CHAPTER XIV DRAINAGE ADAPTS THE SOIL TO GERMINATION AND VEGETATION.

Previous

Process of Germination.—Two Classes of Pores in Soils, illustrated by Cuts.—Too much Water excludes Air, reduces Temperature.—How much Air the Soil Contains.—Drainage Improves the Quality of Crops.—Drainage prevents Drought.—Drained Soils hold most Water.—Allow Roots to go Deep.—Various Facts.

No apology will be necessary for the long extract which we are about to give, to any person who will read it with attention. It is from a lecture on Agricultural Science, by Dr. Madden, and we confess ourselves incompetent to condense or improve the language of the learned author.

We think we are safe in saying that it has never been before published in America:

"The first thing which occurs after the sowing of the seed is, of course, germination; and before we examine how this process may be influenced by the condition of the soil, we must necessarily obtain some correct idea of the process itself. The most careful examination has proved that the process of germination consists essentially of various chemical changes, which require for their development the presence of air, moisture, and a certain degree of warmth. Now it is obviously unnecessary for our present purpose that we should have the least idea of the nature of these processes: all we require to do, is to ascertain the conditions under which they take place; having detected these, we know at once what is required to make a seed grow. These, we have seen, are air, moisture, and a certain degree of warmth; and it consequently results, that wherever a seed is placed in these circumstances, germination will take place. Viewing matters in this light, it appears that soil does not act chemically in the process of germination; that its sole action is confined to its being the vehicle, by means of which a supply of air and moisture and warmth can be continually kept up. With this simple statement in view, we are quite prepared to consider the various conditions of soil, for the purpose of determining how far these will influence the future prospects of the crop, and we shall accordingly at once proceed to examine carefully into the mechanical relations of the soil. This we propose doing by the aid of figures. Soil examined mechanically, is found to consist entirely of particles of all shapes and sizes, from stones and pebbles, down to the finest powder; and, on account of their extreme irregularity of shape, they cannot lie so close to one another as to prevent there being passages between them, owing to which circumstance soil in the mass is always more or less porous. If, however, we proceed to examine one of the smallest particles of which soil is made up, we shall find that even this is not always solid, but is much more frequently porous, like soil in the mass. A considerable proportion of this finely-divided part of soil, the impalpable matter as it is generally called, is found, by the aid of the microscope, to consist of broken-down vegetable tissue, so that when a small portion of the finest dust from a garden or field is placed under the microscope, we have exhibited to us particles of every variety of shape and structure, of which a certain part is evidently of vegetable origin. In these figures I have given a very rude representation of these particles; and I must beg you particularly to remember that they are not meant to represent by any means accurately what the microscope exhibits, but are only designed to serve as a plan by which to illustrate the mechanical properties of the soil. On referring to Fig.91, we perceive that there are two distinct classes of pores; first, the large ones, which exist between the particles of soil, and second, the very minute ones, which occur in the particles themselves; and you will at the same time notice, that whereas all the larger pores—those between the particles of soil—communicate most freely with each other, so that they form canals, the small pores, however freely they may communicate with one another in the interior of the particle in which they occur, have no direct connection with the pores of the surrounding particles. Let us now, therefore, trace the effect of this arrangement. In Fig.91, we perceive that these canals and pores are all empty, the soil being perfectly dry; and the canals communicating freely at the surface with the surrounding atmosphere, the whole will of course be filled with air. If in this condition, a seed be placed in the soil, as at a, you at once perceive that it is freely supplied with air, but there is no moisture; therefore, when soil is perfectly dry, a seed cannot grow.

Fig.91.

Fig.92.

"Let us turn our attention now to Fig.92. Here we perceive that both the pores and canals are no longer represented white, but black, this color being used to indicate water; in this instance, therefore, water has taken the place of air, or, in other words, the soil is very wet. If we observe our seed a now, we find it abundantly supplied with water, but no air. Here again, therefore, germination cannot take place. It may be well to state here, that this can never occur exactly in nature, because water having the power of dissolving air to a certain extent, the seed a in Fig.92 is, in fact, supplied with a certain amount of this necessary substance; and, owing to this, germination does take place, although by no means under such advantageous circumstances as it would were the soil in a better condition.

Fig.93.

Fig.94.

