinge is a perfect one, the junction of the two valves being so well secured by it that it is impossible to separate them without injury. It is formed by two curved teeth on the margin of the ventral valve that fit into corresponding sockets on the dorsal. A few brachiopods, however, have no hinge, the valves being secured by means of numerous muscles. The hole in the shell serves for the protrusion of a pedicel or foot by means of which the animal is enabled to attach itself.

Two long arms, covered with vibratile cilia, and capable of being folded or coiled, are attached at the sides of the mouth. They are practically processes of the lips, mounted on muscular stalks, and attached to a delicate calcareous loop on the dorsal valve; and serve not only to produce water currents for the conveyance of food to the mouth, but also answer the purpose of gills.

The digestive system of a brachiopod includes an oesophagus that leads into a simply formed stomach round which is a large digestive gland. The heart has only one cavity, but the animal is provided with two smaller and separate organs that assist in the propulsion of the blood, which circulates through numerous blood spaces in the bristly mantle.

About two thousand fossil species of brachiopods are known, extending over a vast range of time; and the living species, numbering less than a hundred, are found from shallow water to the greatest habitable depths.

Since the reader is hardly likely to form any extensive acquaintance with the Brachiopods, we shall illustrate our remarks by the introduction of only one species—the Serpent’s Head Terebratula (Terebratulina caput-serpentis), which is found in deep water in the North Sea. The interior of the dorsal valve, showing the calcareous loop above referred to, is represented in fig. 154, as is also the exterior of the shell, which is finely striated. The latter represents the dorsal aspect of the shell in order to show the hole in the upturned beak of the ventral valve.

Fig. 155.—Under side of the Shell of Natica catena, showing the Umbilicus; and outline of the Shell, showing the Right handed Spiral

We have now to consider the large group of head-bearing molluscs (Cephalophora), the study of which forms a very important part of the work of the sea-side naturalist; and while we deal with the general characteristics of this group, the reader will do well to have before him a few living typical species in order that he may be able to verify as many as possible of the descriptions here given by actual observation. These types may include such creatures as the whelk, periwinkle, and limpet; or if marine species are not at hand at the time, the garden snail, fresh-water snail, and slug will serve the purpose fairly well.

By far the large majority of Cephalopods are enclosed in a single shell, though a few have a rudimentary shell or none at all.

As is the case with the lamellibranchs, the shell is composed of both animal and mineral substance, the latter being a calcareous deposit secreted by the mantle of the animal. The shell is usually spiral in form, as in the whelk, but sometimes conical (limpet) or tubular.Spiral shells are nearly always dextral or right-handed; that is, if we trace the direction of the spiral from the apex to the mouth, we find that its turns or whorls run in the same direction as the hands of a watch. A few, however, are sinistral, or left-handed, and occasionally we meet with left-handed varieties of those species that are normally of the right-handed type. The cavity of the shell is a single spiral chamber which winds round a central pillar, and each whorl of the shell generally overlaps the preceding one, the two being separated externally by a spiral depression called the suture.

Sometimes the coils of a shell are not close together internally, so that the central column of the spiral is hollow, and opens to the exterior at the base of the shell. In this case the shell is said to be umbilicated, and the opening referred to is the umbilicus. In others the spiral winds round a solid central pillar which is spoken of as the columella.

Fig. 156.—Section of the Shell of the Whelk, showing the Columella

The apex of the shell, sometimes called the nucleus, is the oldest part, and represents what was once the whole. It is generally directed backwards as the animal crawls, and in adult shells is often more or less worn away by constant friction. We speak of the whorls as first, second, third, &c., taking them in the order of their growth, and it will generally be found that the last whorl is much larger than the others, so much so that it contains the greater part of the body of the animal; hence this one is commonly spoken of as the body-whorl, and the others make up the spire of the shell.

The mouth of the shell is of different forms in different species, but in the herbivorous kinds it is usually simple, while in the carnivorous species it is notched or produced. The edge of the mouth (peristome) is formed by an outer lip which is usually sharp in young shells and either thickened, reflected (turned outward), or inflected (turned inward) in adults; also it may be considerably expanded, or ornamented by a fringed margin. The inner lip is that side of the peristome adjacent to the central pillar of the shell.

If we examine the external surface of several different shells, we find that they are usually more or less distinctly furrowed or sculptured, and that they are often marked by lines or bands of a colour different from that of the ground tint. These furrows, lines, or bands sometimes pass directly from the apex, across the various whorls, to the base of the shell, in which case they are said to be longitudinal. If they follow the course of the whorls, they are described as spiral; and if parallel with the peristome, so that they mark the former positions of the mouth of the shell, thus denoting the lines of growth, they are said to be transverse.

Most univalve shells are covered with epidermis, but in some instances the animal, when extended, surrounds the exterior of the shell with its mantle, as do the cowries, and then the outside of the shell is always glazed. Other species keep their shells covered with the mantle, and in these the shell is always colourless.

The body of the head-bearing mollusc is attached to the shell internally by one or more muscles, and if we examine the interior surface we are generally able to distinguish the impressions or scars denoting the points of attachment.

The reader will have observed that the periwinkle, whelk, and other univalves close their shells by a kind of lid when they retract their bodies. This lid is called the operculum, and is constructed of a horny material, often more or less calcified on the exterior, and is attached to the hinder part of the foot. It sometimes fits accurately into the mouth of the shell, but in some species it only partially closes the aperture. The operculum, like the shell itself, often exhibits distinct lines of growth which display the manner in which it was built up. If these lines are concentric we know that the operculum grew by additions on all sides; but if its nucleus is at one edge, and the lines of growth widest apart at the opposite side, the growth must have taken place on one side only. Some, even, are of a spiral form, denoting that the additions were made continuously at one edge, and such opercula may be right-handed or left-handed spirals.

It will be noticed that in the above general description of univalve shells we have introduced a number of technical terms which are printed in italics, and this we have done advisedly, for the employment of these terms is a very great convenience when giving descriptions of individual shells, and we shall use them somewhat liberally in noting the distinguishing characteristics of the families and genera; but before entering into this portion of our work we must briefly note the general features of the bodies of the Cephalophora.

