Direction of Drains.—Whence comes the Water?—Inclination of Strata.—Drains across the Slope let Water out as well as Receive it.—Defence against Water from Higher Land.—Open Ditches.—Headers.—Silt-basins. Distance of Drains.—Depends on Soil, Depth, Climate, Prices, System.—Conclusions as to Distance. Depth of Drains.—Greatly Increases Cost.—Shallow Drains first tried in England.—10,000 Miles of Shallow Drains laid in Scotland by way of Education.—Drains must be below Subsoil plow, and Frost.—Effect of Frost on Tiles and Aqueducts. DIRECTION OF DRAINS.Whether drains should run up and down the slope of the hill, or directly across it, or in a diagonal line as a compromise between the first two, are questions which beginners in the art and mystery of drainage usually discuss with great zeal. It seems so plain to one man, at the first glance, that, in order to catch the water that is running down under the soil upon the subsoil, from the top of the hill to the bottom, you must cut a ditch across the current, that he sees no occasion to examine the question farther. Another, whose idea is, to catch the water in his drain before it rises to the surface, as it is passing up from below or running along on the subsoil, and keep it from rising higher than the bottom of his ditch, thinks it quite as obvious that the drains should run up and down the slope, that the water, once entering, may remain in the drain, going directly down hill to the outlet. A third hits on the Keythorpe system, and regarding the water as These different ideas of men, if examined, will be found to result mainly from their different notions of the underground circulation of water. In considering the Theory of Moisture, an attempt was made to suggest the different causes of the wetness of land. To drain land effectually, we must have a correct idea of the sources of the water that makes the particular field too wet; whether it falls from the clouds directly upon it; or whether it falls on land situated above it and sloping towards it, so that the water runs down, as upon a roof, from other fields or slopes to our own; or whether it gushes up in springs which find vent in particular spots, and so is diffused through the soil. If we have only to take care of the water that falls on our own field, from the clouds, that is quite a different matter from draining the whole adjoining region, and requires a different mode of operation. If your field is in the middle, or at the foot, of an undrained slope, from which the water runs on the surface over your land, or soaks through it toward some stream or swamp below, provision must be made not only for drainage of your own field, but also for partial drainage of your neighbor's above, or at least for defence against his surplus of water. The first, and leading idea to be kept in mind, as governing this question of the direction of drains, is the simple fact that water runs down hill; or, to express the fact more scientifically, water constantly seeks a lower level by the force of gravitation, and the whole object of drains is to open lower and still lower passages, into which the water may fall lower and lower until it is discharged from our field at a safe depth. Water goes down, then, by its own weight, unless there is something through which it cannot readily pass, to bring it out at the surface. It will go into the drains, only because they are lower than the land drained. It will never go upward to find a drain, and it will go toward a drain the more readily, in proportion as the descent is more steep toward it. To decide properly what direction a drain should have, it is necessary, then, to have a definite and a correct idea as to what office the drain is to perform, what water is to fall into it, what land it is to drain. Suppose the general plan to be, to lay drains forty feet apart, and four feet deep over the field, and the question now to be determined, as to the direction, whether across, or up and down the slope, there being fall enough to render either course practicable. The first point of inquiry is, what is expected of each drain? How much and what land should it drain? The general answer must be, forty feet breadth, either up and down the slope, or across it; according to the direction. But we must be more definite in our inquiry than even this. From what forty feet of land will the water fall into the drain? Obviously, from some land in which the water is higher than the bottom of the drain. If, then, the drain run directly across the slope, most of the water that can fall into it, must come from the forty feet breadth of land between the drain in question, and the drain next above it. If the water were falling on an impervious surface, it would all run according to the slope of the surface, in which case, by the way, no drains but those across, could catch any of it except what fell upon the drains. But the whole theory of drainage is otherwise, and is based on the idea that we change the course of the underground flow, by drawing out the water Upon the best view the writer has been able to take of the two systems as to the direction of drains, there is but a very small advantage in theory in favor of either over the other, in soil which is homogeneous. But