SAN DIEGO COUNTY; ALSO ORANGE AND SAN BERNARDINO COUNTIES.

Previous

By Harold W. Fairbanks, F.G.S.A.

The topography of this region has been quite thoroughly described by W. A. Goodyear, in former reports of the State Mining Bureau. The structure of San Diego County is comparatively simple. Three main divisions might be made: the desert on the east, the Peninsula range of crystalline rocks in the middle, and the nearly level mesa on the west. The Peninsula range is supposed to represent the southern continuation of the Sierra Nevadas, but in just what relation it stands to the Sierras has been a matter of dispute. The Peninsula range in San Diego County forms one main mountain chain. It maintains this simplicity of structure southward, forming the backbone of the peninsula of Lower California. Northward it becomes broader and more complex, rising in the lofty San Jacinto and San Bernardino ranges on the east, and the Santa Ana range on the west, while the region between is filled with mountains and valleys irregularly disposed.

Complex as is the topography of this region, the geological problems, though often difficult to solve, are quite simple. The higher mountains are formed wholly of ancient crystalline schists and massive rocks, respecting the age of which a great diversity of opinion has existed; while the region bordering the coast consists of unaltered Cretaceous, Tertiary, and Quaternary deposits.

Owing to the very limited time given me to prepare my field notes for the press, they will be given substantially as they were taken in the field, without any attempt at systematic arrangement.

The crystalline rocks of San Diego County are varied in character, and of much interest. No opportunity has been given me to study the large collection made, and the determinations given are simply the result of superficial examination, and are subject to correction.

The bay of San Diego is bordered on the east by gently sloping mesas of modern Tertiary and Quaternary age. These unaltered strata are characteristic of the western slope of the Peninsula range through its whole extent. They sometimes rise as high as 3,000 feet; though in San Diego County they do not exceed 1,500 feet. The upper portion of these beds consists to a great extent of coarse, loosely cemented conglomerates. The rivers issue from the higher mountains through narrow valleys or caÑons, and have cut valleys, often quite broad and with very steep sides, through the mesas to the ocean.

The Otay mesa has a height of about 500 feet, the western portion being somewhat higher than the eastern, indicating a recent elevation near the coast. The soil of the mesa is adobe, due to the decay of porphyry mountains to the east. Under the adobe there is a calcareous marl, often many feet thick.

The first exposure of the older rock seen as one goes up the Otay River, is in a hill rising through the mesa about in the center of the grant. It is a part of the extensive porphyry intrusives, which, in southern San Diego County, form a number of high mountains between the granite and the mesa. To this formation belong the San Miguel and Otay peaks. This exposure on the Otay River is a felsitic breccia. It contains a felsite base (intimate mixture of quartz and feldspar), in which are imbedded fragments of felsite and chlorite. No more rocks appear for about 2 miles up the river. Then we reach the base of the long ridges which lead up to the Otay Peak. Some interesting rocks are exposed where the stream issues from the caÑon. The greater portion are fine dark to greenish aphanitic rocks, with green chloritic or epidotic nodules. Bunches and dikes of coarse to fine grained porphyritic rocks occasionally appear. They probably belong to the diorite porphyrites. The rock continues very much the same for several miles farther east; at times it is almost wholly feldspar. In the caÑon above El Nido Post Office it changes to a light green feldspar porphyry. Near the western edge of the Jamul grant a dark-colored porphyry takes its place, and a little farther east it becomes jet black, with small white feldspar crystals, producing a very pretty effect.

The mesa conglomerates extend along the top of the low hills bordering the valley nearly to the eastern edge of the Jamul grant. A great variety of rocks appear along the Campo road between the Jamul grant and Sheckler’s, on the Cottonwood. Near the eastern end of the grant the porphyry is followed by fine-grained granitic rock, frequently becoming schistose. Numerous dikes and bunches of dark diorite cut through this rock. As Dulzura Post Office is approached, these rocks change to mica and hornblende schists, and are filled with intruded dikes of diorite porphyrites. Bodies of massive syenite and coarse granite were also seen. About Dulzura many of the dikes have the appearance of diabase. Between Dulzura and Sheckler’s the country rock is largely micaceous and chloritic schists. Massive granite forms the high, rugged mountains east, extending in an arm westerly across the road. The schists have a northwest strike, vertical dip, and are evidently of metamorphic origin. They form a strip of country extending in the line of strike from near Sheckler’s to the Sweetwater River, and are situated between the wide belt of porphyry on the west and the coarse intrusive granites on the east, which rise to form Lyon’s Peak and other rugged mountains.

The first rock met east of Sheckler’s, on the Campo road, is coarse hornblendic granite, so decomposed that a fresh specimen could not be obtained. Dikes of fine-grained granite intersect it in every direction. Three miles west of Potrero, mountains of olivinitic diabase rise on the north side of the road. This rock is very similar to many large bodies of intrusives through the mountains between Julian and the Tia Juana River. It has evidently been intruded into the granite, for dikes extend out, intersecting the latter rock.

