THE CARRIAGE Continued

Previous

FIG. 1.—NEWTON'S STEAM CARRIAGE, 1680.

In the last chapter the story of the Carriage was brought up to the reign of Queen Elizabeth of England. In the century following Elizabeth's reign a new and most remarkable step in the development of the carriage was taken. You remember that in the seventeenth century there was a great deal of experimenting with steam (p. 58). Among other experiments was one made by Sir Isaac Newton. This great philosopher tried in 1680 to make a steam-carriage, or locomotive, as we call it. Figure 1 shows the principle upon which he tried to make his carriage work. The steam was to react against the air, as in the case of Hero's engine (p. 56) and thus push the carriage along. Newton's experiment was not satisfactory but the idea of a steam-carriage was now in men's heads and the hope of making one continued to be cherished. In 1769 Cugnot, a French army officer, invented a steam-carriage of three wheels (Fig. 2) but it was a very poor one. It traveled only three or four miles an hour, it could carry but three persons, and it had to stop every ten minutes to get up steam. Cugnot, however, deserves to be ranked among the great inventors for he showed that a steam-engine could be attached to a carriage and could push it along. In other words he showed that steam could be used for transportation as well as for working pumps and turning the wheels of factories. And that was just what was needed most in the latter part of the eighteenth century. Man needed assistance in traveling; he especially needed help in carrying things from place to place. The steam-engine was keeping the mines dry and making it possible to mine great quantities of coal and was turning the wheels of great factories where the spinning-jenny and the new power loom (p. 119) were consuming enormous quantities of cotton and wool. Now if the steam-engine could also be made to carry the coal and cotton and wool to the factory, and the manufactured products from the factory to the market, the industrial revolution would be complete indeed.

Inventors everywhere put their wits together to construct an engine that would draw a load. The great Watt tried to make one, but having failed, he came to the conclusion that the steam-engine could do good work only when standing still. Among those who entered the contest was Richard Trevithick, a Cornish miner, born in 1771. Trevithick when a lad at school was able to work six examples in arithmetic while his teacher worked one. He proved to be as quick in mechanics as he was in mathematics. He began his experiments with steam when a mere boy, and as early as 1796 he had built a steam-locomotive which would run on a table. By 1801 he had constructed a steam-carriage (Fig. 7). Three years later (1804) Trevithick exhibited a locomotive which carried ten tons of iron, seventy men, and five wagons a distance of nine and one-half miles at the rate of five miles an hour. This was the first steam carriage that actually performed useful work. The honor of inventing the first successful locomotive, therefore, belongs to Richard Trevithick, although he never received the honor that was due him.

The honor went to George Stephenson, of Wylam, near Newcastle, England. Stephenson's parents were so poor that they could not afford to send him to school long enough for him to learn to read and write. In his eighteenth year, however, he attended a night school and learned something of the common branches. In his childhood Stephenson lived among steam-engines. He began as an engine boy in a colliery and was soon promoted to the position of fireman. At an early age he was trying to build the locomotive that the world needed so badly, one that would do good work at a small cost. Trevithick's locomotive was too expensive. Stephenson wanted a locomotive that would pay its owner a profit. At the age of thirty-three he had solved his problem. In 1814 he exhibited a locomotive that would run ten or twelve miles an hour and carry passengers and freight cheaper than horses could carry them. Eleven years later he was operating a railroad between Stockton and Darlington, England. The steam carriage was now a success (Fig. 3). The iron horse was soon transporting passengers and freight in all the civilized countries of the world (Fig. 4). Observe that the first passenger car was simply the old coach joined to a locomotive.

The locomotive worked wonders in travel and in carrying loads, yet men were not satisfied with it. We never are satisfied with our means of transportation. No matter how comfortably or cheaply or fast we may travel we always want something better. In the latter part of the nineteenth century the great cities of the world were becoming over-crowded. The people could not be carried from one part of a city to another without great discomfort. The street cars drawn by horses could not carry the crowds and the elevated steam cars were not satisfactory. Wits were set to work to relieve the situation and about thirty years ago the electric car (Fig. 5) was invented. Without horse or locomotive this quick-moving car not only successfully handles the crowds which move about the city but it also relieves over-crowding by enabling thousands to reach conveniently and cheaply their suburban homes. It also does the work of the steam car and carries passengers long distances from city to city.

A late development in carriage making is seen in the automobile. As far back as the sixteenth century a horseless carriage was invented (Fig. 6) and was operated on the streets of a German city. But here the power was furnished by human muscle. The first real automobile (Fig. 7) was invented in 1801, by the man who invented the first successful locomotive. Trevithick's road locomotive—for that is what an automobile really is—did not work well because the roads upon which he tried it were in very bad condition. Inventors after Trevithick for a long time paid but little attention to the road locomotive; they bestowed their best thought upon the locomotive that was to be run upon rails—the railroad locomotive. In recent years, however, they have been working on the so-called automobile and they have already given us a horseless carriage that can run on a railless road at a rate as great as that of the fastest railroad locomotives. To what extent is this newest of carriages likely to be used? It is already driving out the horse. Will it also drive out the electric car and the railroad locomotive? Are we coming to the time when the railroad will be no more and when all travel and all hauling of freight will be done by carriages and wagons without horses on roads without rails? The answers to these questions can of course only be guessed.

The last and latest form of the carriage is seen in the flying-machine, the automobile of the air. In all ages men have watched with envy the movements of birds and have dreamed of flying-machines, but only in modern times has man dared to take wings and glide in bird-like fashion through the air. The first actual flying by a human being was done by a Frenchman named Bresnier, who, in 1675, constructed a machine similar to that shown in the right hand picture at the top of Figure 9. Bresnier worked his wings with his feet and hands. Once he jumped from a second story window and flew over the roof of a cottage. From the days of Bresnier on to the present time man has taxed his wits to the utmost to conquer the air, and in his efforts to do this he has invented almost every conceivable kind of machine. About the middle of the nineteenth century inventors began to apply steam to the flying-machine, and it is said that in 1842 a man named Philips was able, by the aid of revolving fans driven by steam, to elevate a machine to a considerable distance and fly across two fields. In 1896 Professor Langley, with a flying-machine driven by a small steam-engine, made three flights of about three-fourths of a mile each over the Potomac River, near Washington. This was the first time a flying-machine was propelled a long distance by its own power; it was the first aerial automobile. But the aerial steam carriage was never a success; the steam engine was too heavy. In the early years of the twentieth century inventors began to use the light gasoline engine to drive their flying-machines and then real progress in the art of flying began, and so great has been that progress that the automobiles of the air are becoming rivals of those on the land.


FIG. 10.—A SUCCESSFUL FLYING MACHINE OF TO-DAY.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page