it must be borne in mind that homogeneous soil is rather the exception in nature than the rule. Without undertaking to advance or defend any peculiar geological views of the structure of the earth, or of the depositions or formations that compose its surface, it may be said, that very often the first four feet of subsoil is composed of strata, or layers of earth of varying porosity. Beneath sand will be found a stratum of clay, or of compact or cemented gravel, and frequently these strata are numerous and thin. Indeed, if there be not some stratum below the soil, which impedes the passage of water, it would pass downward, and the land would need no artificial drainage. Quite often it will be found that the dip or inclination of the various strata below the soil is different from that of the surface. The surface may have a considerable slope, while the lower strata lie nearly level, as if they had been cut through by artificial grading. The following figure from the Cyclopedia of Agriculture, with the explanation, fully illustrates this idea. "In many subsoils there are thin partings, or layers, of porous materials, interspersed between the strata, which, although not of sufficient capacity to give rise to actual springs, yet exude sufficient water to indicate their presence. These partings occasionally crop out, and give rise to those damp spots, which are to be seen diversifying the surface of fields, when the drying breezes of Spring have begun to act upon them. In the following cut, the light lines represent such partings. "Now, it will be evident, in draining such land, that if the drains be disposed in a direction transverse or oblique to the slope, it will often "But again, even though it does reach these partings, as at C, a considerable portion of water will escape from the drain itself, and flow to the lower level of its old point of discharge at D. Whereas, a drain cut in the line of the slope, as from D to E, intersects all these partings, and furnishes an outlet to them at a lower level than their old ones." These reasons are, it is true, applicable only to land of peculiar structure; but there are reasons for selecting the line of greatest fall for the direction of drains which are applicable to all lands alike. "The line of the greatest fall is the only line in which a drain is relatively lower than the land on either side of it." Whether we regard the surplus water as having recently fallen upon the field, and as being stopped near the surface by an impervious stratum, or as brought down on these strata from above, we have it to be disposed of as it rests upon this stratum, and is borne out by it to the surface. If there is a decided dip, or inclination, of this stratum outward down the slope, it is manifest that the water cannot pass backward to a cross drain higher up the slope. The course of the water must be downward upon the stratum on which it lies, and so all between two cross But in such case a drain down the slope gives to the water borne up by these strata, an outlet of the depth of the drain. If the drain be four feet deep, it cuts the water-bearing strata each at that depth, and takes off the water. In these cases, the different layers of clay or other impervious "partings," are like the steps of a huge stairway, with the soil filling them up to a regular grade. The ditch cuts through these steps, letting the water that rests on them fall off at the ends, instead of running over the edges. Drains across the slope have been significantly termed "mere catch-waters." If we wish to use water to irrigate lands, we carefully conduct it along the surface across the slope, allowing it to flow over and to soak through the soil. If we desire to carry the same water off the field as speedily as possible, we should carry our surface ditch directly down the slope. Now, looking at the operation of drains across the slope, and supposing that each drain is draining the breadth next above it, we will suppose the drain to be running full of water. What is there to prevent the water from passing out of that drain in its progress, at every point of the tiles, and so saturating the breadth below it? Drainpipes afford the same facility for water to soak out at the lower side, as to enter on the upper, and there is the same law of gravitation to operate in each case. Mr. Denton gives instances in which he has observed, where drains were carried across the slope, in Warwickshire, lines of moisture at a regular distance below the drains. He could ascertain, he says, the depth of the drain itself, by taking the difference of height between the line of the "I recently had an opportunity, in Scotland, of gauging the quantity of water traveling along an important drain carried obliquely across the fall, when I ascertained with certainty, that, although the land through which it passed was comparatively full of water, the drain actually lost more than it gained in a passage of several chains through it." So far as authority goes, there seems, with the exception of some advocates of the Keythorpe system, of which an account has been given, to be very little difference of opinion. Mr. Denton says: "With respect to the direction of drains, I believe very little difference of opinion