Fig. 157.—Diagram of the Anatomy of the Whelk, the Shell being removed

c, stomach; e, end of intestine; g, gills; h, ventricle of the heart; a, auricle; f, nerve ganglia; b, digestive gland; ft, foot; o, operculum; d, liver

Sometimes these bodies are bilaterally symmetrical, as we have observed is the case with the worms, but more commonly the organs on one side are aborted, while the growth proceeds apace on the opposite side. Thus the animal assumes a spiral form, being coiled towards the aborted side, with the gills and other organs developed on that side only. As a rule this curvature is such that the body takes the form of a right-handed or dextral spiral, as we have already observed in the shells which cover them, the mouth being thus thrown to the right, but sometimes it takes the opposite direction.

When one of these animals is extended and creeping, we observe that it has a distinct head, furnished with a mouth below, and tentacles and eyes above; also, if an aquatic species, the gills are more or less prominent. Further, the exposed portion of the body is covered with a leathery mantle, and the animal creeps on a broad, flattened surface which is called the foot.

The tentacles or feelers are usually retractile, and, when retracted, are turned outside-in. Each one is provided with a muscle that runs from the body internally to the tip; and, by the contraction of this muscle the tentacle is involuted just in the same way as the finger of a glove could be by pulling a string attached to the tip inside. In addition to these tentacles, and the eyes and mouth previously mentioned, the head is furnished with ear-sacs, which are little cavities, filled with fluid containing solid particles, with nerve filaments distributed in the walls.

On the floor of the mouth there is a ribbon, supported on a base of gristle, and covered with numerous minute teeth arranged regularly in rows. The gristle is moved backwards and forwards by means of muscles in such a manner that this ‘lingual ribbon’ acts like a rasp, and is employed in scraping or tearing away portions of the substance on which the animal is feeding. By this action the teeth are gradually worn away in front, but this is of no consequence, for the lingual ribbon is always growing forwards, the worn material being replaced by new growth behind.

Fig. 158.—A portion of the Lingual Ribbon of the Whelk, magnified; and a single row of Teeth on a much larger Scale

b, medial teeth; a and c, lateral teeth

The arrangement and form of the teeth are characteristic and important; and since they afford one of the means by which we may trace the natural affinities of similar species, they will be frequently referred to when dealing with the principles of classification. For this reason the student should be prepared to examine the lingual ribbons of molluscs with the aid of a compound microscope as occasion requires. As a rule the ribbon is easily stripped away from the floor of the mouth; and, if placed in a drop of water and covered with a cover-glass, the teeth are readily observed. Until a little experience has been gained the observations may be confined to some of the larger species, in which the ribbon is both large and easily obtained. In the common whelk, for example, it often measures more than an inch in length.

It is difficult to understand how the univalve mollusc manages to glide along so rapidly and gracefully on its expanded foot when we observe it from above, but the difficulty is cleared away when we see it creeping on the side of a glass aquarium, or when we place it on a sheet of glass and observe its movements from the other side. We then see that the foot is in complete contact with the glass, and that a steady but rapid undulatory movement is produced by the successive expansions and contractions of the disc, brought about, of course, by the action of muscular fibres.

A few of the univalves are viviparous—that is, they produce their young alive; but the majority lay eggs. The eggs are often enclosed in horny cases, some of which may be commonly seen washed up on the beach, or attached to rocks and weeds between the tide-marks. The larvÆ are always enclosed in a shell, though they are sometimes wholly or partially concealed by the mantle. The shell is usually closed by an operculum; but as the animal advances in age the shell sometimes disappears altogether, or is reduced to a mere shelly plate, as is the case with the land and marine slugs and sea lemons. The young of the water-breathers always swim about freely by means of a pair of ciliated lobes or fins, but these remain only for a brief period, after which the animal settles to the bottom for a more or less sedentary existence.

Fig. 159.—Egg Cases of the Whelk

The Cephalophora fall naturally into two fairly well-defined groups, which we may describe as the air-breathers and the water-breathers. The former breathe air direct from the atmosphere through an aperture on the right side of the body, the air passing into a pulmonary organ or lung, in the walls of which the bloodvessels ramify, and they include all the land snails and slugs. The latter breathe by gills which are more or less prominent on the sides of the body, and include all the fresh-water snails, as well as the marine species which fall within our special province.

We shall first consider the class Pteropoda or Wing-footed Molluscs, so called from the wing-like appendages that are attached to the side of the mouth, or to the upper side of the foot, which is either very small or altogether wanting.

These Pteropods are in many respects lowly organised as compared with the higher molluscs; and as they spend the whole of their existence in the open sea, they can hardly be considered as falling within the scope of the sea-side naturalist’s work. Yet since their shells are occasionally drifted on to the shore, and because a knowledge of them is essential to the student of the mollusca, we shall briefly note their principal characteristics.

The pteropods are extremely abundant in some seas, occurring in such vast numbers that they discolour the water for miles. They swim about by flapping the pair of wings already referred to. They are known to form an important article of the diet of the whale, and are also devoured in enormous numbers by various sea birds; and they are themselves carnivorous, feeding on various smaller creatures that inhabit the open waters.

Fig. 160.—Pteropods

In appearance they much resemble the young of higher species of molluscs. The nervous system consists of a single ganglion situated below the gullet, and the eyes and tentacles are either rudimentary or absent. The digestive system includes a muscular gizzard provided with teeth for the mastication of food, and a digestive gland or liver for the preparation of a digestive fluid. The heart has two cavities, and respiration is effected by a surface covered with minute cilia. This surface is either quite external or is enclosed in a chamber through which water freely circulates.

The shell is very different from that of a typical head-bearing mollusc, for it generally consists of two glassy, semitransparent plates, situated dorsally and ventrally respectively on the body of the animal, with an opening for the protrusion of the body, and others at the sides for processes of the mantle; and it terminates behind in one or three pointed processes. Sometimes, however, its form is conical or spiral, with or without an operculum. We append illustrations of a few pteropods, selecting for our purpose species that have been found in the Atlantic.

