Title image Six Typical ProblemsThe questions we listed in Part I cover a very broad area of science and technology. Their answers involve, more than anything else, physics, electrical engineering, and mechanical engineering. Some, however, also require that the men who work on them know chemistry, metallurgy, mathematics, and occasionally even biology, psychology, geography, and economics. We obviously can’t show you how all the problems in Part I can be solved. Rather, we have picked six of them as examples. They are not necessarily the most important ones, but they seem to us to be typical of what engineers and scientists working in the satellite communications program actually have to do. These are the six problems we will be talking about at length:
As you can see, we have picked problems that offer a good deal of variety. Some of them have been satisfactorily solved; for others the solutions are not yet complete. Some deal with basic scientific research; others are much more concerned with the engineering applications of technical knowledge. Some were solved by careful, logical thinking; others were solved almost by accident. Some deal with a particular immediate task (in this case, Project Telstar); others are more concerned with general planning for satellite communications. At the Foundation: Basic Physical PrinciplesDespite these many important differences, there is one common thread running through the solving of all the problems we have chosen. The men who have been working on them had to know some basic principles of classical physics—principles that most of them first learned in their high school physics classes. You can’t, for example, calculate a satellite’s orbit without knowing Newton’s Laws of Motion. You can’t make optical measurements on a satellite without knowing the law of reflection of light. You can’t decide what color a satellite should be without knowing the law of heat exchange. To emphasize the importance of a solid grounding in basic physical principles, we have tried to have our problems touch on most of the general Problem-Solving TechniquesWhen you start to solve a problem in science or engineering you can go about it in several ways. In some cases you have no choice: There may be only one practical method of doing the job. Other times, there may be several ways to attack the problem. You may try one, find it to be unfruitful, and then work on another approach. You will see both these methods of attack in the case histories we present in the next chapter. Here are some of the techniques of scientific problem solving that we will be discussing:
|