exists. All the most successful drainers concur in the line of the steepest descent, as essential to effective and economical drainage. Certain exceptions are recognized in the West of England, but I believe it will be found, as practice extends in that quarter, that the exceptions have been allowed in error." In another place, he says: "The very general concurrence in the adoption of the line of greatest descent, as the proper course for the minor drains in soils free from rock, would almost lead me to declare this as an incontrovertible principle." Allusion has been made to cases where we may have to defend ourselves from the flow of water from higher undrained lands of our neighbor. To arrest the flow of mere surface water, an open ditch, or catch-water, is the most effectual, as well as the most obvious mode. There are many instances in New England, where lands upon the lowest slopes of hills are overflowed by water which fell high up upon the hill, and, after passing downward till arrested by rock formation, is borne out again to the surface, in such quantity as to produce, just at the foot of the hill, almost a swamp. This land is usually rich from the wash of the hills, but full of cold water. To effect perfect drainage of a portion of this land, which we will suppose to be a gentle slope, the first object must be to cut off the flow of water upon or near the surface. An open ditch across the top would most certainly effect this object, and it may be doubtful whether any other drain would be sufficient. This would depend upon the quantity of water flowing down. If the quantity be very great at times, a part of it would be likely to flow across the top of an under-drain, from not having time to percolate downward into it. In all cases, it is advised, where our work stops upon a slope, to introduce a cross-drain, connecting the tops of all the minor-drains. This cross-drain is called a header. The object of it is to cut off the water that may be passing along in the subsoil down the slope, and which would otherwise be likely to pass downward between the system of drains to a considerable distance before finding them. If we suppose the ground saturated with water, and our drains running up the slope and stopping at 4 feet depth, with no header connecting them, they, in effect, stop against 4 feet head of water, and in order to drain the land as far up as they go, must not only take their fair proportion of water which lies between them, but must draw down this 4 feet head beyond them. This they cannot do, because the water from a higher source, with the aid of capillary attraction, and the friction or resistance met with in percolation, will keep up this head of water far above the drained level. In railway cuttings, and the like, we often see a slope of this kind cut through, without drying the land above the cutting; and if the slope be disposed in alternate layers of sand or gravel, and clay, the water will continue to flow out high up on the perpendicular bank. Even in porous soils of homogeneous character, it will be found that the head of water, if we may use the expression, is Whether, in a particular case, a header alone will be sufficient to cut off the flow of water from the higher land, or whether, in addition to the header, an open catch-water may be required, must depend upon the quantity of water likely to flow through or upon the land. An under-drain might be expected to absorb any moderate quantity of what may be termed drainage-water, but it cannot stop a river or mill-stream; and if the earth above the tiles be compact, even water flowing through the soil with rapidity, might pass across it. If there is reason to apprehend this, an open ditch might be added to the header; or, if this is not considered sufficiently scientific or in good taste, a tile-drain of sufficient capacity may be laid, with the ditch above it carefully packed with small stones to the top of the ground. Such a drain would be likely to receive sand and other obstructing substances, as well as a large amount of water, and should, for both reasons, be carried off independently of the small drains, which would thus be left to discharge their legitimate service. Where it is thought best to connect an open, or surface drain, with a covered drain, it will add much to its security against silt and other obstructions, to interpose a trap or silt-basin at the junction, and thus allow the water to pass off comparatively clean. Where, however, there is a large flow of water into a basin, it will be kept so much in motion as to carry along with it a large amount of earth, and thus endanger the drain below, unless it be very large. DISTANCES APART, OR FREQUENCY OF DRAINS. The reader, who has studied carefully the rival systems of "deep drainage" and "thorough drainage," has seen that the distance of drains apart, is closely connected with that controversy. The greatest variety of opinion is expressed by different writers as to the proper distances, ranging all the way from ten feet apart to seventy, or even more. Many English writers have ranged themselves on one side or the other of some sharp controversy as to the merits of some peculiar system. Some distinguished geologist has discovered, or thinks he