It will have been noticed from the above short description that the pteropod is very unlike the typical Cephalophore as outlined in our general remarks on the group, especially in the symmetrical form of both body and shell and in the total or almost total absence of the foot; and this distinction is so marked that the pteropods are often separated from all the other Cephalophora into a class by themselves, while all the remainder are placed in a separate extensive class called the Gasteropoda, because they creep on the ventral surface of the body, the term signifying stomach-footed.

These gasteropods are divided into four orders: the Nucleobranchiata, in which the respiratory and digestive organs form a nucleus on the posterior part of the back; the Opisthobranchiata, with gills more or less exposed towards the rear of the body; the Pulmonifera, or lung-breathing order; and the Prosobranchiata, in which the gills are situated in advance of the heart. The third order includes all the land snails and slugs, and does not therefore fall within the scope of our work; but the remaining three consist either exclusively or principally of marine species, and will be dealt with in the order in which they are named.

The Nucleobranchs are not really gasteropods in the strictest sense of the term, for they do not creep along by means of their foot, but all swim freely in the open ocean, always at the surface, and sometimes adhere to floating weed by means of a sucker. In fact, the foot of these creatures is greatly modified in accordance with their habits, one part being often expanded into a ventral swimming fin, and provided with a sucking-disc for adhesion, and another produced into a posterior fin for locomotion.

Like the pteropods, the nucleobranchs are purely pelagic, so that we can hardly expect to meet with a specimen on or near the shore; and thus we shall content ourselves with a brief notice of their general characters.

The shell is very variable in size and form, and sometimes even entirely absent. Large-bodied species often possess but a very small shell, while some are able to entirely retract themselves and close the mouth of the shell by an operculum. These animals are generally provided with a large cylindrical proboscis, and the tongue has recurved teeth. The body is usually very transparent, often so much so that the blood may be seen circulating within it, and the nervous system is much more perfectly developed than in the pteropods. The eyes, too, are perfectly formed.

The presence of special breathing organs may seem to be superfluous in such delicate and soft-bodied creatures as these, for it may be supposed that all the oxygen required could be absorbed directly from the water through their soft structures, as is really the case with many aquatic creatures; and as a matter of fact some of the nucleobranchs possess no gills, but others have these organs fully formed.

Passing now to the true gasteropods, we shall first consider the Opisthobranchs, which are commonly known as Sea Slugs and Sea Lemons. Some of these have no shell at all, and even where one exists it is very rudimentary, usually very small and thin, and concealed within the mantle. The gills are either branched and tree-like, or are composed of tufts or bundles of filaments; and, as the name of the order implies, are situated towards the posterior part of the body. They are also retractile, and when the animal is alarmed it will conceal its gills, thus reducing its body to a shapeless, slimy mass, inviting neither to sight nor to touch.

The sea slugs are principally animal feeders, subsisting on small crustaceans, other molluscs, &c.; the food being first reduced by the rasping action of the teeth, and then masticated in a gizzard which is provided internally with horny spines or hard, shelly plates.

It will not be necessary to enumerate all the different families of this order, especially as the species are mostly to be found beyond the tide-marks, and are therefore obtained only with the aid of the dredge; but we shall describe a few of the British species with a view of showing the general characteristics of the animals.

They are usually divided into two sections, those with exposed or naked gills (Nudibranchiata) forming the first, and those in which the gills are covered either by the shell or the mantle (Tectibranchiata) comprising the second.

In the Nudibranchs the shell exists only during the embryonic stage, and the external gills are arranged on the back or along the sides. The tentacles are not employed as organs of touch, but are probably connected only with the sensation of smell, being provided with filaments of the olfactory nerve; the eyes are small dark-coloured spots embedded in the skin behind the tentacles. Various species are to be found on all rocky coasts, where they range from low-water mark to a depth of fifty or sixty fathoms, but a few are pelagic, living on the surface of floating sea weeds.

It is almost impossible to identify the species of nudibranchs from dead specimens, for the classification of the section is based largely on the arrangement of the gills, which are almost always retracted in the dead animals. This is also the case even with living specimens when disturbed or removed from the water; hence they should always be examined alive in sea water, while the animals are extended and moving.

Fig. 161.—Nudibranchs

1. Doto coronata. 2. Elysia viridis. 3. Proctonotus mucroniferus. 4. Embletonia pulchra

It will be understood from the above statements that special methods will be necessary when it is required to preserve specimens for future study, the gills being always retracted when the animal is killed for this purpose by any rapid process. We have found two methods, however, that are fairly satisfactory in the majority of instances.—Place the living animals in a suitable vessel of sea water, and leave them quite undisturbed till they are fully extended, and then either gradually raise the temperature till they are dead, or introduce into the water, cautiously, a solution of corrosive sublimate. In the latter case a much larger proportion of the sublimate will be required than when used for a similar purpose with freshwater molluscs. When the animals are dead it will be found that their gills are more or less extended, sometimes fully so, and they may then be transferred to diluted spirit or a two per cent. solution of formaldehyde.

Fig. 162.—Nudibranchs

1. Dendronotus arborescens. 2. Tritonia plebeia. 3. Triopa claviger. 4. Ægirus punctilucens

In fig. 162 we represent four species. Two of these—Triopa claviger and Ægirus punctilucens—belong to the family DoridÆ, the members of which are popularly known as Sea Lemons, and are distinguished by the presence of plume-like gills situated on the middle of the back. Another family (TritoniadÆ), characterised by the arrangement of the gills along the sides of the back, and by tentacles that can be retracted into sheaths, is represented by Tritonia plebeia and Dendronotus arborescens in the same figure, and by Doto coronata in fig. 161. The family ÆolidÆ also have their gills arranged along the sides of the back, but they differ from the last in that their tentacles are not retractile. They include the two species numbered 3 and 4 on fig. 161. The remaining one on fig. 161—Elysia viridis—is a member of the family PhillirhoidÆ, characterised by a pair of tentacles on the dorsal side of the head and by the foot being either very narrow or absent, the latter feature denoting that the animals are not adapted for creeping on the bottom. In fact, several of the species of this family swim freely by means of flattened tails.