Potrero is located in a valley of several hundred acres in extent, and surrounded by granite mountains. It has an elevation of 2,400 feet. South of Potrero, along the boundary line, the mountains show large areas of the dark dioritic and diabasic rocks. The hills immediately south of the valley consist of hornblendic gneiss; strike east and west. Eastward, toward Campo, the rock is chiefly a coarse white granite, very easily decomposed. It shows a slightly gneissoid structure for a number of miles. It does not seem to represent the bedding of a sedimentary rock, but of parallelism of the constituents, induced in the magma by movement or pressure. Long, drawn out, lenticular inclusions are often present, and are arranged parallel to the schistose structure. These consist largely of hornblende, with little feldspar.

In the vicinity of Campo the topography of the country changes from that of high mountains and deep, narrow valleys, to an elevated mountain plateau with meadows and rounded granite ridges. The mountains are covered with brush, while live oaks are numerous in the valleys. The country maintains these features while gradually rising to the divide 8 miles east of Campo. The granite is so deeply decomposed along the summit region that no good samples could be obtained. Campo has an elevation of 2,600 feet. The bare, rounded ridges closely resemble those left by glacial action, but their slope is produced simply by the cleaving off successively of the more angular portions in great slabs. Many fine examples of this manner of decay appear about Campo. The corners are decomposed faster than the smooth surfaces, and thus finally a shelly concentric structure results. The fresh massive central portion weathers out like water-worn bowlders. The presence of rugged angular ridges results either from a less inherent tendency to decay, or to a comparative freedom from crushing. Four miles northeast of Campo is an outcrop of coarse hornblendic granite, with large six-sided mica scales and numerous yellow crystals of titanite. The height of the divide is 3,800 feet. Near the summit the rocky ridges all disappear and the country becomes covered with granitic sand. Erosion here is evidently very slight. The country descends gradually on the east to Jacumba Valley, being sandy for some distance. This finally gives place to bare, rocky ridges and caÑons. Veins of fine granite, and others of feldspar and quartz, are abundant on the eastern slope.

Before reaching Jacumba Valley a body of mica and hornblende schist is encountered. The schists do not form a regularly defined belt, but often appear as inclusions in the granite. These inclusions have a very variable strike, and from their relation to the granite it is evident that the latter is intrusive.

Jacumba Valley empties northward into the desert through a narrow gorge. It has an elevation of 2,600 feet, the same as that of Campo. It is several square miles in extent, the greater part of which is in Lower California. The warm springs here are considered quite medicinal. The schists just described occupy a large area west and north of the caÑon through which the valley empties. They are cut in every direction by dikes of granite and others, consisting of a very coarse aggregate of quartz and feldspar with a little muscovite mica. A high mountain several miles north of the valley is distinctly ribbed all over by them. The schists extend northward toward those which outcrop on the eastern slope of the Laguna Mountains and at Julian, but are cut off by a body of intrusive granite. They undoubtedly belong to the same series. Gold-bearing veins have been found in them a little north of Jacumba Valley.

At the north end of Jacumba Valley, and on the west side of the outlet, is an area of volcanic rock, probably basalt. It forms a table-land, gently sloping toward the valley, and rising 600 or 700 feet at its northern end. It is underlaid by gravels and conglomerates. Just east of this is a black butte, rising perfectly symmetrical to the same height. It consists of bedded lavas, with tufa at the bottom. In spite of the fact that it is shaped like a crater, its structure is different, and it is probably a remnant of the flow which once covered the outlet to the valley.

The high range of mountains between Jacumba Valley and the desert has an altitude of something over 4,000 feet, but where the road crosses it, it is only 3,100 feet. Basalt outcrops also on the eastern side of the valley. North of the road to Mountain Springs it forms a series of plateaus, the highest of which reaches a height of 3,900 feet. It forms the summit of the range, being 800 feet above the granite forming the pass. South of the pass several miles the granite rises much higher and the lava lies along its western slope, extending an unknown distance below the line.

Large deposits of water-worn bowlders and gravels lie along the eastern slope of Jacumba Valley. Among them are pebbles of porphyries, black quartz, and others not seen in place in this part of the county. A short distance west of the summit they are found in beds with gravel and sandstone, dipping southwest. These late Tertiary deposits are overlaid by the volcanic beds. The volcanic plateau which rises so high north of the pass has a thickness of 500 to 600 feet. Massive and bedded lavas form the upper half of this thickness, the lower portion consisting of a volcanic breccia. The beds lie nearly horizontal. On the west are two lower terraces, also capped with lava and abutting against the higher. The whole is underlaid by sand rock of granitic origin. It is nearly level in places, in others it dips to the southwest. It is very strange that these lava beds, with nearly level flowage lines, should be found at such greatly varying elevations about Jacumba Valley, and be underlaid everywhere by such similar tuffs and sandstones. My investigations disclosed no volcanic vent, and it is possible that the lava issued from fissures, as was noticed elsewhere in the county. Another interesting question is the origin of the sandstones and conglomerates. The sandstone underneath the high plateau is higher than the divide at that spot, and the only granite within miles that exceeds it in height, is the narrow ridge which rises on the southeast. The erosion must have been very great along the ridges since the sandstones were deposited, but the valley cannot have changed much. There may have been great elevation along the crest of the range bordering the desert since the deposition of sandstone, tilting up the sandstone and lava on the eastern slope, but elevating without great disturbance those near the summit. Southeast of Mountain Springs is a body of bedded tufas reaching an elevation of 2,300 feet, and dipping to the east away from the range at a considerable angle.