has, some new law of creation by which he can trace the underground currents of water; or some noble noble lord has "patronized" into notice some caprice of an aspiring engineer, and straight-way the kingdom is convulsed with contests to set up or cast down these idols. By careful observation, it is said, we may find "sermons in stones, and good in everything;" and, standing aloof from all exciting controversies, we may often profit, not only by the science and wisdom of our brethren, but also by their errors and excesses. If, by the help of the successes and failures of our English neighbors, we shall succeed in attaining to their present standard of perfection in agriculture, we shall certainly make great advances upon our present position. As the distances of drains apart, depend manifestly on many circumstances, which may widely vary in the diversity of soil, climate, and cost of labor and materials to be found in the United States, it will be convenient to arrange our remarks on the subject under appropriate heads. DISTANCES DEPEND UPON THE NATURE OF THE SOIL.Water runs readily through sand or gravel. In such soils it easily seeks and finds its level. If it be drawn Yet, even such sands may require draining. A body of sandy soil frequently lies not only upon clay, but in a basin; so that, if the sand were removed, a pond would remain. In such a case, a few deep drains, rightly placed, might be sufficient. This, however, is a case not often met with, though open, sandy soil upon clay is a common formation. Then there is the other extreme of compact clay, through which water seems scarcely to percolate at all. Yet it has water in it, that may probably soak out by the same process by which it soaked in. Very few soils, of even such as are called clay, are impervious to water, especially in the condition in which they are found in nature. To render them impervious, it is necessary to wet and stir them up, or, as it is termed, puddle them. Any soil, so far as it has been weathered—that is, exposed to air, water and frost—is permeable to water to a greater or less degree; so that we may feel confident that the upper stratum of any soil, not constantly under water, will readily allow the water to pass through. And in considering the "Drainage of Stiff Clays," we shall see that the most obstinate clays are usually so affected by the operation of drainage, that they crack, and so open passages for the water to the drains. All gravels, black mud of swamps, and loamy soils of any kind, are readily drained. Occasionally, however—even in tracts of easy drainage, as a whole—deposits are found of some combinations with iron, so firmly cemented together, as to be almost impenetrable with the pick-axe, and apparently impervious Whenever a wet spot is observed, seek for the cause, and be satisfied whether it is wet because a spring bursts up from the bottom; or because the subsoil is impervious, and will not allow the surface-water to pass downward. Ascertain carefully the cause of the evil, and then skillfully doctor the disease, and not the symptoms merely. A careful attention to the theory of moisture, will go far to enable us properly to determine the requisite frequency of drains. DISTANCES DEPEND UPON THE DEPTH OF THE DRAINS.The relations of the depth and distance of drains will be more fully considered, in treating of the depth of drains. The idea that depth will compensate for frequency, in all cases, seems now to be abandoned. It is conceded that clay-soils, which readily absorb moisture, and yet are strongly retentive, cannot be drained with sufficient rapidity, or even thoroughness, by drains at any depth, unless they are also within certain distances. In a porous soil, as a general rule, the deeper the drain, the further it will draw. The tendency of water is to lie level in the soil; but capillary attraction and mechanical obstructions offer constant resistance to this tendency. The farther water has to pass in the soil, the longer time, other things being equal, will be required for the passage. Therefore, although a single deep drain might, in ten days lower the water-line as much as two drains of the same depth, or, in other words, might draw the water all down to its own level, yet, it is quite evident that the two drains might do the work in less time—possibly, in five days. We have seen already the necessity of laying drains deep enough to be below the reach of the subsoil plow and below frost, so that, in the Northern States, the DISTANCES DEPEND UPON CLIMATE.Climate includes the conditions of temperature and moisture, and so, necessarily, the seasons. In the chapter which treats of Rain, it will be seen that the quantity of rain which falls in the year is singularly various in different places. Even, in England, "the annual average rain-fall of the wettest place in Cumberland is stated to be 141 inches, while 19½ inches may be taken as the average fall in Essex. In Cumberland, there are 210 days in the year in which rain falls, and in Chiswick, near London, but 124." A reference to the tables in another place, will show us an infinite variety in the rain-fall at different points of our own country. If we expect, therefore, to furnish passage for but two feet of water in the