The Tectibranchs are similar in general structure, but are very different in appearance, inasmuch as the gills, so prominent in the last division, are here covered by the mantle, or by the shell, which is often well developed. The latter is very variable in form, being of a globular, twisted, spiral, or other shape, but is sometimes absent in the adult. In fig. 163 we give a few examples of the shells of British species; and one (Bulla hydatis) is shown on Plate V.

Fig. 163.—Shells of Tectibranchs

We now pass on to the largest and last order of gasteropods—the Prosobranchiata—so called because the gills are situated in front of the heart. This group is an important one to the sea-side naturalist, since it contains nearly all the univalve molluscs that are common between the tide-marks of our shores, as well as some abundant species that are protected by a shell of several distinct parts. In nearly all of them the abdomen is well developed, and the shell is sufficiently large to cover the whole animal when the latter is retracted; and the gills, which are either pectinated (comb-shaped) or plumed, are lodged in the chamber formed over the head of the animal by the mantle.

The order is often divided into two sections—the Holostomata or Sea Snails, in which the margin of the aperture of the shell is entire, and the Siphonostomata, in which the margin of the mantle is prolonged into a siphon by which water passes into the gill chamber. This division does not seem to be very satisfactory, as the sections are not separated by very prominent natural characteristics, but it becomes convenient on account of the great extent of the order.In the Holostomata the shell is either spiral, conical, tubular, or composed of several valves, and the spiral forms are usually closed by a horny or shelly operculum of the spiral kind. The head is provided with a proboscis that is generally non-retractile, and the gills usually extend obliquely across the back, or are attached to the right side behind the head.

We shall first consider the lower forms, starting with the family ChitonidÆ, the animals of which, as the name implies, are covered with a shell that resembles a coat of mail.

Some of these creatures are very common on our rocky coasts, and yet their nature is such that they are liable to be overlooked by those who are not acquainted with their appearance and habits. The shell is oval or oblong, often so coloured as to closely resemble the rocks and stones over which they crawl; and the animal is so inactive when left exposed by the receding tide, and its flat under surface so closely applied to that on which it rests, that it looks merely like a little convexity of the rock. But after a few have been discovered the eye becomes accustomed to their appearance, and large numbers may be obtained in a short space of time.

The shell will be seen to consist of eight transverse, curved plates, overlapping each other at their edges, and all enclosed in a leathery mantle, which also forms a projecting margin all round. The middle six plates are different from the first and last in that they are grooved in such a manner that each one displays a dorsal and two lateral areas.

The animal holds on tightly to the rocks by its large creeping disc-like foot, but may be removed without injury by forcing a knife-blade under the margin of its shell. When examined it will be found that it has not a well-formed head like the majority of the gasteropods, and both eyes and tentacles are wanting. The gills form a series of lamellÆ round the posterior end of the body, between the edge of the foot and the mantle; and it is interesting to note that the Chitons further justify the low position assigned to them among the gasteropods by their possession of a simple, central, tubular heart, similar to that of worms.

Perhaps the commonest of the British species is Chiton cinereus. Its colour is a dull grey, but the ground is variously mottled, often in such a manner as to give it a protective resemblance to its surroundings. C. ruber is the largest of our species: its shell is variously mottled with shades of yellow and brown; C. fascicularis is bristled. Another rather common species (C. lÆvis) is distinguished by the glossy appearance of the dorsal portion of the shell.

It will have been observed that the chitons differ from the majority of gasteropods in that their shells and bodies are both bilaterally symmetrical, and the same is true of the next family—DentaliadÆ, which derive their name from the tooth-like form of their conical shells. They are popularly known as the Tooth Shells, and although they generally live beyond low-water level, they may sometimes be seen alive on the beach, and the empty shells are often washed up by the waves.

The shells (fig. 165) are curved, and open at both ends, the narrower extremity being the posterior. The mouth is circular, and the outer surface is quite smooth or grooved.

Fig. 164.—Chiton Shells

Fig. 165.—Shells of Dentalium

In these animals, too, the head is imperfectly formed, without eyes or tentacles. The foot is conical and pointed, with two symmetrical side lobes; and the gills, also two in number, are symmetrically disposed. The margin of the mouth is fringed, and the animal is attached to the shell near the posterior end.

The DentaliadÆ are carnivorous, subsisting on minute molluscs, foraminifera, &c., and generally live on sandy or muddy bottoms, in which they sometimes bury themselves.

Our next family includes the familiar Limpets, and is designated PatellidÆ on account of the resemblance of the conical shell to a little dish. In these the apex of the cone is not central, but situated more or less towards the anterior; and the muscular impression within is shaped like a horseshoe, with its open end turned to the front.

Unlike the members of the preceding families, the limpets have a well-formed head furnished with both eyes and tentacles, the former situated at the bases of the latter. They have a horny upper jaw, and the tongue, which is very long, is supplied with numerous hooked teeth. The foot is a very large disc, as large as the shell, and the gills consist either of one or two branched plumes, or of a series of lamellÆ almost or entirely surrounding the animal between the shell and the margin of the mantle.

The reader has probably experienced the difficulty of detaching a limpet from its hold on the rocks. The tenacity of the grip is not due to the mere adhesive power of the foot itself, but to atmospheric pressure, the effect of which is complete on account of the total exclusion of air from under the disc of the foot; and when we remember that this pressure amounts to fifteen pounds on every square inch of surface, we can readily understand the force required to raise a large limpet from its position.

Fig. 166.PatellidÆ

1. Patella vulgata. 2. P. pellucida. 3. P. athletica. 4. AcmÆa testudinalis

The Common Limpet (Patella vulgata) is found on all our rocky coasts between the tide-marks, often at such a level that it is left exposed to the air for eight or nine hours at a time. The apex of the shell of this species is nearly central, and the exterior is sometimes nearly smooth, but more commonly relieved by radiating ribs.