The presence of these modern sandstones at so great an elevation nearly on the crest of the Peninsula range is a very interesting fact. Either Jacumba Valley was a lake, or a great elevation has taken place in comparatively recent times, raising the valley from the sea-level. Appearances indicate that during late Tertiary times this range was almost submerged beneath the sea.

The rocks between the summit and Mountain Springs are chiefly gneissoid, at times granitic. They contain bodies of fine dark mica schist, and many dikes of very coarse muscovite granite. The descent to the desert is very abrupt over bare granite ridges. Mountain Springs, an old stage station, is located on the side of the mountain at an elevation of 2,300 feet. From the springs the road descends along the dry bed of an arroyo to the desert. The most of the distance is through a rocky caÑon, where there is an excellent opportunity to study the relations of the gneiss and granite. For some distance down from the springs the rocks continue to be gneissoid, but through the lower end of the caÑon they become more massive and coarse, and all the veins characteristic of the gneisses of the higher mountain region disappear. At the upper end of the caÑon is a dike of very coarse granite, with large biotite crystals instead of muscovite. This is the only instance in which biotite was seen in one of these coarse dikes. Banded gneiss, varying from very thin to very thick bedded, alternate with other rocks, to all appearances massive granites, but in surface decay the latter break up into slabs of varying thickness, parallel to the schistose structure of the gneisses. The banding is caused by an excess of mica or hornblende, chiefly the latter, arranged in parallel layers. These strata are often very thin, varying from one fourth to one half inch and upwards in thickness. They are very regular, but often discontinuous; stop, and in course of a few feet begin again. These features are generally supposed to indicate metamorphic origin, but at one spot a body of dark mica schist is cut by a dike a foot wide or more of this dark banded gneissose rock. This dike cuts across the stratification of the mica schist, showing conclusively the intrusive nature of at least a part of these gneisses; and it is quite possible that the inclusions of mica schist are the only really sedimentary rocks present. In places the rocks which show this banding have the constituents arranged in the bands independent of any direction. At one spot a distinct, well-defined mass of mica schist, 15 feet across, is imbedded in a granitic rock. At one side this gneissoid structure extends through the inclosing rock and abuts sharply against the mica schist. The banding shows no constant direction; in the caÑon it is northeast. The bands sometimes become wavy.

As the caÑon opens out to the desert, hills appear on either side formed of volcanic tuffs. They dip northeast 30°. Underneath is a sandstone wholly unconsolidated and dipping in the same direction 40°. This contains no lava pebbles. The fragments of the tuff are quite varied in character and generally quite angular. They are imbedded in a volcanic mud, free from granitic detritus. In some of the strata appear thin beds of lava, seeming to represent a flow. These tufa hills extend northwesterly along the base of the granite mountains for 10 miles or more. It is not known how far they go in a southerly direction. In places they form mountains of considerable size high up on the side of the range. The range of mountains between this point and Carrizo Creek appears also to have some volcanic beds on its southern slope. The open desert at the foot of the mountains has an elevation of 1,200 feet. It slopes gently for miles in an easterly direction and consists largely of loose sand.

Between Mountain Springs and the summit is another illustration of the fact that lamination in a crystalline rock is no proof of its sedimentary origin. A small dike less than 2 inches thick cuts across a coarse biotite gneiss at an angle of 30°. It is separated from the gneiss by a thin layer of quartz and feldspar. It is made up of the same constituents as the gneiss, arranged so as to show a well-pronounced gneissoid structure. This is very similar to the large dikes seen in the caÑon.

The road was followed back to Campo, and from there the Laguna Mountains were climbed. The road ascends a long, narrow caÑon on the southern slope. At the entrance to the caÑon, 4 miles southeast of Buckman’s Springs, the mountains are high and rocky, being formed of thin-bedded gneisses, which, in many places, blend into mica schists. They strike parallel to the mountain axis, a little west of north; dip 70° northeast. Three miles up the caÑon the gneiss becomes thick-bedded and is finally replaced by mica diorite, which forms the hills on both sides. Granitic dikes outcrop near the junction and sometimes apparently in the diorite. There is often a blending between the two, as if the intrusion of both took place nearly at the same time. The region east of the southern end of the mountains is formed of coarse granite, decomposed to a considerable depth. The mica diorite extends northward, forming the whole central and western part of the mountains. On the east it is bordered by a slightly higher ridge, forming the crest of the mountains. This rock does not decompose as easily as the granite and gneisses on the west, and there consequently remains a mountain plateau having an elevation of about 5,500 feet. There is a considerable amount of pine timber and open meadows. The dark diorite forms one of the highest peaks of the Laguna Mountains, rising 6,250 feet. The highest portion of the mountains lies to the northeast, and is formed chiefly of a quartzose mica schist. From the eastern crest of the range a most magnificent view of the desert is obtained. The strata on the crest strike north 15° west, dip 70° northeast. The descent of 4,000 feet to Vallecitos is very abrupt. Near the crest it is almost as steep as the dip of the rocks. The mica schists in places approach gneiss in composition, but all of this series of rocks forming the crest and eastern slope very probably belong to the Metamorphic Series. South of this point the Laguna Mountains do not terminate so abruptly, but extend out in long, gradually descending ridges for many miles. The mica diorite extends north of the Laguna about a mile, when the schists on both east and west sides unite and extend north toward Banner. They are intruded by granite and diorite in many places. The body of diorite forming the Laguna plateau is about 8 miles long and 1½ to 2 miles wide. The highest peak is not over 200 feet lower than the Cuyamaca, rising 6,300 feet. The diorite seems to have been intruded in the middle of a considerable area of mica schists, for this rock outcrops on all sides. On the west, toward Pine Valley, they carry the gold veins of the Pine Valley district. The descent is very abrupt to Pine Valley and Buckman’s Springs. The schists and gneisses extend about 3 miles south of the main portion of the mountains, when they are replaced by coarse hornblendic granite.