year, our drains need not be so numerous as would be necessary to accommodate twice that quantity, unless, indeed, the time for its passage may be different; and this leads us to another point which should ever be kept in mind in New England—the necessity of quick drainage. The more violent storms and showers of our country, as compared with England, have been spoken of when considering The Size of Tiles. The sudden transition from Winter to Summer, from the breaking up of deep snows with the heavy falls of rain, to our brief and hasty planting time, requires that our system of drainage should be efficient, not only to take off large quantities of water, but to take them off in a very short "One inch in depth," says an English writer, "is a very heavy fall of rain in a day, and it generally takes two days for the water to drain fully from deep drained land." One inch of water over an acre is calculated to be something more than one hundred tons. This seems, in gross, to be a large amount, but we should expect that an inch, or even two inches of water, spread evenly over a field, would soon disappear from the surface; and if not prevented by some impervious obstruction, it must continue downward. It is said, on good authority, that, in England, the smallest sized pipes, if the fall be good, will be sufficiently large, at ordinary distances, to carry off all the surplus water. In the author's own fields, where two-inch tiles are laid at four feet depth and fifty feet apart, in an open soil, they seem amply sufficient to relieve the ground of all surplus water from rain, in a very few days. Most of them have never ceased to run every day in the year, but as they are carried up into an undrained plain, they probably convey much more water than falls upon the land in which they lie. So far as our own observation goes, their flow increases almost as soon as rain begins to fall, and subsides, after it ceases, about as soon as the water in the little river into which they lead, sinks back into its ordinary channel, the freshet in the drains and in the stream being nearly simultaneous. Probably, two-inch pipes, at fifty feet distances, will carry off, with all desirable rapidity, any quantity of water that will ever fall, if the soil be such that the water can pass through it to the distance necessary to find the drains; but it is equally probable that, in a compact clay soil, fifty feet distance is quite too great for sufficiently DISTANCES DEPEND UPON THE COMPARATIVE PRICES OF LABOR AND TILES.The fact, that the last foot of a four-foot drain costs as much labor as the first three feet, is shown in another chapter, and the deeper we go, the greater the comparative cost of the labor. With tiles at $10 per thousand, the cost of opening and filling a four-foot ditch is, in, round numbers, by the rod, equal to twice the cost of the tiles. In porous soils, therefore, where depth may be made to compensate for greater distance, it is always a matter for careful estimate, whether we shall practice true economy by laying the tiles at great depths, or at the smallest depth at which they will be safe from frost and the subsoil plow, and at shorter distances. The rule is manifest that, where labor is cheap and tiles are dear, it is true economy to dig deep and lay few tiles; and, where tiles are cheap and labor is dear, it is economy to make the number of drains, if possible, compensate for less depth. DISTANCES DEPEND UPON SYSTEM.While we would not lay down an arbitrary arrangement for any farm, except upon a particular examination, and while we would by no means advocate what has been called the gridiron system—of drains everywhere at equal depths and distances—yet some system is absolutely essential, in any operation that approaches to thorough drainage. If it be only desired to cut off some particular springs, or to assist Nature in some ravine or basin, a deep drain here and there may be expedient; but when any considerable surface is to be drained, there can be no good work without a connected plan of operations. Mains must be laid from the outfall, through the lowest parts; and into the mains the smaller drains must be conducted, upon such a system as that there may be the proper fall or inclination throughout, and that the whole field shall be embraced. Again, a perfect plan of the completed work, accurately drawn on paper, should always be preserved for future reference. Now it is manifest, that it is impossible to lay out a given field, with proper mains and small drains, dividing the fall as equally as practicable between the different parts of an undulating field, preserving a system throughout, by which, with the aid of a plan, any drain may at any time be traced, without making distances conform somewhat to the system of the whole. It is easily demonstrable, too, that drains at right angles with the mains, and so parallel with each other, are the shortest possible drains in land that needs uniform drainage. They take each a more uniform share of the water, and serve a greater breadth of soil than when laid at acute angles. While, therefore, it may be supposed that in particular parts of the field, distances somewhat greater or less might be advisable, considered independently, yet in