It may with justice be said that in no department of applied bacteriology is more activity apparent than in that which has for its object the building up of a scientific basis for dairy practice. Although this is undoubtedly true, yet, unfortunately, unlike its continental neighbours, the British public, with whom practically rests the control of our dairy industries, has hitherto held itself strangely aloof, evincing little or no sympathy in researches which, even if they fail to interest, should surely impress with a sense of the great hygienic importance attaching to them. But this apathy is not only to be deprecated in the interests of health, but also on economic grounds. We have only to turn to the reports issued by the Board of Agriculture to realise what this characteristic British apathy has brought about in the dairy industry of this country. Thus in the year 1898 we are officially informed that we imported 359,425,136 pounds of butter, the little country of Denmark alone sending over to us 163,883,360 pounds! Our cheese imports reached the enormous total of 262,018,624 pounds, whilst 817,274 cwts. of condensed milk and 10,691 of milk and cream were supplied to us from without. If we glance at the energy and enthusiasm displayed by other countries, and notably Denmark, in the prosecution and scientific development of the dairy industry, we shall not wonder at the high standard of excellence achieved, or at the readiness displayed by Great Britain to absorb their produce. Thus, whilst in England it may be questioned whether in a single dairy the artificial souring of cream by pure cultures of bacteria is carried out, in Denmark the use of so-called special bacterial butter-starters is rapidly gaining ground. Thus, whereas in 1888 at the Odense Exhibition not a single sample of butter was exhibited in which pure bacterial cultures had been employed, in 1894, 46·7 per cent. of the samples shown were thus produced, in 1896, 89·2 per cent., in 1897, 94·4 per cent., 1898, 95·9 per cent, and in 1899, every sample, and since this year nearly every dairy of importance in the country employs special bacterial butter-starters. The Danes are enlightened and shrewd enough to realise that in order to retain their existing markets and acquire fresh ones, it is necessary to take advantage of every improvement in methods of manufacture which scientific research has placed at their disposal, and their reward is justly reaped in the prosperity of their dairy industry and the high reputation enjoyed by their produce. If we contrast the adaptability and elasticity of the continental mind in regard to new discoveries with the crude conservatism of the British manufacturer, then, indeed, is the success of our rivals and corresponding decline of our own prosperity most perfectly intelligible. Again, we are informed that the recent visit to London of a deputation representing Russian agricultural interests is already bearing fruit, and contracts have been signed for the regular importation of large quantities of Russian dairy produce. The English market is already well supplied with Russian eggs, but an opening has now been found here for the disposal of Russian butter and cheese. Finland, again, the total population of which is less than half that of London, exports to this country no less than 12 million marks' worth of butter annually. As a writer recently put it: "Foreigners and colonists have captured our butter markets; if the consumption of milk sterilised in bottles becomes the fashion, they will likewise capture our milk markets." And this is no fanciful suggestion, for whilst the production of Pasteurised milk does not involve any considerable outlay in apparatus, its transport may be effected with the greatest ease. Indeed, frozen milk has been introduced into England from Norway and Sweden. It is first Pasteurised, then frozen in large wooden boxes, and shipped in the congealed condition, in which state it remains unchanged for a long period of time. But it is undoubtedly with the public that the responsibility really rests, for as long as it does not care to create the demand for Pasteurised dairy products all the efforts of enlightened agricultural authorities in this country must inevitably end in failure. On the Continent and in America dairy-bacteriology, as already pointed out, has made enormous strides, and has practically revolutionised the conduct of dairy work; and if we could but rouse ourselves from our lethargy we likewise should be able not only to boast of progress, but also to better hold our own ground in this important branch of agriculture; and one result would be that dairy troubles, which for so long have been accepted as more or less necessary evils, would yield here, as they have done elsewhere, to a more rigid attention to details, the significance of which scientific research has so successfully shown. Some of the most easily preventable, but at the same time most aggressively assertive, dairy troubles are undoubtedly