Although the shell itself is not a particularly pretty object, it is often rendered very beautiful and interesting by the various animal and vegetable organisms that settle on it. Those shells that are left dry for hours together are commonly adorned with clusters of small acorn barnacles, while the limpets that have found a home in a rock pool and are perpetually covered with water, often resemble little moving gardens in which grow beautiful tufts of corallines or other weeds, as well as polyzoa and other animal forms.It appears that limpets are not great travellers, the appearance of the rock from which they have been removed being such as to point to a very long period of rest. Those on hard rocks are generally situated on a smooth surface just the size of the shell and generally worn slightly below the surrounding level by the constant friction of the shell; while others that have settled on very rugged spots have their cones adapted to the irregular surface. It has been suggested that the animals make occasional short excursions from their chosen spot, but return again to it; and whether or not this is the case, it is evident that they frequently keep to one small spot for a considerable length of time.

Limpets on chalk and other soft rocks are sometimes in circular pits so deep that even the apex of the shell is below the general level around; and though it is possible that the abrasion is produced entirely by the friction of the shell as the animal turns, yet, in the case of chalk, the action may be partly due to the carbonic acid gas given off by the animal as a product of respiration, for it is a well-known chemical fact that this gas, in solution, has the power of dissolving calcareous material.

The other British Limpets include P. pellucida, which lives on the fronds and stalks of the tangle, the form of the shell varying according to that of the surface on which it rests; also the Horse Limpet (P. athletica), the bold radiating ribs of which are irregularly notched; and AcmÆa testudinalis—the Tortoiseshell Limpet, with reddish-brown mottlings on the exterior, and a dark-brown patch at the apex within. The last-named species lives principally on sea weeds, and has a single pectinated gill in the cavity between foot and mantle, which is protruded on the right side when the animal is extended. This latter feature is interesting since it shows a tendency to that one-sided development already referred to as characteristic of the typical gasteropod, resulting in the spiral form of the adult.

In the limpets the lingual ribbon is proportionately long, and is easily removed for examination. In P. vulgata it may exceed an inch in length, and the teeth are arranged in rows each of which contains four central, with laterals on either side, while in AcmÆa there are only three laterals on each side of the central line.

Other so-called limpets belong to separate families. Thus we have the Cup-and-Saucer Limpet and the Bonnet Limpet in the CalyptrÆidÆ. Both these differ from Patella in that the apices of their shells show a tendency to assume a spiral form, thus denoting a somewhat closer relationship to the more advanced univalves. They have distinct heads, with prolonged muzzles, and well-formed antennÆ and eyes. The teeth of the lingual ribbon are single, with dentated laterals on either side.

Fig. 167.CalyptrÆa sinensis

The Cup-and-saucer Limpet (CalyptrÆa sinensis) is so called on account of a curved plate that projects from the interior of the shell, at the apex; and though this plate takes the form of a half-cup rather than of a cup, the whole shell has suggested the popular name, while the generic name is derived from calyptra, which signifies a cap. This mollusc is occasionally found among stones at low tide, but usually lives beyond this line, thus necessitating the use of a dredge. The Bonnet Limpet (Pileopsis hungaricus) is of similar structure and habit, but the nucleus of the shell is a more decided spiral (see Plate V.). Both these animals adhere to stones and rocks, and, like the common limpet, seldom or never move from their selected sites; hence their shells are variable in form, being adapted to the rock below, and the movements of the shell often cause a little hollow to be scooped out of the softer materials.

Yet other limpets belong to the next family FissurellidÆ, which is characterised by a perforation or a notch in the shell. In these, too, the shell is conical, with a tendency to assume the spiral form, but the curve of the nucleus, which is always apparent in the young shell, frequently disappears as the growth proceeds.

Fig. 168.FissurellidÆ

1. Puncturella noachina. 2. Emarginula reticulata. 3. Fissurella reticulata

In the Keyhole Limpet (Fissurella reticulata) which is found chiefly on our southern shores, the perforation is at the summit of the shell; but as the animal grows the hole increases in size, encroaching on the curved nucleus until the latter quite disappears. In the genus Puncturella the perforation is just in front of the recurved apex, and is surrounded by a rim internally; while in the Notched Limpets (genus Emarginula) it is represented by a fissure on the anterior margin of the cone. In all, however, the hole or notch serves the same purpose, for it is the means by which water enters the siphon.

Fig. 169.Haliotis

It is doubtful whether we ought to claim the beautiful Ear shell (Haliotis tuberculata) as one of our own, but it is generally included among the British molluscs on the ground that it is abundant on the coast of the Channel Islands, where it is called the Omar; and it is certainly too beautiful an object to be excluded from the British species without ample cause.

It belongs to the family HaliotidÆ, and our illustration will show that the shell is less elevated than that of limpets, and that the spire, though not prominent, is a fairly well-formed spiral. All along the outer lip of the very large aperture is a series of perforations, occupying the summit of a prominent, spiral ridge, and becoming gradually smaller and smaller towards the spire. The whole shell is pearly in structure, and displays a great variety of rich colouring. It is used largely for inlaying and other ornamental purposes, and for making the so-called pearl buttons. The animal is used largely as an article of food in the Channel Islands, but it is of so tough a nature that it requires a vigorous beating previously to being cooked.

Fig. 170.Ianthina fragilis

The same family contains the beautiful violet Ianthina, which also is not a British species, but a free-swimming oceanic snail. It is, however, occasionally drifted to our shores, though generally in an imperfect condition. In the Atlantic and the Mediterranean it sometimes abounds in such multitudes as to distinctly colour the surface of the sea.

It will be seen that the shell is round, with a well-formed spiral. The spire is white, but the base is of a deep violet colour. The animal is very remarkable in some respects. In the first place, though it has pedicels similar to those on which the eyes of the higher univalves are placed, yet it has no eyes. Then the foot, which is in itself small, secretes a float or raft so large that it cannot be retracted into the shell, with numerous air vesicles to render it light, and the egg-capsules of the animal are attached to the underside of this. The animal has no power of sinking, but lives exclusively at the surface; and, when disturbed, it exudes a violet fluid that colours the surrounding water. It is apparently the only gasteropod that lives in the open sea and has a large and well-formed spiral shell.