practice, it will be found best, usually, to pay becoming deference to order, "Heaven's first law," and sacrifice something of the individual good, to the leading idea of the general welfare. In the letter of Mr. Denton, in another chapter, some remarks will be found upon the subject of which we are treating. The same gentleman has, in a published paper, illustrated the impossibility of strict adherence to any arbitrary rule in the distances or arrangement of drains, as follows: "The wetness of land, which for distinction's sake, I have called 'the water of pressure,' like the water of springs, to which it is nearly allied, can be effectually and cheaply removed only by drains devised for, and "A consideration, too, of the varying inclinations of surface, of which instances will frequently occur in the same field, necessitates a departure from uniformity, not in direction only, but in intervals between drains. Take, for instance, the ordinary case of a field, in which a comparatively flat space will intervene between quickly rising ground and the outfall ditch. It is clear that the soak of the hill will pervade the soil of the lower ground, let the system of drainage adopted be what it may; and, therefore, supposing the soil of the hill and flat to be precisely alike, the existence of bottom water in a greater quantity in the lower lands than in the higher, will call for a greater number of drains. It is found, too, that an independent discharge or relief of the water coming from the hill, at B, should always be provided, in order to avoid any impediment by the slower flow of the flatter drains. "Experience shows that, with few exceptions, hollows, or 'slacks,' observable on the surface, as at B B, have a corresponding undulation of subsoil and that any system which does not provide a direct "Still, in spite of experience, we often observe a disregard of these facts, even in works which are otherwise well executed to a depth of four feet, but fettered by methodical rules, and I feel compelled to remark, that it has often occurred to me, when I have observed with what diligent examination the rules of depth and distance have been tested, that if more attention had been paid to the source of injury, and to the mode of securing an effective and permanent discharge of the injurious water, much greater service would be done." In conclusion, as to distances, we should advise great caution on the part of beginners in laying out their drains. Draining is too expensive a work to be carelessly or unskillfully done. A mistake in locating drains too far apart, brings a failure to accomplish the end in view. A mistake in placing them too near, involves a great loss of labor and money. Consult, then, those whose experience has given them knowledge, and pay to a professional engineer, or some other skillful person, a small amount for aid, which will probably save ten times as much in the end. We have placed our own drains in porous, though very wet soil, at fifty feet distances, which, in most soils, might be considered extremely wide. We are fully satisfied that they would have drained the land as well at sixty feet, except in a few low places, where they could not be sunk four feet for want of fall. In most New England lands that require drainage, we believe that from 40 to 50 feet distances, with four feet depth, will prove sufficient. Upon stiff clays, we have no experience of our own of any value, although we have a field of the stiffest clay, drained last season at 40 feet distances and four feet depth. In England, this would, probably, prove insufficient, and, perhaps, it will prove so here. DEPTH OF DRAINS.Cheap and temporary expedients in agriculture are the characteristics of us Americans, who have abundance of land, a whole continent to cultivate, and comparatively few hands and small capital with which to do the work. We erect temporary houses and barns and fences, hoping to find time and means at a future day, to reconstruct them in a more thorough manner. We half cultivate our new lands, because land is cheaper than labor; and it pays best for the present, rather to rob our mother earth, than to give her labor for bread. The easy and cheap process in draining, is that into which we naturally fall. It is far easier and cheaper to dig shallow than deep drains, and, therefore, we shall not dig deep unless we see good reason to do so. If, however, we carefully study the subject, it will be manifest that superficial drainage is, in general, the result of superficial knowledge of the subject. Thorough-drainage does not belong to pioneer farming, nor to a cheap and temporary system. It involves capital and labor, and demands skill and system. It cannot be patched up, like a brush fence, to answer the purpose, from year to year, but every tile must be placed where it will best perform its office for a generation. In England, the rule and the habit in all things, is thoroughness and permanency; yet the first and greatest mistake there in drainage was shallowness, and it has required years of The lowest foot of a four-foot ditch is raised one foot higher, to get it upon the surface, than if the ditch were but three feet deep. In clays, and most other soils, the earth grows harder as we go