"We pass on now to Fig.93. Here we find a different state of matters. The canals are open and freely supplied with air, while the pores are filled with water; and consequently you perceive that, while the seed a has quite enough of air from the canals, it can never be without moisture, as every particle of soil which touches it, is well supplied with this necessary ingredient. This, then, is the proper condition of soil for germination, and in fact for every period of the plant's development; and this condition occurs when soil is moist but not wet—that is to say, when it has the color and appearance of being well watered, but when it is still capable of being crumbled to pieces by the hands, without any of its particles adhering together in the familiar form of mud.

"Turning our eyes to Fig.94, we observe still another condition of soil. In this instance, as far as water is concerned, the soil is in its healthy condition—it is moist, but not wet, the pores alone being filled with water. But where are the canals? We see them in a few places, but in by far the greater part of the soil none are to be perceived; this is owing to the particles of soil having adhered together, and thus so far obliterated the interstitial canals, that they appear only like pores. This is the state of matters in every clod of earth, b; and you will at once perceive, on comparing it with c, which represents a stone, that these two differ only in possessing a few pores, which latter, while they may form a reservoir for moisture, can never act as vehicles for the food of plants, as the roots are not capable of extending their fibres into the interior of a clod, but are at all times confined to the interstitial canals.

"With these four conditions before us, let us endeavor to apply them practically to ascertain when they occur in our fields, and how those which are injurious may be obviated.

"The first of them, we perceive, is a state of too great dryness, a very rare condition, in this climate at least; in fact, the only case in which it is likely to occur is in very coarse sands, where the soil, being chiefly made up of pure sand and particles of flinty matter, contains comparatively much fewer pores; and, from the large size of the individual particles, assisted by their irregularity, the canals are wider, the circulation of air freer, and, consequently, the whole is much more easily dried. When this state of matters exists, the best treatment is to leave all the stones which occur on the surface of the field, as they cast shades, and thereby prevent or retard the evaporation of water.

"We will not, however, make any further observations on this very rare case, but will rather proceed to Fig.92, a much more frequent, and, in every respect, more important condition of soil: I refer to an excess of water.

"When water is added to perfectly dry soil, it, of course, in the first instance, fills the interstitial canals, and from these enters the pores of each particle; and if the supply of water be not too great, the canals speedily become empty, so that the whole of the fluid is taken up by the pores: this, we have already seen, is the healthy condition of the soil. If, however, the supply of water be too great, as is the case when a spring gains admission into the soil, or when the sinking of the fluid through the canals to a sufficient depth below the surface is prevented, it is clear that these also must get filled with water so soon as the pores have become saturated. This, then, is the condition of undrained soil.

"Not only are the pores filled, but the interstitial canals are likewise full; and the consequence is, that the whole process of the germination and growth of vegetables is materially interfered with. We shall here, therefore briefly state the injurious effects of an excess of water, for the purpose of impressing more strongly on your minds the necessity of thorough-draining, as the first and most essential step towards the improvement of your soil.

"The first great effect of an excess of water is, that it produces a corresponding diminution of the amount of air beneath the surface, which air is of the greatest possible consequence in the nutrition of plants; in fact, if entirely excluded, germination could not take place, and the seed sown would, of course, either decay or lie dormant.

"Secondly, an excess of water is most hurtful, by reducing considerably the temperature of the soil: this I find, by careful experiment, to be to the extent of six and a-half degrees Fahrenheit in Summer, which amount is equivalent to an elevation above the level of the sea of 1,950 feet.

"These are the two chief injuries of an excess of water in soil which affect the soil itself. There are very many others affecting the climate, &c.; but these not so connected with the subject in hand as to call for an explanation here.

"Of course, all these injurious effects are at once overcome by thorough-draining, the result of which is, to establish a direct communication between the interstitial canals and the drains, by which means it follows, that no water can remain any length of time in these canals without, by its gravitation, finding its way into the drains.

"The 4th Fig. indicates badly-cultivated soil, or soil in which large unbroken clods exist; which clods, as we have already seen, are very little better than stones, on account of their impermeability to air and the roots of plants.

"Too much cannot be said in favor of pulverizing the soil; even thorough-draining itself will not supersede the necessity of performing this most necessary operation. The whole valuable effects of plowing, harrowing, grubbing, &c., may be reduced to this: and almost the whole superiority of garden over field produce is referable to the greater perfection to which this pulverizing of the soil can be carried.