directly dependent upon the conduct of milking operations. In the first place, the cow itself is only too frequently in an uncleanly condition, and as its coat offers exceptional facilities for the harbouring of dust and dirt, the danger of foreign particles falling into the milk is always present unless precautions are taken to negative, or at least minimise, all such chances of contamination. Professor H. L. Russell, of the Wisconsin Agricultural Experiment Station, cites in his little volume on Dairy Bacteriology an instructive experiment which brings home very forcibly the importance of such precautions. A cow pastured in a meadow was selected for the experiment, and the milking was done out of doors, so as to eliminate as far as possible any intrusion of disturbing foreign factors into the experiment, such as the access of microbes from the air in the milking-shed. The cow was first partially milked without any precautions whatever being taken, and during the process a small glass dish containing a layer of sterile nutrient gelatine was exposed for one minute beneath the animal's body, in close proximity to the milk-pail. The milking was then interrupted, and before being resumed the udder, flank, and legs of the animal were thoroughly cleansed with water; a second gelatine surface was then exposed in the same place and for the same length of time. The results of these two experiments are very instructive. When the cow was milked without any special precautions being taken, 3,250 bacteria were deposited per minute on an area equal to the surface of a ten-inch milk-pail; after, however, the animal had been cleansed, only 115 bacteria were deposited per minute on the same area. Thus a large number of organisms can, by very simple precautions and very little extra trouble, be effectually prevented from obtaining access to milk. Even in the event of the milk being subsequently Pasteurised, clean milking is of very great importance; but still more imperative is it when it is destined for consumption in its raw, uncooked condition. If we consider how cows become covered with dirt and slime, that obstinately adhere to them when they wade through stagnant ponds and mud, and realise the chance thus afforded for malevolent microbes to exchange their unsavoury surroundings for so satisfactory and nourishing a material as milk, then indeed precautions of cleanliness, however troublesome, will not appear superfluous. That a very real relationship does exist between the bacterial and dirt contents of milk has been clearly shown by actual investigation. A German scientist has made a special study of the subject, and has determined in a large number of milk samples the amount of foreign impurities present per litre, and the accompanying bacterial population per cubic centimetre. The following results may be taken as typical of those obtained: in milk containing 36·8 milligrammes of dirt per quart as many as 12,897,600 bacteria were present per cubic centimetre; in cleaner samples, with 20·7 milligrammes of dirt per quart, the number of bacteria fell to 7,079,820; whilst in a still more satisfactory sample, containing 5·2 milligrammes of dirt per quart, there were 3,338,775 bacteria per cubic centimetre. Such results indicate how important a factor is scrupulous cleanliness in milking operations in determining the initial purity of milk, for there is no doubt that bacterial impurities in milk are in the first instance, to a very great extent, controlled by the solid impurities present. I do not know of any determinations which have been made of the actual amount of such solid impurities present in our public milk-supplies, but such estimations have been made in many of those belonging to large cities in Germany. Thus, Professor Renk found in a litre of milk supplied to Halle about 75 milligrammes, whilst in another sample as much as 0·362 grammes per litre were detected. In Berlin 10 milligrammes, and in Munich 9 milligrammes per litre, were found. Dr. Backhaus has estimated that the city of Berlin alone consumes daily with its milk no less than 300 cwt. of cow-dung. If we associate these amounts of solid impurities with their consequent bacterial impurities, then we shall obtain some idea of what the microbial population of these milk-supplies may amount to. These impurities are almost wholly preventable, but, unfortunately, but little importance is apparently attached to their presence in milk as a rule by dairymen. In a letter published in the Sussex Daily News a correspondent and well-known authority on dairy matters sounds a timely note of warning to our dairy managers:— "I happen to know," he writes, "for a fact that Americans who visited one of our Dairy Shows at Islington were so disgusted at the method—or rather lack of cleanly method—exhibited there as our ordinary way of milking cows, that these visitors stated that nothing would induce them to drink milk while in England. I mention this circumstance so as to bring home to the minds of English