Buckman’s Springs has an elevation of 3,400 feet. Here are some very excellent soda springs, the only ones I know of in this section of the State. A coarse, dark diabase outcrops in the edge of the mountains just north of Buckman’s and also a little farther south, on the west side of the valley.

A narrow caÑon leads up to the divide which separates the valley of the upper Cottonwood from Pine Valley. The western prolongation of the diorite of the Laguna Mountains appears near the road on the divide. The prevailing rock is, however, of a granitoid nature and filled with many large bunches of massive white quartz. Pine Valley has an elevation of 3,800 feet. Gneisses and hornblendic and micaceous schists outcrop between the valley and the divide east of Descanso. The strike is north and south. One mile southeast of Descanso there is another outcrop of the coarse diabase or gabbro which forms so much of the Cuyamaca peaks. Descanso has an elevation of 3,400 feet. The rock which outcrops for a number of miles along the road to Stonewall is a coarse, easily decomposed granite, rising in rounded knobs over a rolling, brush-covered country.

The Pine Valley district lies in a belt of gneissose, mica schist, and quartzose rocks, which extend in a direction a little west of north. They begin about 2 miles south of Pine Creek and extend, probably unbroken, through to Banner and Julian. It is 4 miles north to the Deer Park district. The metamorphic schists widen as this district is approached. They extend from the desert slope to Deer Park, where a body of diorite has been intruded, and from there westward 2 miles to the Cuyamaca grant. A half mile west of the camp the slaty mica schists and quartzites are well defined. A vein of gold-bearing quartz has been traced for several miles in these rocks, and a number of locations have been made on it. The strike is north and south, dip 80° to the east. A body of white crystalline limestone lies in this formation, about 1½ miles southwest of Deer Park. The body of micaceous diorite which extends through this camp is about a mile long, and is quite gneissoid in places. Near its southern end it incloses narrow bands of hornblendic and feldspathic rock, containing garnets. The veins are numerous in this diorite, and extend in every conceivable direction. The diorite has been greatly crushed at some time, with fissures in every direction; hence, the irregularity of the quartz veins. The veins are generally bunchy, and not often very large. They seem simply to follow the exceedingly irregular fracturing of the diorite, which is decomposed to a considerable depth. The work thus far in this district has been confined to the surface, so that nothing can be said in regard to the permanency of the veins. The elevation of the camp is 4,600 feet.

Two miles northward an outcrop of coarse biotite muscovite granite was met. It is about 2 miles long and 1 mile wide, having schists on all sides of it. This is the only example of typical granite (according to Rosenbusch) that was seen in Southern California. A broad valley, occupied by Mr. Harper’s ranch, has been eroded in the center of this granitic mass.

Northward, along the crest of the range overlooking the desert, mica slates appear. They are so little metamorphosed as to closely resemble argillaceous slate. They strike a little west of north, dip 70° to 80° east, and maintain the same character north to Banner and Julian.

The road from Julian to Stonewall crosses mica schist and gneisses for about half the distance. Then we met outcrops of a dark basic rock, ranging from fine to very coarse texture. It extends southward and covers a large extent of country. The three Cuyamaca peaks, the highest in the southern part of the county, are formed of this rock. This rock was again met about half a mile west of the Stonewall Mine. It extends westward across the mountains for at least 2 miles, and some miles south of the main peak. In places it has a schistose structure. Near the outlet of the Cuyamaca reservoirs it is filled with vein-like aggregates of coarse hornblende crystals, which are probably the result of secondary crystallization in fissures or cracks of the almost consolidated magma.

The formation in the vicinity of the Stonewall Mine is biotite gneiss. Toward the east it is not sharply defined from the mica schists. On the west it is generally more granitoid, though at one spot near the lake there are finely laminated schists, dipping 70° southwest. Southward, also, the gneisses become more massive and coarse. At the northeastern base of the main peak a body of coarse granite is partly inclosed in the norite. This norite assumes a dioritic habitus near the granite, with the development of biotite mica.