Passing now to the family TurbinidÆ we meet with turbinated or pyramidal shells that are of a brilliant pearly lustre within, and frequently without also when the epidermis is removed. The animals inhabiting them have well-formed heads with a short muzzle, long and slender tentacles, and eyes mounted on peduncles. The sides are ornamented with fringed lobes and several tentacle-like filaments, and the aperture of the shell is closed, when the animal is retracted, by a spiral operculum. They are all vegetable feeders; and, as is usual with the plant-eating molluscs, the teeth on the lateral portions of the lingual ribbon are very numerous.

We have a few common species belonging to this group, mostly members of the typical genus Trochus and commonly known as Top Shells. In these the shell is a pyramid formed of numerous flat whorls, with an oblique and rhomboidal aperture. Of the three species figured (including two on Plate V.) T. umbilicatus and the Large Top (T. magnus) are umbilicated, the umbilicus being very large in the latter; and the former is characterised by the zigzag greyish or reddish markings that run radially across the whorls. The other (T. zizyphinus) is usually of a yellowish or pink colour and has no umbilicus.

The same family contains the pretty little Pheasant Shell (Phasianella pullas), which is richly coloured with red, brown, and yellow on a light ground; and Adeorbis subcarinatus, shown in the same group.

Fig. 171.—1. Trochus zizyphinus. 2. Under side of Shell. 3. Trochus magnus. 4. Adeorbis subcarinatus

The well-known Periwinkle (Littorina littorea) and the species to the right of it on Plate V., belong to the family LittorinidÆ, the members of which are similar in structure and habit to Trochus, but the shell is usually more depressed, and is never pearly. The shell of the Periwinkle is thick, having but few whorls, and is not umbilicated; and the lingual ribbon, which is coiled up on the gullet, contains no less than about five hundred rows of teeth; but only a little more than twenty of these rows are in action at any one time, the remainder being a reserve stock to come into active service as the ribbon grows forward. In the genus Lacuna there is a narrow umbilicus, and the aperture of the shell is semilunar in form; and the species of Rissoa are very small, with white or horny shells, much more pointed and having more whorls than those of the Littorina.

Fig. 172.Rissoa labiosa and Lacuna pallidula

Our next illustration shows three shells of the family TurritellidÆ, so named from the resemblance of the shells to a tower or spire. The form indeed is so characteristic that they can hardly be mistaken. It will be seen that Turritella communis is striated spirally, while the surface of Scalaria communis (Plate V.) is relieved by strongly marked transverse ribs. Both these species are very common, and the latter is peculiar for its power of ejecting a dark purple fluid when molested. The other representative of the family—CÆcum trachea—has a shell something like that of Dentalium (p. 238), being cylindrical and tubular, but it differs in being closed at one end.

Fig. 173.—Section of Shell of Turritella

Fig. 174.Turritella communis and CÆcum trachea

In the succeeding shells, of the family CerithiadÆ, the spire is also considerably produced, so much so that some of the species closely resemble the Turret shells, but they are distinguished by usually having an expanded lip, at least in the adult form; and the mouth is channelled in front, and sometimes also behind. The animals of the group have short muzzles that are not retractile, the tentacles are wide apart, and the eyes are mounted on short pedicels. The median teeth are arranged in a single row, with three laterals on either side of each.

Fig. 175.Cerithium reticulatum and Aporrhais pes-pelicani

Cerithium reticulatum receives its generic name from its appearance to a small horn, and the specific name refers to the netted appearance of its surface due to the presence of numerous little tubercles arranged in rows—a feature that serves to distinguish it from the small Turret shells. It is a common shell, as is also the other representative of the family illustrated, but the latter is rendered conspicuous by the enormously expanded lip that has earned for it the popular name of Spout Shell. Its scientific name is Aporrhais pes-pelicani, and the application of the specific term will be understood when the shell is viewed from above, for the expanded lip is drawn out into long finger-like lobes that suggest the foot of a bird. This is a very solid shell, sometimes reaching a length of two inches; and the animal inhabiting it is carnivorous.

Fig. 176.Aporrhais pes-pelicani, showing both shell and animal

We have yet some turreted shells to deal with, belonging to the family PyramidellidÆ, but they need not be confused with the preceding groups if carefully examined. In the first place, the aperture of the shell is very small; and the operculum, instead of being spiral, as in the turreted shells before mentioned, is imbricated or made up of parallel layers denoting that the growth took place on one side only. Another distinguishing feature is seen in the nucleus—that small portion of the spire that was developed within the egg—which is sinistral or left-handed. In addition to this, the animal has broad, ear-like tentacles, a retractile proboscis, and a lingual ribbon without teeth.

The British species of this family belong principally to the genera Odostomia, characterised by a tooth-like fold of the columella; Eulima, containing small, white, polished shells with numerous level whorls; and Aclis, with little polished shells not unlike Turritella.

Fig. 177.—1. Odostomia plicata. 2. Eulima polita. 3. Aclis supranitida

The last family of the Holostomata is the NaticidÆ, the shells of which are almost globular, with only a few whorls, and a small, blunt spire. The mouth is semilunar in form, and the lip sharp. The proboscis of the animal is long and retractile, and the foot large; but perhaps the most characteristic feature is the presence of large mantle lobes which hide some of the shell when the animal is crawling. In Natica (fig. 155), the typical genus, the shells are somewhat thick and smooth, with a large umbilicus. As the animal crawls a large fold of the mantle is reflected back over the head, completely covering it, and apparently obstructing its view; but this is not the case, for the creature has no eyes. Natica is very abundant on some sandy beaches, where it devours small bivalves and other animals; and it is frequently washed up alive by the waves. Its shell is also a favourite one with hermit crabs. Its eggs, all connected together in a spiral band, may often be seen stranded on sandy coasts. Several species of Natica are found on our shores. An allied mollusc—Velutina lÆvigata, so called on account of the velvety epidermis that clothes the shell, completely surrounds the shell by its mantle folds when creeping.

The Siphonostomata form a much smaller section than the last, and its members are distinguished mainly by the presence of a true siphon, formed by the prolongation of the mantle margin, and serving to convey water into the gill chamber. In all these the shell is spiral, usually without an umbilical opening, and the margin of the mouth is prolonged into a canal or distinctly notched. The operculum is horny, and lamellar or imbricated. The animal has a retractile proboscis, and the eyes or eye-pedicels are joined to the tentacles. All the species of this division are marine.