dairy-farmers who may read this letter how very backward we are in this country as compared with more studious and careful foreign competitors. It is insisted upon by our foreign teachers that our cow-stalls are too short and not roomy enough, and our cow-houses badly constructed; that we do not (1) groom our cows or (2) clean the teats, nor (3) sponge their udders, bellies, and sides before milking with clean, tepid water; (4) that the milkers do not tie up the cow's tail nor clean their own hands and persons, nor (5) cover their clothes with a clean, well-aired blouse during milking; that (6) they generally milk in a foul atmosphere (bacterially), tainted with the odour of dung, brewer's grains, or farmyard refuse. I am sorry to state that there is too much solid fact about the contentions which, based upon bacteriology, are given as causes of injury to quality…. Cleanliness is now a matter requiring the primary attention of English dairy-farmers. The study of bacteria proves that such inattention is greatly the cause of foreign butters beating ours." It follows as a natural sequence that all the cans and vessels used for dairy purposes should be absolutely beyond suspicion of contamination. Professor Russell has shown by actual experiment that, even where the vessels are in good condition and fairly well cleaned, the milk has a very different bacterial population when collected in them and in vessels sterilised by steam. Two covered cans were taken, one of which had been cleaned in the ordinary way, and the other sterilised by steam for half an hour. Previous to milking the animal was carefully cleaned, and special precautions were taken to avoid raising dust, whilst the first milk, always rife with bacteria, was rejected. Directly after milking bacterial gelatine-plates were respectively prepared from the milk in these two pails, with the following results: In one cubic centimetre of milk taken from the sterilised pail there were 165 bacteria; in that taken from the ordinary pail as many as 4,265 were found. Another experiment illustrates perhaps even more strikingly the effect of cleanly operations in milking upon the initial bacterial contents of milk. The preliminary precautionary measures were carried out by an ordinary workman, and are in no sense so refined as to be beyond the reach of ordinary daily practice. "The milk was received in steamed pails, the udder of the animal, before milking, was thoroughly carded, and then moistened with water, so as to prevent dislodgment of dirt. Care was taken that the barn air was free from dust, and in milking the first few streams of milk were rejected. The milk from a cow treated in this way contained 330 bacteria per cubic centimetre, while that of the mixed herd, taken under the usual conditions, contained 15,500 in the same volume. The experiment was repeated under winter conditions, at which time the mixed milk showed 7,600 bacteria per cubic centimetre, while the carefully secured milk only had 210 in the same volume. In each of these instances the milk secured with greater care remained sweet over twenty-four hours longer than the ordinary milk." An organism which has exceptional opportunities for finding its way into cows' milk is the Bacillus coli communis, normally present in the fÆces of all animals. This microbe is a very undesirable adjunct to milk, and may greatly interfere with the souring process, by multiplying extensively, and so producing a change in the milk which renders it impossible for the particular souring bacteria to carry on their work, resulting in their collapse and ultimate extinction. But this is not the only injurious effect which these Coli bacilli can produce in milk, for there is a growing conviction that their presence is responsible for many intestinal disturbances with which young children are specially troubled. Quite recently determinations of the bacterial contents of cow-dung have been made, and it has been ascertained that a single gramme,[6] freshly collected, of this material may contain as many as 375,000,000 bacteria, of which the majority were found to be the above undesirable organism, the B. coli communis. Milk may also contain bacteria characterised by their remarkable resistance to heat, which is due to their possessing what is known as the hardy spore in addition to the ordinary rod form. The numbers in which they are present in milk varies with different samples; but they may be taken as a sort of index as to the care observed in milking, for they are always present in great quantity in uncleanly-collected milk. Careful studies have been made of this class of milk bacteria by Professor FlÜgge and others, and it has been found that when added to milk upon which puppies were subsequently fed the latter succumbed under symptoms of violent diarrhoea. The danger of even a few bacteria gaining access to milk is serious, on account of the fabulous rapidity with which they multiply when they find themselves in such congenial surroundings. Professor Freudenreich has made very exhaustive investigations to show how milk microbes may multiply in the time which elapses between milking and the receipt of the milk by the consumer. The following example will convey some notion of what bacterial propagation under these circumstances is capable of. The sample of milk in question was found to possess on reaching the laboratory, two and a half hours after milking, a little over 9,000 bacteria in a cubic centimetre. The sample was divided into three portions, which were kept at different temperatures, and after definite intervals of time they were examined. The following table shows at a glance the results obtained:—