The valley of the Cottonwood was followed down several miles, when it was left and the Morena Valley traversed to its head. The mountains south of the valley are formed of a dark syenite. North and northwest the higher mountains consist of granite, with a great development of mica and hornblende schists along the slope facing the valley. Many granite dikes have been intruded into the schists. North of Mr. Candler’s there is a great dike of pegmatite, carrying small garnets, tourmaline, mica, and large masses of quartz. This pegmatite dike cuts across the caÑon, forming a precipice on its lower side. On the upper side the soil has been retained, forming a small but fertile valley. The strike of the mica schists on the north is quite unusual, being north 75° west, dip nearly vertical. Dark syenite lies on the west of this little valley. Morena Valley has an elevation of 3,400 feet. A rough road leads over the mountains west to McClain’s ranch, a distance of 10 miles; the highest point reached having an elevation of 4,000 feet. Near the summit there outcrops a body of coarse eruptive rock, probably a diorite. It consists of coarse hornblendic aggregates in a light-colored feldspathic matrix. This is followed by syenite, and that by coarse white granite as far as McClain’s. The granite about the valley is coarse, with dark, fine crystalline inclusions. It has every character of a truly eruptive rock, even to the minute spaces between the components, left at the time of crystallization. The road now descends to a branch of the Cottonwood, and from the creek there is a long, gradual ascent to the pass north of Lyon’s Peak. The north side of the pass is formed of another high and rugged granite range. This section is one of the wildest to be found in San Diego County. The mountains are bare granite, often precipitous; the valleys small and covered with brush. Crystalline limestone is reported to have been found in the granite 5 or 6 miles northeast of Renney’s Pass. A very interesting eruptive rock outcrops east of the pass, on the north side of the road. In places it resembles the norite from Cuyamaca peaks. The rock consists largely of large, dark, cleavable crystals filled with small granular crystals of a green color, probably olivine. A large portion of the dark crystals are undoubtedly pyroxene, though there are some showing hornblende cleavage. This is one of the most peculiar and interesting rocks seen in the county, but, from lack of any opportunity to make a microscopic examination, no more definite definition can be given.

Coarse granite extends some distance west of the pass. It is decomposed to such a depth that no specimens could be obtained. A mile west of the pass a fine granite, apparently metamorphic, replaces the other. It contains much quartz, little mica, and yellowish feldspar. Some distance down the new grade a large body of diorite outcrops. It is one of the southern arms of a great mass of coarse, dark rock which forms the high mountains about Dehesa Post Office, on the Sweetwater. A large portion of this rock very closely resembles that forming the Cuyamaca, and is probably a gabbro.

Near the foot of the grade, 2 miles east of Jamul Post Office, this rock is very coarse, with large hornblende crystals. It extends out in the form of arms or dikes into the adjoining granitic rocks. This rock is very tough and heavy. Gneiss outcrops for 2 miles westward. It varies between thin-bedded micaceous strata and thick-bedded, almost granitic forms. It strikes north 15° east, dips 70° to 80° east. Farther down, toward the Oakdale House, this is replaced by coarse eruptive granites. Just below the Oakdale House there is a very interesting contact between granite, quartz porphyry, and diabase. The first rock exposed below the house is a rather dark micaceous syenite. Beyond this the rock becomes coarser, containing large grains of quartz and glassy feldspar, with inclusions of a very dark diabasic rock. In a little caÑon which comes down to the road from the east, this rock comes into contact with one which varies from a feldspathic mica schist, through a gneiss, to a quartz porphyry. The junction is very irregular and the two rocks are slightly mixed; sometimes branches of the syenite are partly inclosed in the porphyry. Some portions of the syenite show gas pores, or spaces left at the time of consolidation, one fourth to one half an inch in diameter. They are partly filled with secondary quartz. The next rock exposed up the caÑon is a mica schist; strike 15° west, dip vertical. Quartz porphyry follows this, then an irregular dike of granite, in which are imbedded nodules of quartz porphyry, some nearly a foot in diameter. Above the granite there appears a granitoid gneiss, with many cavities, arranged with their longer axes parallel to the schistose structure. This changes into a coarse, knotty granite, containing large nodules of dark petrosilex. A slight blending is noticeable. Farther up this is succeeded by a micaceous quartz feldspar porphyry, showing a somewhat gneissoid structure. It is out at right angles to this structure by jointing planes lying thickly together. It has a milky, vitreous luster, and contains inclusions of very coarse granite. The next rock exposed is a diabase 200 feet across. It is coarse in the middle and aphanitic on the edges. Adjoining it are bunches of granite and a fine, dark, compact mica schist, showing traces of little pebbles in places. The schist changes to a petrosilex, which comes in contact with a dike of very coarse granite. At the upper edge of this granite outcrop, and inclosed in it, is a stratum of fine, dark mica schist and a dike of quartz porphyry. At one end these inclusions are hidden, but at the other they have been bent, fractured, and the pieces separated some distance in the granite. (Fig. 9). This is a most interesting example of the intrusive nature of the granite.

Fig. 9.

Fig. 10.

The granite dike is bounded on its upper side by one of aphanitic diabase 2 feet wide, followed by granite again. Nodules of the diabase appear in the edge of the granite. A stratum of wavy quartzose gneiss 10 feet wide follows the last dike of granite. It changes across the strike into a coarser gneiss, and that into irregular and partially blended masses of coarse granite, filled with long fragments of porphyry similar to a dike on the east. (Fig. 10.) The quartz porphyry is very compact and brittle, and has a conchoidal fracture. The porphyry dike has a width of 8 feet. About it is still another dike of granite 12 feet across, and containing many long fragments of a diabasic rock, which appears next in the succession.

The diabase is cut by small, interlacing granite seams for 6 or 8 feet, and also contains some large, irregular, lenticular masses of the same rock. Still farther is another dark dike cut squarely across by granite. Fine granite and quartz porphyry dikes occur still farther east. The porphyry dikes all run about north 35° west, average dip 70° southwest. They extend along the summit of a ridge for more than half a mile, when the coarse granite becomes the country rock. On the summit of the hill at the head of the caÑon are strata of metamorphic rock, and also some veins of pegmatite, cutting across the porphyry. This wonderfully varied succession of rocks does not cover a width of more than a quarter of a mile. The relations exhibited here prove that the porphyry and diabase, as well as the schists, are older than the granite. The strip of country between the ancient porphyries of San Miguel and the coarse granite of Lyon’s Peak and the ranges north is remarkably rich in its variety of intrusive rocks.