"The whole success of the drill husbandry is owing, in a great measure, to its enabling you to stir up the soil well during the progress of your crop; which stirring up is of no value beyond its effects in more minutely pulverizing the soil, increasing, as far as possible, the size and number of the interstitial canals.

"Lest any one should suppose that the contents of these interstitial canals must be so minute that their whole amount can be of but little consequence, I may here notice the fact, that, in moderately well pulverized soil, they amount to no less than one-fourth of the whole bulk of the soil itself; for example, 100 cubic inches of moist soil (that is, of soil in which the pores are filled with water while the canals are filled with air), contain no less than 25 cubic inches of air. According to this calculation, in a field pulverized to the depth of eight inches, a depth perfectly attainable on most soils by careful tillage, every imperial acre will retain beneath its surface no less than 12,545,280 cubic inches of air. And, to take one more element into the calculation, supposing the soil were not properly drained, the sufficient pulverizing of an additional inch in depth would increase the escape of water from the surface by upwards of one hundred gallons a day."

Drainage improves the quality of crops. In a dry season, we frequently hear the farmer boast of the quality of his products. His hay-crop, he says, is light, but will "spend" much better than the crop of a wet season; his potatoes are not large, but they are sound and mealy. Indeed, this topic need not be enlarged upon. Every farmer knows that his wheat and corn are heavier and more sound when grown upon land sufficiently drained.

Drainage prevents drought. This proposition is somewhat startling at first view. How can draining land make it more moist? One would as soon think of watering land to make it dry. A drought is the enemy we all dread. Professor Espy has a plan for producing rain, by lighting extensive artificial fires. A great objection to his theory is, that he cannot limit his showers to his own land, and all the public would never be ready for a shower on the same day. If we can really protect our land from drought, by under-draining it, everybody may at once engage in the work without offence to his neighbor.

If we take up a handfull of rich soil of almost any kind, after a heavy rain, we can squeeze it hard enough with the hand to press out drops of water. If we should take of the same soil a large quantity, after it was so dry that not a drop of water could be pressed out by hand, and subject it to the pressure of machinery, we should force from it more water. Any boy, who has watched the process of making cider with the old-fashioned press, has seen the pomace, after it had been once pressed apparently dry and cut down, and the screw applied anew to the "cheese," give out quantities of juice. These facts illustrate, first, how much water may be held in the soil by attraction. They show, again, that more water is held by a pulverized and open soil, than by a compact and close one. Water is held in the soil between the minute particles of earth. If these particles be pressed together compactly, there is no space left between them for water. The same is true of soil naturally compact. This compactness exists more or less in most subsoils, certainly in all through which water does not readily pass. Hence, all these subsoils are rendered more permeable to water by being broken up and divided; and more retentive by having the particles of which they are composed separated, one from another—in a word, by pulverization. This increased capacity to contain moisture by attraction, is the greatest security against drought. The plants, in a dry time send their rootlets throughout the soil, and flourish in the moisture thus stored up for their time of need. The pulverization of drained land may be produced, partly by deep, or subsoil plowing, which is always necessary to perfect the object of thorough-draining; but it is much aided, in stiff clays, also, by the shrinkage of the soil by drying.

Drainage resists drought, again, by the very deepening of the soil of which we have already spoken. The roots of plants, we have seen, will not extend into stagnant water. If, then, as is frequently the case, even on sandy plains, the water-line be, in early Spring, very near the surface, the seed may be planted, may vegetate, and throw up a goodly show of leaves and stalks, which may flourish as long as the early rains continue; but, suddenly, the rains cease; the sun comes out in his June brightness; the water-line lowers at once in the soil; the roots have no depth to draw moisture from below, and the whole field of clover, or of corn, in a single week, is past recovery. Now, if this light, sandy soil be drained, so that, at the first start of the crop, there is a deep seed-bed free from water, the roots strike downward, at once, and thus prepare for a drought. The writer has seen upon deep-trenched land in his own garden, parsnips, which, before midsummer, had extended downward three feet, before they were as large as a common whiplash; and yet, through the Summer drought, continued to thrive till they attained in Autumn a length, including tops, of about seven feet, and an extraordinary size. A moment's reflection will satisfy any one that, the dryer the soil in Spring, the deeper will the roots strike, and the better able will be the plant to endure the Summer's drought.