Thus, after being kept in the laboratory for three hours the original 9,000 bacteria had in one case doubled, and in another more than trebled themselves. It will be seen that the temperature most favourable to the multiplication of these bacteria was 25 degrees Centigrade. If a sample of milk containing originally such a comparatively small number of bacteria—for a figure under 10,000 per cubic centimetre sinks into utter insignificance when we read of samples containing 2,500,000—if such relatively bacterially pure samples may support such prodigious numbers of these Lilliputians, what the microbial population of less satisfactory samples may amount to well-nigh baffles our powers of calculation. Professor Russell writes: "If we compare the bacterial flora of milk with that of sewage, a fluid that is popularly, and rightly, supposed to be teeming with germ life, it will almost always be observed that milk when it is consumed is richer in bacteria by far than the sewage of our large cities. Sedgwick, in his Report to the Massachusetts Board of Health for 1890, found that the sewage of the city of Lawrence contained at the lowest 100,000 germs, whilst the maximum number was less than 4,000,000 per cubic centimetre.[7] This range in numbers is much less than is usually found in the milk-supply of our large cities." Numerous researches have been carried out during the last half-dozen years to try and localise the origin of some of the principal dairy troubles, with a view to their possible extinction, or at least control. In the course of these investigations quite a number of the bacteria found in milk have been successfully hunted down, and their offences brought home to them. Thus, from so-called "bitter" milk a bacillus has been isolated by Professor Weigmann, and found responsible for this particular change. Another microbe was discovered in bitter cream whose office apparently consisted in rendering milk strongly acid and extremely bitter. Again, that objectionable condition of milk known as slimy, ropy, or stringy, is brought about by certain bacteria which render it viscous; whilst another crop of microbes are occupied in conferring upon it the power of sticking to everything that touches it, making it capable of being drawn out into threads from several inches to several feet in length. Although we object in this country to slimy milk, in Holland it is in special request for the production of a certain cheese known under the name of Edam. In Norway this kind of milk forms a popular drink called Taettemjolk, and to produce it artificially they put the leaves of the common butter-wort (Pinguicula vulgaris) into milk. Professor Weigmann has discovered a micro-organism which frequents the leaves of this plant endowed with particular powers of producing slimy milk, and doubtless the credit of furnishing Taettemjolk is really due to this microbe, and not to the innocent butter-wort. "Soapy" milk, again, has been traced to a specific germ discovered in large numbers in straw used for bedding, whilst it was also detected in the hay that served for fodder. During milking these sources had supplied the infection, and the peculiar fermentation was distinctly shown to be microbial in origin. So-called red and blue milk, and those various hues ranging from bright lemon to orange and amber, are also now known to be directly attributable to bacterial activity. But of even greater significance than all these bacterial dairy troubles is the risk of spreading disease which is furnished by milk contaminated with pathogenic micro-organisms. "There can be no shadow of doubt," said the Lancet now many years ago, "that the contagia of typhoid and scarlet fever are disseminated by milk, and that boiled milk enjoys a much greater immunity from the chance of conveying disease." This was written at a time when the study of bacteria was yet in its infancy, and before any direct experimental evidence had been obtained on the behaviour of microbes in milk or concerning the part played by them in the dissemination of disease. The writer evidently did not venture to cast further aspersions on the character of milk, or he might have included diphtheria amongst the diseases which can be spread by its means; but there is another omission which still more conclusively indicates the remote age in the history