deeper, and this consideration, in practice, will be found important. Again: the small amount of earth from a three-foot ditch, may lie conveniently on one bank near its edge, while the additional mass from a deeper one must be thrown further; and then is to be added the labor of replacing the additional quantity in filling up. On the whole, the point may be conceded, that the labor of opening and finishing a four-foot drain is double that of a three-foot drain. Without stopping here to estimate carefully the cost of excavation and the cost of tiles, it may be remarked, that, upon almost any estimate, the cost of labor, even in a three-foot drain in this country, yet far exceeds the cost of tiles: but, if we call them equal, then, if the additional foot of depth costs as much as the first three feet, we have the cost of a four-foot tile-drain fifty per cent. more than that of a three-foot drain. In other words, 200 rods of four-foot drain will cost just as much as 300 rods of three-foot drain. This is, probably, as nearly accurate as any general estimate that can be made at present. The principles upon which the calculations depend, having been thus suggested, it will not be difficult to vary them so as to apply them to the varying prices of labor and tiles, and to the use of the plow or other implements propelled by animals or steam, when applied to drainage in our country. The earliest experiments in thorough-drainage, in England, were at very small depths, two feet being, for a time, considered very deep, and large tracts were underlaid The general principle seems well established, that depth will compensate for width; or, in other words, that the deeper the drain, the farther it will draw. This principle, generally correct, is questioned when applied to peculiar clays only. As to them, all that is claimed is, that it is more economical to make the drains but three feet, because they must, even if deep, be near together—nobody doubting, that if four feet deep or more, and near enough, they will drain the land. In speaking of clay soil, it should always be borne in mind, that clay is merely a relative term in agriculture. "A clay in Scotland," says Mr. Pusey, "would be a loam in the South of England." Professor Mapes, of our own country, in the Working Farmer, says, "We are convinced, that, with thorough subsoil plowing, no clay soil exists in this country which might not be underdrained to a depth of four feet with advantage." There can be no doubt, that, with four-foot drains at proper distances, all soils, except some peculiar clays, may be drained, even without reference to the changes produced in the mechanical structure of soil by the operation. There is no doubt, however, that all soils are, by the admission of air, which must always take the place of the water drawn out, and by the percolation of water through them, rendered gradually more porous. Added to this, This topic deserves a careful and distinct consideration, which it will receive under the title of "Drainage of Stiff Clays." In discussing the subject of the depth of drains, we are not unmindful of the fact that, in this country, the leaders in the drainage movement, especially Messrs. Delafield, Yeomans, and Johnston, of New York, have achieved their truly striking results, by the use of tiles laid at from two and a half to three feet depth. On the "Premium Farm" of R. J. Swan, of Rose Hill, near Geneva, it is stated that there are sixty-one miles of under-drains, laid from two and a half to three feet deep. That these lands thus drained have been changed in their character, from cold, wet, and unproductive wastes, in many cases, to fertile and productive fields of corn and wheat, sufficiently appears. Indeed, we all know of fields drained only with stone drains two feet deep, that have been reclaimed from wild grasses and rushes into excellent mowing fields. In England and in Scotland, as we have seen, thousands of miles of shallow drains were laid, and were for years quite satisfactory. These facts speak loudly in favor of drainage in general. The fact that shoal drains produce results so striking, is a stumbling-block in the progress of a more thorough system. It may seem like presumption to say to those to whom we are so much indebted for their public spirit, as well as private enterprise, that they have not drained deep enough for the greatest advantage in the end. It would seem that they should know their own farms and their own results better than others. We We cannot, however, against the overwhelming weight of authority, and against the reasons for deeper drainage, which, to us, seem so satisfactory, conclude, that even three feet is, in general, deep enough for under-drains. Three-foot drains will produce striking results on almost any wet lands, but four-foot drains will be more secure and durable, will give wider feeding-grounds to the roots, better filter the percolating water, warm and dry the land earlier in Spring, furnish a larger reservoir for heavy rains, and, indeed, more effectually perform every office of drains. In reviewing our somewhat minute discussion of this essential point—the proper depth of drains—certain propositions may be laid down with considerable assurance. TILES MUST BE LAID