Again, drainage and consequent pulverization and deepening of the soils increase their capacity to absorb moisture from the atmosphere, and thus afford protection against drought. Watery vapor is constantly, in all dry weather, rising from the surface of the earth; and plants, in the day-time, are also, from their leaves and bark, giving off moisture which they draw from the soil. But Nature has provided a wonderful law of compensation for this waste, which would, without such provision, parch the earth to barrenness in a single rainless month.

The capacity of the atmosphere to take up and convey water, furnishes one of the grandest illustrations of the perfect work of the Author of the Universe. "All the rivers run into the sea, yet the sea is not full;" and the sea is not full, because the numerous great rivers and their millions of tributaries, ever flowing from age to age, convey to the ocean only as much water as the atmosphere carries back in vapor, and discharges upon the hills. The warmer the atmosphere, the greater its capacity to hold moisture. The heated, thirsty air of the tropics drinks up the water of the ocean, and bears it away to the colder regions, where, through condensation by cold, it becomes visible as a cloud; and as a huge sponge pressed by an invisible hand, the cloud, condensed still further by cold, sends down its water to the earth in rain.

The heated air over our fields and streams, in Summer, is loaded with moisture as the sun declines. The earth has been cooled by radiation of its heat, and by constant evaporation through the day. By contact with the cooler soil, the air, borne by its thousand currents gently along its surface, is condensed, and yields its moisture to the thirsty earth again, in the form of dew.

At a Legislative Agricultural Meeting, held in Albany, New York, January 25th, 1855, "the great drought of 1854" being the subject, the secretary stated that "the experience of the past season has abundantly proved that thorough-drainage upon soils requiring it, has proved a very great relief to the farmer;" that "the crops upon such lands have been far better, generally, than those upon undrained lands, in the same locality;" and that, "in many instances, the increased crop has been sufficient to defray the expenses of the improvement in a single year."

Mr. Joseph Harris, at the same meeting, said: "An underdrained soil will be found damper in dry weather, than an undrained one, and the thermometer shows a drained soil warmer in cold weather, and cooler in hot weather, than one which is undrained."

The secretary of the New York State Agricultural Society, in his Report for 1855, says: "The testimony of farmers, in different sections of the State, is almost unanimous, that drained lands have suffered far less from drought than undrained." Alleghany county reports that "drained lands have been less affected by the drought than undrained;" Chatauque county, that "the drained lands have stood the drought better than the undrained." The report from Clinton county says: "Drained lands have been less affected by the drought than undrained." Montgomery county reports: "We find that drained lands have a better crop in either wet or dry seasons than undrained."

B. F. Nourse, of Orrington, Maine, states that, on his drained land, in that State, "during the drought of 1854, there was at all times sufficient dampness apparent on scraping the surface of the ground with his foot in passing, and a crop of beans was planted, grown and gathered therefrom, without as much rain as will usually fall in a shower of fifteen minutes' duration, while vegetation on the next field was parching for lack of moisture."

A committee of the New York Farmers' Club, which visited the farm of Prof. Mapes, in New Jersey, in the time of a severe drought, in 1855, reported that the Professor's fences were the boundaries of the drought, all the lands outside being affected by it, while his remained free from injury. This was attributed, both by the committee and by Prof. Mapes himself, to thorough-drainage and deep tillage with the subsoil plow.

Mr. Shedd, in the N. E. Farmer, says:

"A simple illustration will show the effect which stagnant water, within a foot or two of the surface, has on the roots of plants.

"Perhaps it will aid the reader, who doubts the benefit of thorough-draining in case of drought, to see why it is beneficial.

Fig.95.

Fig.96.

Section of land before it is drained.

Section of land after it is drained.

"In the first figure, 1 represents the surface soil, through which evaporation takes place, using up the heat which might otherwise go to the roots of plants; 2, represents the water table, or surface of stagnant water below which roots seldom go; 3, water of evaporation; 4, water of capillary attraction; 5, water of drainage, or stagnant water.

"In the second figure, 1 represents the surface-soil warmed by the sun and Summer rains; 2, the water-table nearly four feet below the surface—roots of the wheat plant have been traced to a depth of more than four feet in a free mold; 3, water of capillary attraction; 4, water of drainage, or stagnant water."

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page