CHAPTER XVIII OBSTRUCTION OF DRAINS.

Previous

Tiles will fill up, unless well laid.—Obstruction by Sand or Silt.—Obstructions at the Outlet from Frogs, Moles, Action of Frost, and Cattle.—Obstruction by Roots.—Willow, Ash, &c., Trees capricious.—Roots enter Perennial Streams.—Obstruction by Mangold Wurtzel.—Obstruction by Per-Oxide of Iron.—How Prevented—Obstruction by the Joints Filling.—No Danger with Two-Inch Pipes.—Water through the Pores.—Collars.—How to Detect Obstructions.

But won't these tiles get filled up and stopped? asks almost every inquirer on the subject of tile draining.

Certainly, they will, if not laid with great care, and with all proper precautions against obstructions. It cannot be too often repeated, that tile-drainage requires science, and knowledge, and skill, as well as money; and no man should go into it blindfold, or with faith in his innate perceptions of right. If he does, his education will be expensive.

It is proposed to mention all the various modes by which tiles have been known to be obstructed, and to suggest how the danger of failure, by means of them, may be obviated.

Let not enterprising readers be alarmed at such an array of difficulties, for the more conspicuous they become, the less is the danger from them.

Obstruction by Sand or Silt. Probably, more drains are rendered worthless, by being filled up with earthy matter, which passes with water through the joints of the tiles, than by every other cause.

Fine sand will pass through the smallest aperture, if there is a current of water sufficient to move it, and silt, or the fine deposit of mud or other earth, which is held almost in solution in running water, is even more insinuating in its ways than sand.

Very often, drains are filled up and ruined by these deposits; and, unless the fall be considerable, and the drain be laid with even descent, if earth of any kind find entrance, it must endanger the permanency of the work. To guard against the admission of everything but water, lay drains deep enough to be beyond the danger of water bursting in, in streamlets. Water should enter the drain at the bottom, by rising to the level of the tiles, and not by sinking from the surface directly to them. If the land is sandy, great care must be used. In draining through flowing sand, especially if there be a quick descent, the precaution of sheathing tiles is resorted to. That is done by putting small tiles inside of larger ones, breaking joints inside, and thus laying a double drain. This is only necessary, however, in spots of sand full of spring-water. Next best to this mode, is the use of collars over the joints, but these are not often used, though recommended for sandy land.

At least, in all land not perfectly sound, be careful to secure the joints in some way. An inverted turf, carefully laid over the joint, is oftenest used. Good, clean, fine gravel is, perhaps, best of all. Spent tan bark, when it is to be conveniently procured, is excellent, because it strains out the earth, while it freely admits water; and any particles of tan that find entrance, are floated out upon the water. The same may be said of sawdust.

To secure the exit of earth that may enter at the joints, there should be care that the tiles be smooth inside, that they be laid exactly in line, and that there be a continuous descent. If there be any place where the water rises in the tiles, in that place, every particle of sand, or other matter heavier than water, will be likely to stop, until a barrier is formed, and the drain stopped.

In speaking of the forms of tiles, the superiority of rounded openings over those with flat bottom has been shown. The greater head of water in a round pipe, gives it force to drive before it all obstructions, and so tends to keep the drain clear.

Obstructions at the Outlet. The water from deep drains is usually very clear, and cattle find the outlet a convenient place to drink at, and constantly tread up the soft ground there, and obstruct the flow of water. All earthy matter, and chemical solutions of iron, and the like, tend to accumulate by deposit at the outlet. Frogs and mice, and insects of many kinds, collect about such places, and creep into the drains. The action of frost in cold regions displaces the earth, and even masonry, if not well laid; and back-water, by flowing into the drains, hinders the free passage of water.

All these causes tend to obstruct drains at the outlet. If once stopped there, the whole pipe becomes filled with stagnant water, which deposits all its earthy matter, and soon becomes obstructed at other points, and so becomes useless. The outlet must be rendered secure from all these dangers, at all seasons, by some such means as are suggested in the chapter on the Arrangement of Drains.

Obstruction by roots. On the author's farm in Exeter, a wooden drain, to carry off waste water from a watering place, was laid, with a triangular opening of about four inches. This was found to be obstructed the second year after it was laid; and upon taking it up, it proved to be entirely filled for several feet, with willow roots, which grew like long, fine grass, thickly matted together, so as entirely to close the drain. There was a row of large willows about thirty feet distant, and as the drain was but about two feet deep, they found their way easily to it, and entering between the rough joints of the boards, not very carefully fitted, fattened on the spring water till they outgrew their new house.