Fig. 178.CyprÆa (Trivia) europÆa

We will first take the family CyprÆidÆ, which contains the familiar Cowries, these forming the lowest group of the division. An examination of the shells may at first seem rather puzzling, for the spire is concealed, and the whole is convoluted in such a manner as to make the mouth long and narrow, with a channel at either end. The outer lip is also thickened and bent inward, and there is no operculum.

The animal itself is particularly interesting, for, as it creeps along on its broad foot, abruptly shortened in the front, the mantle lobes bend over the top, meeting along the middle line, where they are usually fringed with little tentacle-like processes; and, as a result, the whole shell is beautifully enamelled on the outer surface. In all the Cowries the central teeth are single, and the laterals are arranged either in twos or threes.

Perhaps the commonest representative of this family is the pretty little CyprÆa (Trivia) europÆa (Plate V.), the shells of which are sometimes washed up in large numbers on sandy beaches. The animal lives mainly below low-water level, but it may often be found in the larger rock pools, creeping rapidly over the tangles, and may be easily secured with the aid of a net.

In the same family we have the little Erato (Marginella) lÆvis, the white shell of which is minutely furrowed along the lips; and also Ovulum patulum (Calpurna patula), so called on account of its fancied resemblance to a poached egg.

We have also several species of Cone shells (family ConidÆ) on our coasts, readily recognised by their form, which is a cone, with a long, narrow aperture, partially closed by a minute operculum. As in the last family, the foot is abruptly shortened in front. The head is very prominent, with eyes situated on the tentacles. There are two gills, and the teeth are arranged in pairs.

Fig. 179.—1. Ovulum patulum. 2. Erato lÆvis

Fig. 180.Mangelia septangularis and Mangelia turricula

The ConidÆ are principally inhabitants of tropical seas, where some very large species exist. Two of the British representatives, both common shells, are shown in fig. 180.

Our next family (BuccinidÆ) is so well distributed on our coasts, that it would be difficult, we imagine, to find a spot quite free from its familiar forms. It contains all those creatures commonly known as Whelks, Dog Whelks, and Dog Winkles, ranging from deep water almost to high-water mark.

In all these the shell is notched in front, or the canal is turned abruptly upward. The foot of the animal is broad, the eyes are situated either on the tentacles or at their bases, and there are two gill plumes.

All the species are carnivorous, and some are said to be very destructive to mussels and young oysters.

The Common Whelk (Buccinum undatum, Plate V.) lives in deep water, whence it is dredged up largely for the market. Its clusters of egg cases are washed up in large numbers on the beach, where they form one of the commonest materials among the refuse at high-water mark. It is not uncommon, also, especially after storms, to find the unhatched eggs stranded by the waves, and these are so transparent that the embryos, several in each capsule, may be seen within. The hole through which the young escape may also be seen on the inner side.

Fig. 181.—1. Purpura lapillus. 2. Egg Cases of Purpura. 3. Nassa reticulata

The Dog Periwinkle (Purpura lapillus) abounds on all our coasts and is remarkable for the production of a dull crimson or purple fluid that may be obtained from it by pressing on the operculum. This fluid turns to a brighter colour on exposure to air, and is said to have been used largely in former times as a dye. It will be seen from our figure that the spire of this shell is shorter in proportion than that of Buccinum; but both are alike in that the operculum is made up of layers with a nucleus on the external edge.

The other species figured is Nassa reticulata, popularly known as the Dog Whelk, and characterised by a tooth-like projection of the inner lip close to the anterior canal. It is very common near low-water mark, where it may be seen crawling over the rocks on its broad foot, from which project two hornlike appendages in front and two narrow tails behind.

Fig. 182.Murex erinaceus

From the last family of the gasteropods (the MuricidÆ) we select two common species—Murex erinaceus and Fusus antiquus (Plate V.). In both these the anterior canal of the shell is straight and the posterior wanting. The eyes are on the tentacles, and there are two plumed gills. Both are carnivorous species, feeding on other molluscs; and the former is said to bore through the shells of its prey with the prominent beak of its shell.

Murex may be readily distinguished by the prominent longitudinal ridges of the thick shell, its rounded aperture, and by the partly closed canal running through the beak. It is known to fishermen as the Sting Winkle; the other species is called the Red Whelk in some parts, and in Scotland is known as the Buckie. Like the common whelk, it is dredged largely for the market, and is said to be far more esteemed than the former, from which it may be distinguished by the fusiform shape of the shell and the long straight canal.

We now pass to the last and highest class of the mollusca, called the Cephalopoda because they have a number of arms attached to the head, round the mouth. Unlike the majority of molluscs they are bilaterally symmetrical: and are much more highly organised, in some respects even making an approach to the vertebrates. Thus they generally have an internal hard structure, either horny or calcareous in structure, representing the vertebral column, and the circulatory system consists of arteries and veins, connected by minute capillaries. The corpuscles of the blood are also similar in form to those of the vertebrates. Externally they are all naked, with the exception of the nautilus and argonaut of the warmer seas.

The arms, so characteristic of the class, are eight or ten in number, long and muscular, and provided with numerous suckers by which the animal can cling with remarkable tenacity. These suckers are situated on the inner surface of the arms, and the disc of each one displays a series of muscular fibres, all converging from the circumference towards the centre, which is occupied by a softer structure that works inwards and outwards like the piston of a pump. Thus the suckers form a system of exhausting air-pumps by which a vacuum can be produced, and the tenacity of the grip, maintained by atmospheric pressure, is so great that the arms, strong as they are, may be torn asunder by attempting to pull them from their hold; and yet the animal can release its grip with the greatest of ease by simply releasing the pistons of its pumps.

The cephalopods are further distinguished by their very large, glaring eyes, situated on the sides of the well-formed head, and by powerful jaws that work in a vertical plane, like those of the vertebrates, but somewhat resembling the beaks of certain birds. The tongue is also very large and fleshy, and in part armed with numerous hooked spines or teeth.

The class is usually divided into two orders, one characterised by the possession of two gills, and the other of four; but the British species belong to the former, known technically as the Dibranchiata. This order is subdivided into two sections according to the number of arms; and the divisions are called the Octopoda and Decapoda respectively.