of bacterial science at which this correspondent to the Lancet wrote, and that is the absence of all reference to the tubercle bacillus in relation to milk. At the present day hardly a bacteriological journal is published which does not contain some reference to the question of tuberculosis and milk, and the transmissibility of this disease when present in cattle to man. As regards the dissemination of various zymotic diseases by milk, the evidence which has been collected points very conclusively to the responsible part which may be played by milk in this connection. Many instances have been cited, also, of the culpability of milk in distributing typhoid germs. A striking case which occurs to me, and which may be mentioned in passing, is one which occurred in a city in America a few years ago, in which an outbreak of this disease was traced to a dairy in which the vessels had been washed out with typhoidal-polluted water. No less than 386 cases of typhoid declared themselves in six weeks, and of this number over 97 per cent. occurred amongst families obtaining their milk from the same dairy. A careful inspection revealed the fact that the milk-cans had been rinsed out with water from a shallow well contaminated with typhoid dejecta. Diphtheria is also justly associated with infected milk, and if we take into consideration the now established fact that diphtheria bacilli thrive and multiply with particular facility in milk, even more so than in ordinary broth cultures; that they have been found in air in a vital and virulent condition, and may be scattered far and wide attached to dust particles; and if we remember the numerous opportunities offered for the infection of milk by persons handling it, who either themselves are suffering from this disease or are in diphtheria surroundings—then indeed we can readily understand how milk becomes a diphtheria-carrier of the first order. Tuberculosis in cattle, and how this disease may affect the character of dairy produce, is, as already pointed out, a subject which is attracting the attention of a large number of investigators. The general public is perhaps hardly aware of how widespread this disease is amongst cattle, and it is only of late years that very careful inquiries have elicited the fact that it is not only very extensively distributed, but may be present in animals to all outward appearance in perfect health. In Germany it was asserted a few years ago that every fifth cow was tuberculous, and even this was regarded as a moderate estimate. The distinguished Danish pathologist, Professor Bang, is responsible for the announcement that during the years 1891-3 17·7 per cent. of the animals slaughtered in Copenhagen were infected with tuberculosis. In Paris we have been told that, of every thirteen samples of milk sold, one was infected with tubercle bacilli, whilst in Washington one in every nineteen samples of milk was stated to be similarly tainted. The existence of tubercular disease in cows, and its transmission to other animals fed with their milk, has been brought out in a striking manner in investigations published by the Massachusetts Society for the Promotion of Agriculture. In one case as many as over 33 per cent. of the calves fed with milk from tuberculous cows succumbed to the same disease. According to Hirschberger, 10 per cent. of the cows living in the neighbourhood of towns where the conditions of their environment are not generally the most satisfactory or conducive to health suffer from tuberculosis, and 50 per cent. of these animals yield milk containing tubercle bacilli. The demand which is being made by municipal authorities to be invested with the power of inspecting the country farms from whence their cities are supplied with milk and other agricultural produce could not have received stronger support than was recently supplied by a case tried in Edinburgh, and as this is only a sample of what is doubtless a daily, although undetected occurrence in many municipalities, it will not be out of place to quote the following from the published report of the proceedings:— "A cow was brought into the city for sale as food, and the evidence showed it to be in the last stages of tubercular disease. 'Its head was hanging down; it breathed with difficulty, and it had frequent fits of coughing; while its udder was swollen with the disease.' All the organs were diseased, and the milk teemed with bacilli. Yet, it seemed, the milk from this animal had been regularly sent into Edinburgh for sale. In face of facts like these, it is difficult to see on what grounds the claim of towns to inspect country dairies doing a town business can be resisted. At least the towns should have the power to refuse admission to milk from sources not open to inspection. It is not enough for the county authorities to say that they inspect the dairies in their own areas. In this case the condition of the animal was only found out when it was brought into the town to be sold for food." Further comment is