A neighbor says, he never wants a tree within ten rods of any land he desires to plow; and it would be unsafe to undertake to set limits to the extent of the roots of trees. "No crevice, however small," says a writer, "is proof against the entrance of the roots of water-loving trees."

The behavior of roots is, however, very capricious in this matter; for, while occasional instances occur of drains being obstructed by them, it is a very common thing for drains to operate perfectly for indefinite periods, where they run through forests and orchards for long distances. They, however, who lay drains near to willows and ashes, and the like cold-water drinkers, must do it at the peril of which they are warned.

Laying the tiles deep and with collars will afford the best security from all danger of this kind.

Thos. Gisborne, Esq., in a note to the edition of his Essay on Drainage published in 1852, says:

My own experience as to roots, in connection with deep pipe draining, is as follows:—I have never known roots to obstruct a pipe through which there was not a perennial stream. The flow of water in Summer and early Autumn appears to furnish the attraction. I have never discovered that the roots of any esculent vegetable have obstructed a pipe. The trees which, by my own personal observation, I have found to be most dangerous, have been red willow, black Italian poplar, alder, ash, and broad-leaved elm. I have many alders in close contiguity with important drains; and, though I have never convicted one, I can not doubt that they are dangerous. Oak, and black and white thorns, I have not detected, nor do I suspect them. The guilty trees have, in every instance, been young and free growing; I have never convicted an adult.

Mangold-wurzel, it is said by several writers, will sometimes grow down into tile drains, even to the depth of four feet, and entirely obstruct them; but those are cases of very rare occurrence. In thousands of instances, mangolds have been cultivated on drained land, even where tiles were but 2½ feet deep, without causing any obstruction of the drains. Any reader who is curious in such matters, may find in the appendix to the 10th Vol. of the Journal of the Royal Ag. Soc., a singular instance of obstruction of drains by the roots of the mangold, as well as instances of obstructions by the roots of trees.

Obstruction by Per-oxide of Iron. In the author's barn-cellar is a watering place, supplied by a half-inch lead pipe, from a spring some eight rods distant. This pipe several times in a year, sometimes once a week, in cold weather, is entirely stopped. The stream of water is never much larger than a lead pencil. We usually start it with a sort of syringe, by forcing into the outlet a quantity of water. It then runs very thick, and of the color of iron rust, sometimes several pails full, and will then run clear for weeks or months, perhaps. In the tub which receives the water, there is always a large deposit of this same colored substance; and along the street near by, where the water oozes out of the bank, there is this same appearance of iron. This deposit is, in common language, called per-oxide of iron, though this term is not, by chemists of the present day, deemed sufficiently accurate, and the word sesqui-oxide is preferred in scientific works.

Iron exists in all animal and vegetable matter, and in all soils, to some extent. It exists as protoxide of iron, in which one atom of iron always combines with one atom of oxygen, and it exists as sesqui-oxide of iron, from the Latin sesqui, which means one and a half, in which one and a half atoms of oxygen combine with one atom of iron. The less accurate term, per-oxide, has been adopted here, because it is found in general use by writers on drainage.

The theory is that the iron exists in the soil, and is held in solution in water as a protoxide, and is converted into per-oxide by contact with the air, either in the drains or at their outlets, and is then deposited at the bottom of the water.

In a pipe running full there would be, upon this theory, no exposure to the air, which should form the per-oxide. In the case stated, it is probable that the per-oxide is formed at the exposed surface of a large cask, at the spring, and is carried into the pipe, as it is precipitated. Common drain pipes would be full of air, which might, perhaps, in a feeble current, be sufficient to cause this deposit.

Occasionally, cases have occurred of obstruction from this cause, and whenever the signs of this deposit are visible about the field to be drained, care must be used to guard against it in draining.

To guard against obstruction from per-oxide of iron, tiles should be laid deep, closely jointed or collared, with great care that the fall be continuous, and especially that there be a quick fall at the junctions of minor drains with mains, and a clear outlet.

Mr. Beattie, of Aberdeen, says: Before adopting 4 feet drains, I had much difficulty in dealing with the iron ore which generally appeared at two to three feet from the surface, but by the extra depth the water filters off to the pipes free of ore. Occasionally, iron ore is found at a greater depth, but the floating substance is then in most cases lighter, and does not adhere to the pipes in the same way as that found near the surface. Arrangements should also be made for examining the drains by means of wells, and for flushing them by holding back the water until the drains are filled, and then letting it suddenly off, or, by occasionally admitting a stream of water at the upper end, when practicable, and thus washing out the pipes. Mr. Denton says: "It is found that the use of this contrivance for flushing, will get rid of the per-oxide of iron, about which so much complaint is made."