On the north bank of the Sweetwater, just above where the Spring Valley road crosses, is a large exposure of coarse granite, containing so many inclosures of a dark dioritic rock as to present the appearance of a conglomerate. It is cut by bunches and ramifying dikes of fine granite and diorite.

At Dehesa the granite is replaced by norite, which forms a high mountain on the north side of the river, and extends southeasterly 3 or 4 miles, forming two high peaks. In this are veins of hornblende aggregates, and in general appearance the rock bears the closest resemblance to that on the Cuyamaca.

The crystalline rocks exposed between the Sweetwater and El Cajon Valley generally show more of a dioritic composition than granitic. They have a glassy feldspar, much hornblende, and little quartz. There are two varieties: one is light colored, and forms most of the country; the other is darker, occurring in bunches and dikes. Southwest of the valley the rocks are more granitic. On the road to Spring Valley they give place to a hard, light—colored felsitic rock, containing specks of chloritic matter. Masses of granite appear in places, intruded into the rock. As it decays it becomes jointed, and seems to be reduced mostly to kaolin. Near the railroad, northwest of Spring Valley, rocks outcrop which belong to the series of dark intrusives, tuffs, and porphyries so extensively developed west of the granite. The rock here has a fragmental appearance in weathered specimens. It has a dark green color, and is of uncertain composition. The most western exposure of this rock, before it becomes covered by the mesa, has much the same character. It is without doubt an ancient intrusive, very greatly altered. It contains bunchy dikes of white feldspathic composition, which easily reduce to kaolin. The whole exposed width of these rocks west of the granite at this point is over a mile, about half of which is tufaceous. By tufaceous is not necessarily meant a fragmental intrusive deposited in water, but for lack of any other term it is used to designate those fragmental intrusives of plutonic origin which are so abundant in California.

Between the Oakdale House and the Sweetwater River, on the road to the dam, dark quartz mica diorites outcrop. They have been intruded by coarse granite in veins and bunches. A body of dark aphanitic rock, of uncertain origin, is inclosed in the diorite near the river. It may be a portion of the aphanitic rocks associated with the porphyries farther west. A little distance down the river the diorite is succeeded by conglomerate rocks, containing small garnets. The fragments are feldspathic in composition. Dark feldspathic porphyry then forms the prevailing rock for some distance. It shows great variations. Much of it contains no distinct crystals of feldspar, but is mottled by light green felsitic bodies of irregular outline. These contain chloritic substances, which decay out, leaving holes. There is a great variety of these ancient intrusives exposed along the sides of the river north of San Miguel Peak. None of the other crystalline rocks in San Diego County appear so old or show so much alteration.

Farther down the caÑon the rock assumes a fragmental appearance, having masses of feldspar in a dark matrix. It finally becomes a pronounced breccia, being formed largely of angular, felsitic fragments. The base in which these fragments lie decays away and leaves them standing out on the surface. This may be a tuff formed in water, but the matrix has undergone such alterations that nothing certain can be said about it. This breccia continues to the lower end of the caÑon. An interesting, light-colored dike was observed here. It is so filled with minute spherical amygdules as to resemble in structure an oolitic limestone. The breccia continues as far as the Sweetwater Dam, where it is replaced by feldspar porphyry. The porphyry shows much variation; in places no feldspar crystals are present, chlorite taking their place. These rocks disappear a quarter of a mile west of the dam, and mesa-like hills extend down to Chula Vista. These consist of soft sandstones and some calcareous deposits. Dark rocks, belonging to the series just described, outcrop near the mesa road from San Diego to El Cajon. It forms a long ridge south of La Mesa. The rocks are in part tufaceous, and in part dark green and massive, with felsitic inclusions. Near the Eleven-Mile House the granite is filled with dark, bowlder-like inclusions. Hornblende is an important constituent of the granite. It is more than likely that many of these so-called granites are really diorites. The mesa formation terminates in an abrupt escarpment on the west of Cajon Valley. The valley comprises many thousand acres of very fertile land. Granitic knobs rise in many parts of the valley, showing that the alluvium deposit is underlaid by it at no great depth. North of the valley, for a number of miles, the crystalline rocks are covered by the mesa conglomerates. Granitic rocks are the only ones exposed for many miles east of Lakeside. Just above Forster’s there is a small outcrop of gneiss and mica schist; strike north 35° west, dip 70° northeast. The rock exposed along the grade is a coarse biotite granite, with much quartz and glassy feldspar. A dike of quartz porphyry varying to granite porphyry outcrops by the road at the top of the grade. This does not seem to be sharply defined from the adjoining granite. A dark hornblende granite or diorite begins here and outcrops along the road for several miles toward Ramona. Three miles from the town there appears a dark rock with a somewhat resinous luster. It is probably a diabase. The Santa Maria is a large, plateau-like valley, with low granite hills surrounding it. Light-colored granite, becoming somewhat hornblendic, extends some distance east of Ramona, when it is replaced by a dark diorite. The latter extends along the road for 2 miles. It has glassy feldspar, and in places much mica. Four miles west of Ballena the granite is filled with pegmatitic veins, running in a northwesterly direction. They carry brittle crystals of black tourmaline, garnet, and muscovite mica. East of Ballena the rock becomes coarser and somewhat gneissose, with an abundance of mica. There are no bedding planes, simply a parallelism of constituents. This schistose structure has a northwest direction. The gneiss changes to mica schist on the grade above Santa Ysabel. The schist alternates with occasional strata of quartzite; strike north 25° west. The quartzite is a white, fine, granular variety, containing a little mica. Coarse gneiss outcrops again farther up the grade; at the top it becomes finer, carrying some hornblende, and alternating with strata of fine mica schist; dip northeast. The gneiss often becomes granitoid. The lamination has no constant direction, and resembles a flowage structure. This granitoid gneiss extends to within a mile of Julian, when there is quite a sharp transition to a gneissoid mica schist. That gives place to a fine schist, and a quarter of a mile west of Julian to a pearly hydro-mica schist. The schists strike north 20° to 30° west, dip 70° northeast. At Julian the rock is a dark, thin-bedded mica schist, usually termed a slate. There are also dark felsitic rocks and some gneisses. The belt of dark slaty mica schists is about half a mile wide. Toward the Balkan Mountain the rocks become more gneissoid. This mountain seems to be formed wholly of gneiss and mica schist. In some places the rock is nearly massive, and contains a large amount of quartz.