unnecessary! Some German investigators have discovered the interesting fact that the centrifugal method of separating milk not only has a remarkable effect upon its bacterial contents, but also upon tubercle bacilli when present. On examining the so-called "separator slime," it is found to contain not only large quantities of solid matters, but also masses of bacteria which have been thrown out during the operation. This method of treating milk has, curiously, a particular effect upon tubercle bacilli present, for Professor Scheurlen has found that they are nearly all left in the slime. Naturally his observation was not slow in being tested by other investigators; but Professor Bang has quite independently confirmed Scheurlen's discovery, and, still more recently, Moore purposely infected milk with these bacilli, and found that they were deposited in the slime to a most remarkable extent. Coupled, however, with this peculiar behaviour of tubercle bacilli in separated milk is the fact called attention to by Ostertag, that tuberculosis is much more prevalent among swine in Denmark and North Germany, where the centrifugal process in creaming is extensively used, and where, until recently, this slime was given to the animals in its raw, uncooked condition. Before leaving this subject of separated milk, reference may be made to a danger, which has recently been publicly called attention to, surrounding the use which is made of skim milk. By an arrangement with the farmers who supply the milk, those clients who principally use it for producing butter return the skim milk to them after it has been through the separator, when it is employed for stock-feeding purposes. The milk in large dairies derived from different farmers is mixed, and hence the skim milk which is returned is also mixed. Thus, in the event of the milk from one farm being infected, not only is the whole milk-supply of a particular dairy infected, but, in returning the mixed skim milk likewise infected in its proper proportion to the different farmers, the virus is distributed over several farms. So real is this danger, and such unfortunate results have followed this practice of returning mixed infected skim milk, that since 1894 the Prussian Government has issued special orders for its disinfection by means of heat, in the hope of coping with this difficulty. The longevity of the tubercle bacillus and its remarkable vitality under all kinds of untoward circumstances have not unnaturally added fresh significance to this frequent discovery of its presence in milk; moreover, laboratory experiments have shown that these germs can live for upwards of one hundred and twenty days in butter, and from sixty to seventy days in cheese. It is not surprising, therefore, to find a Royal Commission appointed in 1890 with the express object of inquiring and reporting upon "What is the effect, if any, of food derived from tuberculous animals on human health?" In the summary appended to the report we read: "Tuberculous matter in milk is exceptionally active in its operation upon animals fed either with milk or with dairy produce derived from it. No doubt the largest part of the tuberculosis which man obtains through his food is by means of milk containing tuberculous matter." That the Commissioners were alive to the great importance of this means of spreading disease is further shown by the following significant paragraph: "In regard to milk, we are aware of the preference by English people for drinking cow's milk raw, a practice attended by danger on account of possible contamination by pathogenic organisms." The Commissioners spared no pains in endeavouring to throw light upon the important question they were appointed to report upon, and five years elapsed before they published the results of their inquiries. A decade ago the opinions expressed by them represented the current opinions of the leading bacteriological authorities in scientific circles at home and abroad, and these opinions were gradually filtering down to the general public, which is so conservative in clinging to traditions and popular delusions, when, like a flash out of the blue, the bacteriological Jove, Professor Robert Koch, hurled his thunderbolt into the arena, and at the British Congress on Consumption, held in London in the summer of 1901, declared his belief that bovine and human tuberculosis were distinct diseases. The significance of such a challenge to current scientific opinion, and its far-reaching influence if proved to be correct, was quickly appreciated by the distinguished audience who had gathered to hear what so great an authority as Dr. Robert Koch had to say on consumption and its distribution. The vital question raised by the original discoverer of the tubercle bacillus is still the subject of discussion, experimental inquiry, and much controversy, and we cannot here attempt to discuss the pros and cons for the acceptance or rejection of this new theory concerning the character of tuberculosis. It would, however, be