BELOW THE REACH OF THE SUBSOIL PLOW.Let no man imagine that he shall never use the subsoil plow; for so surely as he has become already so much alive to improvement, as to thorough-drain, so surely will he next complete the work thus begun, by subsoiling his land. The subsoil plow follows in the furrow of another plow, and if the forward plow turn a furrow one foot deep, the subsoil may be run two feet more, making three feet in all. Ordinarily, the subsoil plow is run only to the depth of 18 or 20 inches; but if the intention were to run it no deeper than that, it would be liable to dip much deeper occasionally, as it came suddenly upon the soft places above the drains. The tiles should lie far enough below the deepest path of the subsoil plow, not to be at all disturbed by its pressure in passing over the TILES MUST BE LAID BELOW FROST.This is a point upon which we must decide for our selves. There is no country where drainage is practiced, where the thermometer sinks, as in almost every Winter it does in New England, to 20° below zero (Fahrenheit). All writers seem to assume that tile-drains must be injured by frost. What the effect of frost upon them is supposed to be, does not seem very clear. If filled with water, and frozen, they must, of course, burst by the expansion of the water in freezing; but it would probably rarely happen, that drainage-water, running in cold weather, could come from other than deep sources, and it must then be considerably above the freezing point. Still; we know that aqueduct pipes do freeze at considerable depths, though supplied from deep springs. Neither these nor gas-pipes are, in our New England towns, safe below frost, unless laid four feet below the surface; and instances occur where they freeze at a much greater depth, usually, however, under the beaten paths of streets, or in exposed positions, where the snow is blown away. In such places, the earth sometimes freezes solid to the depth of even six feet. It will be suggested at once that our fields, and especially our wet lands, do not freeze so deep, and this is true; but it must be borne in mind, that the very reason why our wet lands do not freeze deeper, may We are aware, that upon this, as every other point, ascertained facts may seem strangely to conflict. In the town of Lancaster, among the mountains in the coldest part of New Hampshire, many of the houses and barns of the village are supplied with water brought in aqueducts from the hills. We observed that the logs which form the conduit are, in many places, exposed to view on the surface of the ground, sometimes partly covered with earth, but generally very little protected. There has not been a Winter, perhaps in a half century, when the thermometer has not at times been 10° below Zero, and often it is even lower than that. Upon particular inquiry, we ascertained that very little inconvenience is experienced there from the freezing of the pipes. The water is drawn from deep springs in the mountains, and fills the pipes of from one to two-inch bore, passing usually not more than one or two hundred rods before it is discharged, and its warmth is sufficient, with the help of its usual snow covering, to protect it from the frost. We have upon our own premises an aqueduct, which supplies a cattle-yard, which has never been covered more than two feet deep, and has never frozen in the nine years of its use. We should not, therefore, apprehend much danger from the freezing of pipes, even at shallow depths, if they carry all the Winter a considerable stream of spring-water; but in pipes which take merely the surface water that passes into them by percolation, we should expect little or no aid from the water in preventing frost. The water filtering downward in Winter must be nearly Neither hard-burnt bricks nor hard-burnt tiles will crumble by mere exposure to the Winter weather above ground, though soft bricks or tiles will scarcely endure a single hard frost. Too much stress cannot be laid upon the importance of using hard-burnt tiles only, as the failure of a single tile may work extensive mischief. Writers seem to assume, that the freezing of the ground about the drains will displace the tiles, and so destroy their continuity, and this may be so; though we find no evidence, perhaps, that at three or four feet, there is any disturbance of the soil by freezing. We dig into clay, or into our strong subsoils, and find the earth, at three feet deep, as solid and undisturbed as at twice that depth, and no indication that the frost has touched it, though it has felt the grip of his icy fingers every year since the Flood. With these suggestions for warning and for encouragement, the subject must be left to the sound judgment of the farmer or engineer upon each farm, to make the matter so safe, that the owner need not have an anxious thought, as he wakes in a howling Winter night, lest his drains should be freezing. Finally, in view of the various considerations that have been, suggested, as well as of the almost uniform authority of the ablest writers and practical men, it is safe to conclude, that, in general, in this country, wherever sufficient outfall can be had, four feet above the top of the tiles should be the minimum depth of drains. |