The rocks forming the mountains near the road from San Felipe to Vallecito are nearly all gneissoid. The real desert begins on leaving San Felipe Valley. The road extends southeast for 5 miles and then turns southwest, descending a narrow, rocky gorge to the head of Vallecito Creek. Near where the road turns to the southwest, the gneisses are cut by innumerable dikes of coarse granitic composition. Many of these run parallel, cutting across the strike of the gneisses, and give the appearance of a bedded formation. In the caÑon, before reaching Vallecito Creek, mica schist appears. It is bent and twisted into every conceivable direction, and varies exceedingly in structure and composition in the course of a few feet. The dip is northeast, and often at a small angle. The granite dikes often carry garnets, being quite similar to those between Julian and Banner. They were probably intruded after the eruption of the granite, and the related metamorphism.

At Mason’s granite and gneiss both appear as intrusives in the schists, and are themselves cut by coarse dikes similar to those described. Between this point and Banner, in a direct line, gneiss is the prevailing rock. The high mountain east of Banner is more granitoid.

There is a sandy valley of considerable extent about Mason’s; eastward a low ridge is crossed, and the road descends to Vallecito Valley between barren granite mountains, gradually descending until the open desert is reached. When the granite is hard these mountains are very rugged, but in places they are covered so deeply with soft, decomposed material as to closely resemble the Tertiary deposits farther east. The mountains often show pale purple to brown tints. On examination they appear to consist of a white granite, which has been so shattered as to break up into pieces, averaging not over 2 inches in diameter. This rock presents a very similar appearance for miles, particularly on the north side of the creek.

At Palm Springs the soft clay beds of late Tertiary age begin to appear. They dip in all directions, though that to the south and southwest is the most common. Toward Carrizo Station these are often covered by granitic detritus. The Tertiary beds widen out where the road strikes Carrizo Creek, and at Carrizo Station they have a width of nearly 10 miles. They rest against a granite range north of the creek and south along a long ridge which terminates in Carrizo Mountain. They also extend a long distance up Carrizo Creek. Four miles below the station harder sandstones and strata of shells cap the clay hills. This shell layer near the creek is 10 feet thick and contains pectens and oyster shells, belonging to the Miocene-Tertiary. The clay hills which surround Carrizo Station form a veritable Bad-Land. They show many different colors, and are perfectly devoid of any vegetation. They have been eroded into a most confused network of hills and caÑons, and are so soft that it is difficult to travel over them. Six miles below this station and a mile north of the creek there rises a rugged granite range, facing the open desert. It rises from the desert quite precipitously nearly 2,000 feet, but blends westward into the ridges which run east from San Felipe. The granite is coarse and deeply decomposed. Sharp, angular grains of quartz stand out so prominently as to tear anything with which they come in contact. The thin-bedded shell strata rest against the slopes of the mountain, and near the southern end rise against the eastern slope at a very high angle in sharp, jagged points. These strata rise above the granite ridges at the point where they occur, and dip fully 70° to the east. (Fig. 11.) Resting on the summit of this granite ridge, and immediately west of the steeply inclined and jagged points of the Tertiary strata, is the southern outcrop of a bed of coarse, hard sandstone, which rises along the summit of the ridges to the north and dips west, extending down the western side of the range for a thousand feet or more, dipping at an angle of about 30°. This sandstone outcrops along the crest of the ridge for nearly a mile. It is, however, not absolutely continuous, the granite rising through it in places. Near the southern end it is so highly metamorphosed as to be with difficulty distinguished from the granite at the contact. In fact, the two formations have become so intimately united, that a fracture of the granite made near the sandstone, instead of stopping at the contact, extends into the sandstone, so that the two rocks break off together. The contact is so exceedingly irregular that it seemed at first sight as if the sandstone had been intruded by the granite. Deep, narrow crevices extend into the granite, and are filled with sandstone. Some granite bunches are almost inclosed in the sandstone. The most interesting feature of this sandstone is the presence in it of an abundance of well-preserved corals of a type fully as old as the Cretaceous. Fragments of two species of a large oyster and poorly preserved specimens of univalve and bivalve shells are also abundant. There are at least two species of coral, many specimens being at least a foot in diameter. The sandstone is literally filled with them toward the southern portion of the outcrop. They also extend down into the crevices and cavities in the granite. The sandstone shows somewhat less metamorphism toward the north, where it contains some strata of pebbly conglomerate. The granite is intersected by many veins of coarsely crystallized feldspar and quartz. From these veins many of the pebbles in the conglomerate have been derived. At the highest point of the ridge the sandstone has the greatest thickness. Here it is broken up into great blocks 15 feet square, piled in the greatest confusion, as if by an earthquake. One great mass overhangs the almost precipitous granite escarpment at an elevation of 1,000 feet above the desert. Many fractures extend from the sandstones through into the granite. The sandstones, as well as the granite mountains north, have been baked a dull red color by the intense heat of the sun. To account for the peculiar position of this sandstone, as well as the steep inclination of the Tertiary beds at the southern end of the mountain, we must suppose that an extensive fault has taken place along the edge of the range facing the desert. The general inclination of the Tertiary beds to the west and southwest is also evidence of an uplift along this line.

