In your snow man these are all alike, all balls of snow differing only in size and form; but in your own body, head, trunk, and limbs are quite unlike, as you might easily tell on taking them to pieces. Now you cannot very well take your own body to pieces, but you easily can that of a dead rabbit. Suppose you take one of the limbs, say a leg, to begin with. First of all there is the skin with the hair on the outside. If you carefully cut this through with a knife or pair of scissors and strip it off, you will find it smooth and shiny inside. Underneath the skin you see what you call flesh, rather paler, not so red as the flesh of beef or mutton, but still quite like it. Covering the flesh there may be a little fat. In a sheep’s leg as you see it at the butcher’s there is a good deal of fat, in the rabbit’s there is very little. This reddish flesh you must henceforward learn to speak of as muscle. If you pull it about a little, you will find that you can separate it easily into parcels or slips running lengthways down the leg, each slip being fastened tight at either end, but loose between. Each slip is what is called a muscle. You will notice that many of these muscles are joined, sometimes at one end only, sometimes at both, to white or bluish white glistening cords or bands; made evidently of different material from the muscle itself. They are not soft and fleshy like the muscle, but firm and stiff. These are tendons. Sometimes they are broad and short, sometimes thin and long. As you are separating these muscles from each other you will see (running down the leg between them) little white soft threads, very often branching out and getting too small to be seen. These are nerves. Between the muscles too are other little cords, red, or reddish black, and if you prick them, a drop or several drops of blood will ooze out. These are veins, and are not really cords or threads, but hollow tubes, filled with blood. Lying alongside the veins are similar small tubes, containing very little blood, or none at all. These are arteries. The veins and Now try to put back everything in its place, and you will find that though you have neither cut nor torn nor broken either muscle or blood-vessel or bone, you cannot get things back into their place again. Everything looks “messy.” This is partly because, though you have torn neither muscle nor blood-vessel, you have torn something which binds skin and muscle and fat and blood-vessels and bone all together; and if you look again you will see that between them there is a delicate stringy substance which binds and packs them all together, just as cotton-wool is used to pack up delicate toys and instruments. This stringy packing material which you have torn and spoilt is called connective because it connects all the parts together. Well, then, in the leg (and it is just the same in the arm) we have skin, fat, muscle, tendons, blood-vessels, nerves, and bone all packed together with connective and covered with skin. These together form the solid leg. We may speak of them as the tissues of the leg. the leg, a great cavity. This is something quite new—there is nothing like it in the leg—a great cavity, quite filled with something, but still a great cavity; and if you slit the rabbit right up the front of its trunk and turn down or cut away the sides as has been done in Fig. 1, you will see that the whole trunk is hollow from top to bottom, from the neck to the legs. If you look carefully you will see that the cavity is divided into two by a cross partition (Fig. 1, B) called the diaphragm. The part below the diaphragm is the larger of the two, and is called the abdomen or belly; in it you will see a large dark red mass, which is the liver (L). Near the liver is the smooth pale stomach (M), and filling up the rest of the abdomen you will see the coils of the intestine or bowel, very narrow in some parts (O), very broad (P Q), broader even than the stomach, in others. If you pull the bowels on one side as you easily can do, you will find lying underneath them two small brownish red lumps, one on each side. These are the kidneys. In the smaller cavity above the diaphragm, called the thorax or chest, you will see in the middle the heart (C), and on each side of the heart two pink bodies, which when you squeeze them feel spongy. These are the two lungs (G). You will notice that the heart and lungs do not fill up the cavity of the chest nearly so much as the liver, stomach, bowels, &c. fill up the cavity of the belly. In fact, In the abdomen nothing more is wanted than this backbone, the sides and front of the cavity being covered in with skin and muscle only. In the chest But this backbone is not made of one long straight piece of bone. If it were you would never be able to bend your body. To enable you to do this it is made up of ever so many little flat round pieces of bone, laid one a-top of the other, with their flat sides carefully joined together, like so many bungs stuck together. Each of these little round flat pieces of the backbone is called a vertebra, and is of a very peculiar shape. Suppose you took a bung of bone, and fastened on to one side of its edge a ring of bone. That would represent a vertebra. The solid bung is what is called the body, and the hollow ring is what is called the arch of the vertebra. Now if you put a number of these bodies together one upon the top of the other, so that the bodies all came together and the rings all came together, you would have something very like the vertebral column (see Frontispiece, also Fig. 2). The bungs or bodies would make a solid jointed pillar, and the rings or arches would make together a tunnel or canal. And that is really what you have in the backbone. Only each vertebra is not exactly shaped like a bung and a ring; the body is very like