regrettable in the extreme if the publication of this opinion were to encourage dairy authorities to relax in the slightest the efforts now so tardily being made by them to protect their dairy produce and ensure its safety for food-supply. Before leaving this branch of the subject reference must be made to some very important researches recently published by Professor Ostertag, of Berlin, on the presence of tubercle bacilli in the milk derived from cows which, whilst reacting to the tuberculin test, exhibit no clinical symptoms of tuberculosis. The importance of this investigation to farmers and all breeders of stock is evident, for it has not infrequently been urged that all the milk from such tuberculin-reacting cows should be discarded for dietetic purposes. Professor Ostertag, at the request of the German Government, has carried out a most elaborate and very extensive series of investigations to determine the question as to whether such milk is dangerous to health. I cannot do better than quote the conclusions appended to the original memoir, in which Professor Ostertag expresses himself as follows: "The milk of cows which only react to tuberculin does not contain tubercle bacilli; calves and pigs can be fed during weeks and months with milk derived from such cows without contracting tuberculosis." A very important rider, however, is added, in which it is pointed out that inasmuch as no doubt exists as to the highly infectious character of the milk derived from cows the udders of which are tuberculous, and from animals in which the disease is clinically recognisable, the weeding out of all such animals must be regarded as the most important measure for the prevention of the dissemination of tuberculosis through milk. We must now pass on to a consideration of some of the methods which are available for obtaining germ-free milk, some of which are, however, attended with too great labour and inconvenience to admit of practical application. Thus, wishing to prepare some sterile milk without altering its chemical composition to feed certain microbes with, I had to patiently heat it for from one to two hours on five successive days, watching the while that the temperature remained between 58° and 65° centigrade. The milk was sterile, and I kept it for months, but such a process, of course, is impossible for domestic purposes. The addition of chemicals to milk is both undesirable and ineffectual; amongst such substances boracic acid, borax, and salicylic acid are employed, but whilst the two former have been found to produce but little effect upon disease germs present in milk, salicylic acid hinders curdling more than other substances, and even if added in the small proportion of twelve grains per quart is said to impart a taste to the milk, and is, moreover, incapable of destroying typhoid bacilli if present. Authorities are, moreover, not agreed as to the harmlessness of this ingredient, and in France the employment of salicylic acid in the preservation of food is strenuously opposed by doctors, who consider its habitual use injurious to health. A Departmental Committee of the Local Government Board was appointed in this country to inquire into the use of preservatives in foods. In their report they state that from 42 up to 126 grains of boracic acid were detected in milk offered for sale, and that on one occasion no less than 80 grains of this material were present in a pint of milk sold to their inspector. It is pointed out that as long as preservatives are permitted there is no guarantee against the addition of excessive amounts to milk, and that evidence has been obtained pointing to an injurious effect of boracised milk upon the health of young children. The Committee report that in Denmark the use of preservatives is strictly prohibited, and the prohibition is strongly enforced; neither are preservatives permitted in Belgium. The application of heat to milk is, in fact, the only advisable and reliable method for rendering it free from germs, but a great deal depends upon the manner in which the heat is applied and the cleanly condition or otherwise of the milk employed. The difficulties which have to be overcome in producing efficiently sterilised milk are due, in the first place, to the remarkable power of resisting heat which characterises not only some disease germs, but also some of the microbes which are particularly partial to milk; secondly, to the sensitiveness of milk to heat, as exhibited by its alteration in taste and other respects through exposure to high temperatures. To overcome these difficulties many ingenious pieces of apparatus have been devised, based upon a process originally introduced by Pasteur for preventing certain defects in wine and beer, and which consists in the application of a temperature of about 60° Centigrade. This process is known as Pasteurisation, after its renowned initiator. So-called "Pasteurised" milk has become during the last year or so increasingly popular in this country, whilst on