Obstruction by Filling at the Joints. One would suppose that tiles might frequently be prevented from receiving water, by the filling up of the crevices between them. If water poured on to tiles in a stream, it would be likely to carry into these openings enough earthy matter to fill them; but the whole theory of thorough-drainage rests upon the idea of slow percolation—of the passage of water in the form of fine dew, as it were—through the motionless particles which compose the soil; and, if drains are properly laid, there can be no motion of particles of earth, either into or towards the tiles. The water should soak through the ground precisely as it does through a wet cloth.

In an article in the Journal of the Society of Arts, published in 1855, Mr. Thomas Arkell states that in 1846 he had drained a few acres with 1¼ inch pipes, about three feet deep, and 21 to 25 feet apart. The drains acted well, and the land was tolerably dry and healthy for the first few years; but afterwards, in wet seasons, it was very wet, and appeared full of water, like undrained land, although at the time all the drains were running, but very slowly. His conclusion was that mud had entered the crevices, and stopped the water out. He says he has known other persons, who had used small pipes, who had suffered in the same way. There are many persons still in England, who are so apprehensive on this point, that they continue to use horse-shoe tiles, or, as they are sometimes called, "tops and bottoms," which admit water more freely along the joints.

The most skillful engineers, however, decidedly prefer round pipes, but recommend that none smaller than one-and-a-half-inch be used, and prefer two-inch to any smaller size. The circumference of a two-inch pipe is not far from nine inches, while that of a one-inch pipe, of common thickness, is about half that, so that the opening is twice as extensive in the two-inch, pipes as in the one-inch pipe.

The ascertained instances of the obstruction of pipes, by excluding the water from the joints, are very few. No doubt that clay, puddled in upon the tiles when laid, might have this effect; but they who have experience in tile-drainage, will bear witness that there is far more difficulty in excluding sand and mud, than there is in admitting water.

It is thought, by some persons, that sufficient water to drain land may be admitted through the pores of the tiles. We have no such faith. The opinion of Mr. Parkes, that about 500 times as much water enters at the crevices between each pair of tiles, as is absorbed through the tiles themselves, we think to be far nearer the truth.

Collars have a great tendency to prevent the closing up of the crevices between tiles; but injuries to drains laid at proper depths, with two-inch pipes, even without collars, must be very rare. Indeed, no single case of a drain obstructed in this way, when laid four feet deep, has yet come within our reading or observation, and it is rather as a possible, than even a probable, cause of failure, that it has been mentioned.

HOW TO DETECT OBSTRUCTIONS IN DRAINS.

When a drain is entirely obstructed, if there is a considerable flow of water, and the ground is much descending, the water will at once press through the joints of the pipes, and show itself at the surface. By thrusting down a bar along the course of the drain, the place of the obstruction will be readily determined; for the water will, at the point of greatest pressure, burst up in the hole made by the bar, like a spring, while below the point of obstruction, there will be no upward pressure of the water, and above it, the pressure will be less the farther we go.

The point being determined, it is the work of but few minutes to dig down upon the drain, remove carefully a few pipes, and take out the frog, or mouse, or the broken tile, if such be the cause of the difficulty. If silt or earth has caused the obstruction, it is probably because of a depression in the line of the drain, or a defect in some junction with other drains, and this may require the taking up of more or less of the pipes.

If there be but little fall in the drains, the obstruction will not be so readily found; but the effect of the water will soon be observed at the surface, both in keeping the soil wet, and in chilling the vegetation upon it. If proper peep-holes have been provided, the place of any obstruction may readily be determined, at a glance into them.

Upon our own land, we have had two or three instances of obstruction by sand, very soon after the tiles were laid, and always at the junction of drains imperfectly secured with bricks, before we had procured proper branch-pipes for the purpose.

A little experience will enable the proprietor at once to detect any failure of his drains, and to apply the proper remedy. Obstructions from silt and sand are much more likely to occur during the first season after the drains are laid, than afterwards, because the earth is loose about the pipes, and more liable to be washed into the joints, than after it has become compact.

On the whole, we believe the danger to tile-drains, of obstruction, is very little, provided good tiles are used, and proper care is exercised in laying them.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page