a bung, but the arch is rough and jagged, and the bodies are joined together in a particular way. Still we have all the bodies of the vertebrÆ forming together a solid pillar which gives support to the trunk; and the arches forming together a tunnel or canal which is called the spinal canal, (Fig. 2, C.S.) the use of which we shall see directly. The round flat body of each vertebra is So that what we really have in the trunk is this. In front a large cavity, containing the viscera, and surrounded in the upper part or thorax by hoops of bone, but not (or only slightly) in the lower part or abdomen; behind, a much smaller long narrow cavity or canal formed by the arches of the vertebrÆ, and therefore surrounded by bone all the way along, and containing we shall presently see what; and between these two cavities, separating the one from the other, a solid pillar formed by the bodies of the vertebrÆ. So that if you were to take a cross slice, or transverse section as it is called, of the rabbit across the chest, you would get something like what is represented in Fig. 2, C, where C.S. is the narrow canal of the arches and where the broad cavity of the chest containing the heart H is enclosed in the ribs reaching from the vertebra behind to the sternum in front. Both cavities are covered up on the outside with muscles, blood-vessels, nerves, connective, and skin, just as in the leg. The neck, then, differs from the leg in having a vertebral column and canal with a trachea and oesophagus, and differs from the trunk in having no cavity and no ribs. The head, again, is unlike all these. Indeed, you will not understand how the head is made unless you take a rabbit’s skull and place it side by side with the rabbit’s head. If you do this, you will at once see how the mouth and throat are formed. You will notice that the skull is all in one piece, except a bone which you will at once recognize as the jawbone, or, to speak more correctly, the lower jawbone; for there are two jawbones. Both these carry teeth, but the upper one is simply part of the skull, and does not move; the lower one does move; it can be made to shut close on the upper jaw, or can be separated a At the back of the skull you will see a rounded opening, and if you put a bodkin through this opening you will find it leads into a large hollow space in the inside of the skull. In the living rabbit this hollow space is filled up with the brain. The skull, in fact, is a box of bone to hold the brain, a bony brain-case. This bony case fits on to the top of the vertebrÆ of the neck in such a way that the rounded opening we spoke of just now is placed exactly over the top of the tunnel or canal formed by the rings or arches of the vertebrÆ. If you were to put a wire through the arch of the lowest vertebra, you might push it up through the canal formed by the arches of all the vertebrÆ, right into the brain cavity. In fact the brain-case and the row of arches of the vertebrÆ form together one canal, which is a narrow tube in the back and in the neck, but swells out in the head into a wide rounded space (Fig. 2, A and B, C.S.) During life this canal is filled with a peculiar white delicate material, which is called nervous matter. The rounded mass of this material which fills up the cavity The blood-vessels in a similar way join together into larger and larger tubes, which last all end, as we shall see, in the heart. Every part of the body, with some few exceptions, is crowded with nerves and blood-vessels. The nerves all come from the brain or spinal cord—the vessels from the heart. So that every part of the body is governed by two centres, the heart, and the brain or spinal cord. You will see how important it is to remember this when we get on a little further in our studies. Here the windpipe ends in the lungs, but the gullet runs straight through the chest, lying close at the back on the backbone, and passes through a hole in the diaphragm into the abdomen, where it swells out You see the alimentary canal (for that is the name given to this long tube made up of gullet, stomach, intestine, &c.) goes right through the cavity of the body without opening into it—very much as the tall narrow glass of a lamp passes through the large globe glass. You might pour anything down the narrow glass without its going into the globe glass, and you might fill the globe glass and yet leave the narrow glass quite empty. If you imagine both glasses soft and flexible instead of hard and stiff, and suppose the narrow glass to be very long and twisted about so as to all but fill the globe, you will have a very fair idea of how the alimentary canal is placed in the cavity of the body. Besides the alimentary canal, there is in the chest, in addition to the windpipe and lungs, the heart with its great tubes, and in the abdomen there are the liver, the kidneys, and other organs. These two great cavities, with all that is inside them, together with wrappings of flesh and skin which make up the walls of the cavities, form the trunk, and on to the trunk are fastened the jointed legs and arms. These have no large cavities, and the alimentary canal goes nowhere near them. One more thing you have to note. There is only one alimentary canal, one liver, one heart—but there are two kidneys and two lungs, the one on one side, the other on the other, and the one very much like the other. There are two arms and two legs, the one almost exactly like the other. There is only one head, but In fact, if you were to cut your rabbit in half from his nose to his tail, you would find that except for his alimentary canal, his heart, and his liver, one half was almost exactly the counterpart of the other. Such is the structure of a rabbit, and your own body, in all the points I have mentioned, is made up exactly in the same way. |