the Continent it has been largely dealt in for several years past, and has commercially proved a great success. Indeed, so strong is the prejudice amongst our neighbours across the Channel against using unboiled milk that in Leipzig and other cities in Germany endeavours have been made by charitable and other societies to encourage the use of sterile milk amongst the poorer classes, whilst it has been stated that the introduction of Pasteurised milk among the poor of New York City, through the philanthropic efforts of Mr. Nathan Straus, has done much to reduce the high rate of mortality amongst infants during the hot summer months. In France, i.e. in Paris and Grenoble, in order to reduce if possible the lamentable mortality amongst infants from diarrhoea in the summer months, which was largely attributed to the use of unboiled milk, sterilised milk was distributed to the poor at the cost of the community in general. In Grenoble, according to statistics collected by Berlioz during the years 1894-6, the death-rate of infants under a year old in the months of July, August, and September fed on raw milk reached 69·3 per 1,000, whilst amongst those supplied with sterilised milk it was reduced to 27·9 per 1,000. Just, however, as all is not gold that glitters, so all sterilised milk so-called is not necessarily free from bacteria. Indeed, according to a recent German authority, "the complete and certain sterilisation of milk is not yet to hand." Dr. Weber examined the sterilised milk as supplied by various companies in the city of Berlin. As many as 150 bottles were tested from eight different sources, with the result that not one of these eight companies was found to be supplying milk free from bacteria, or, in other words, what it professed to be—sterile. True, the percentage of sterile bottles varied from 5 per cent. in some of the supplies to 86 per cent. in others. Thus it may be realised how, as has been already pointed out, difficult a matter it is to devise an efficient apparatus for the reliable sterilisation of milk. So far it appears that the best results have been obtained with an apparatus devised by Flaack, a director of the Brunswick Sterilising Milk Company, and known as the Flaack apparatus. Exhaustive examinations made during the course of a whole year in the Hygienic Institute at WÜrzburg never once showed a failure, all the samples tested being germ-free. Some supervision is, therefore, necessary in the case of these milk-sterilising companies to ensure that the public is obtaining what it is paying for, as it has been shown by Professor FlÜgge, a world-renowned authority on the subject of milk and its sterilisation, that the bacteria left over in these so-called sterilised milk samples are by no means invariably a harmless residue, but, on the contrary, may consist of individuals which he has gathered together in a class under the heading of poisonous peptonising bacteria, and which owe this unfortunate designation to the rapidity and energy with which they can engender the putrefaction of albumen. As indicating how essential it is that every detail in the sterilisation of milk should be adequately assessed, I may mention a paper recently published by H. L. Russell and E. G. Hastings, of the Wisconsin Agricultural Experiment Station in the United States, on the importance of Pasteurising milk in closed rather than in open vessels, bacteria having been found more resistant in milk when heated in contact with the air than in closed vessels, this variation being attributed to the formation of a surface pellicle, which readily forms on milk when heated in open vessels to a temperature of about 60° Centigrade or above. Experiments showed that organisms present in this pellicle or skin were capable of retaining their vitality when exposed to a temperature six degrees higher than that of the milk beneath the membrane in which they were destroyed. Objections to the use of boiled milk have been frequently made on the grounds of its being more difficult of digestion, and hence less wholesome than the raw article. I may only point out that in this, as in most other matters where opinions may be made or unmade, and in consequence of the facts available being scanty must be more or less arbitrary in character, Dr. Duclaux, the successor to Pasteur as Director of the Pasteur Institute in Paris, has expressed himself as follows in an article on "La digestibilitÉ du lait stÉrilisÉ." After reviewing the various special researches which have been made on the subject, he says:— "Ceci nous amÈne À une conclusion qu'il faut bien avoir le courage de tirer, c'est que ces Études chimiques sur la digestibilitÉ du lait ne sont pas adÉquates À la question À rÉsoudre…. En attendant, tenons-nous-en À cette conclusion gÉnÉrale, que le lait pasteurisÉ, chauffÉ ou stÉrilisÉ, est encore du lait, devant la science comme devant la pratique, et que si son emploi prÉsente parfois des inconvÉnients, ceux-ci sont lÉgers et amplement compensÉs par les avantages." |