Fig. 183.—Octopus

The former section includes the Octopods, of which some species inhabit our seas. They all have eight arms, of unequal size, with the suckers arranged in two rows, and their round or oval bodies seldom have any fins, locomotion being effected by means of the arms, and by the sudden expulsion of water from the siphon. The shell is rudimentary, being represented merely by two short ‘styles’ within the mantle. The species vary considerably in size, some being only about an inch long when fully grown, while others measure two feet or more, and are looked upon as formidable creatures by man. Sometimes they are washed up on our beaches, but the best way to make their acquaintance is to examine the contents of the fishermen’s drag nets as they are hauled on the beach.

In the same manner we may secure various species of the Decapods or Ten-footed Cephalopods, which comprise the Calamaries, Squids, and Cuttlefishes. These, too, properly speaking, have but eight arms, the other two appendages being really tentacles, which are usually longer than the arms, and more or less retractile; they are also expanded at the ends. The decapods are also to be distinguished from the octopods by their elongated bodies, and a flattened, fin-like appendage on either side. Their eyes, also, are capable of being rotated within the orbits, while those of the octopods are fixed; and the shell consists of one or more horny ‘pens,’ or of a calcareous ‘bone,’ contained in a cavity so loosely that it drops out of its place when the cavity is opened.

Fig. 184.Loligo vulgaris and its Pen

Fig. 185.Sepiola atlantica

The Common Calamary (Loligo vulgaris) may be recognised by the accompanying illustration, from which it will be observed that the body tapers behind, bearing two rhomboidal fins in the rear. The suckers are arranged in two rows on the arms, but in fours on the expanded tips of the tentacles. The animal is a good swimmer, and sometimes crawls, head downwards, on the disc surrounding the mouth, pulling itself along by means of its arms. Its shell is a horny pen, lanceolate in form, but it divides as the age of the animal advances, so that two or more may be found in the same specimen.

Belonging to the same family we have the Common Squid (Sepiola atlantica), also a very abundant species. Here the body is shorter and purse-like, and the fins are dorsal and rounded. It seldom exceeds four or five inches in length, and, like the Calamary, is used largely as a bait by fishermen.

Another family—the SepiadÆ—contains the Cuttlefish (Sepia officinalis), the ‘bone’ of which is such a common object on the beach. This latter is a broad, curved plate of carbonate of lime, made up of a number of regular layers, and having a cavity hollowed out at the posterior end. It is exceedingly light and porous in structure, and at one time was used largely as an antacid as well as a dentifrice. It is also proportionately large, being both as long and as broad as the body of the animal.

Fig. 186.Sepia officinalis and its ‘Bone’

Cuttlefishes live principally in the shallow water close to shore, where they swim backwards by the sudden propulsion of water from their siphons; and their eggs, which look like clusters of black grapes, are frequently thrown up on the beach, generally attached to the stems and fronds of sea weeds.

As a rule the cephalopods swim slowly by the aid of their fins or by a rhythmic contraction by which water is expelled from their siphons, but when in danger the muscular contraction is so violent that they dart through the water with great speed, and even leap into the air to avoid their enemies. But they have another and much more remarkable way of escaping from their foes:—They possess a gland, the duct of which opens into the base of the funnel or siphon, that prepares an inky fluid; and when the animal is disturbed it suddenly ejects this fluid, rendering the surrounding water so cloudy that it is often enabled to retreat unobserved. The ‘ink’ of the Sepia was used for writing in former times, and is still employed in the preparation of the artist’s pigment that bears the same name. Fishermen are well acquainted with this peculiar characteristic of the animal, for they are frequently bespattered with the contents of the ink bag of the Sepia when the creature is included in the contents of their draw-nets, and have learnt to handle it cautiously until the objectionable fluid has been all discharged.

Fig. 187.—Eggs of Sepia

We will conclude this chapter by giving a tabular summary of the classification of the molluscs which will probably be useful to the collector of marine objects.

CLASSIFICATION OF THE MOLLUSCA

Class LAMELLIBRANCHIATA—Plate-gilled. Headless, usually enclosed in bivalve shell.

Section SIPHONIDA—Mantle lobes more or less united to form tubular siphons.

Families—PholadidÆ, GastrochÆnidÆ, AnatinidÆ, MyacidÆ, SolenidÆ, TellinidÆ, MactridÆ, VeneridÆ, CyprinidÆ, LucinidÆ, CardiadÆ, &c.

Section ASIPHONIDA—Mantle lobes free or nearly so. No true siphons.

Families—ArcadÆ, MytilidÆ, AviculidÆ, OstreidÆ, &c.

Class CEPHALOPHORA—Head-bearing. Usually enclosed in a univalve shell.

Section PTEROPODA—Wing-footed molluscs.

Section GASTEROPODA—Stomach-footed molluscs.

Order Nucleobranchiata—Viscera form a nucleus on the back.

Order Opisthobranchiata—Shell generally absent. Gills more or less exposed.

Section Nudibranchiata—Naked gills.

Section Tectibranchiata—Gills covered by shell or mantle.

Order Pulmonifera—Lung-breathers. Terrestrial.

Order Prosobranchiata.

Section Holostomata—Aperture of shell entire (sea snails).

Families—ChitonidÆ, DentaliadÆ, PatellidÆ, CalyptrÆidÆ, FissurellidÆ, HaliotidÆ, TurbinidÆ, LittorinidÆ, TurritellidÆ, CerithiadÆ, PyramidellidÆ, NaticidÆ, &c.

Section Siphonostomata—Possess a true siphon. Carnivorous.

Families—CyprÆidÆ, ConidÆ, BuccinidÆ, MuricidÆ, &c.

Class CEPHALOPODA—Sucker-bearing arms round the mouth.

Order Dibranchiata—Two gills.

Section Octopoda—Eight arms.

Families—ArgonautidÆ, OctopodidÆ.

Section Decapoda.

Families—TeuthidÆ (Calamaries, Squids), SepiadÆ, &c.

Order Tetrabranchiata—Four gills (containing NautilidÆ).


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page