Fig. 11.

Carrizo Mountain was ascended from the north by following up a wash through the clay hills. At the foot of the mountain there is a small outcrop of ancient volcanic rock greatly altered. This rock rests against the limestone which forms a large part of the north end of the mountain. The limestone is crystalline in every portion. The strike, as well as that of the schists and quartzites by which it is inclosed, is north 30° to 40° west, dip 75° to the southwest. The color of the limestone varies from white to streaked and variegated. It was carefully examined for fossils, but no traces of them could be found. The limestone is, however, filled in many places with the holes of borers, and one small incrusting coral and one barnacle were found. The elevation of the north peak is 1,700 feet, and these were found nearly at the top. Everything points to a great elevation here in times so recent that the atmospheric agencies have not yet had time to remove the surface exposed to the ocean waters. Another factor enters into this time computation, however, and that is that in this climate, where the rainfall is so slight, a great many years are required to effect slight changes. Toward the south peak the rock is almost wholly micaceous and quartzose schists. Judging from the great amount of metamorphism shown by these rocks, fossils, if they ever existed, must have been destroyed. At various points on the northern end of the mountain are horizontal deposits of a soft, shaly sandstone full of fossils, similar to those found north of Carrizo Creek. The corals are very large and perfect. Some nearly entire specimens of large oysters were also obtained, but most of the bivalve shells are represented only by casts. With all the exploration which has been done, it seems probable that these beds have never before been seen.

Professor Blake, geologist of the Pacific Railroad Survey, passed up Carrizo Creek in 1853, but, from the statements made, it seems his observations were confined to the immediate vicinity of the road. His is the only geological party that has visited this region up to the present time. The vicinity of Carrizo Mountain is a favorite one for prospectors, and every winter it is visited by a number of parties. As yet no important discoveries have been made, and I cannot say that I think the region is a favorable one. Silver has been reported from the southern slope of Carrizo Mountain, and at one time there was considerable excitement. The mountain, though formed wholly of metamorphic rocks, does not appear to have been mineralized to any extent. Only one dike was seen on the mountain, and that was of a coarse, granitic nature.

There is not the slightest doubt as to the presence of a non-conformity between the Miocene-Tertiary and the coral-bearing sandstones. Specimens of the coral were sent to the National Museum, and were pronounced similar to some from the lowest Cretaceous of Texas. As to the age of the limestone and associated metamorphic rocks, they are unquestionably Carboniferous or older. A float piece of silicious limestone was found containing some shells, but no opportunity for their investigation has yet occurred. The Tertiary beds are covered, wherever any of their original surfaces yet remain, by a great variety of washed bowlders.

With regard to the structure of this eastern slope of the Peninsula range, I can hardly agree with the views before expressed, that there are to be seen here evidences of an enormous fault, to which the steep escarpment toward the east is due. The eastern side of the range, so precipitous in places, has been compared to that of the Sierras in structure and general features. It is true that this descent is very abrupt in places, but in others it is almost as gradual as the western slope. For instance, the gradually descending ridges which extend east from Banner for nearly 30 miles, show no indication of any fault, save at the mouth of Carrizo Creek, where there has undoubtedly been a fault of considerable importance. The very abrupt descent east of the Balkan and Laguna Mountains is due solely to enormous erosion, for both north and south ridges extend past them for many miles into the desert.

The San Jacinto Mountains also send out long arms into the desert, and below the boundary Signal Mountain and a connecting range seem to be merely a spur of the main system. The rocks of the metamorphic belt at Julian and Banner, and farther south, dip to the northeast, indicating a great fold rather than fault, with the most strongly pronounced intrusive granites and diorites at some distance on each side.

It is not generally known that an ancient auriferous gravel channel exists in the county. It begins about a mile north of the old stage station, and 3 miles west of Ballena Post Office, where there rises a hill shaped like a whale’s back (hence the name Ballena), covered with washed gravel and bowlders. The main portion of the channel which has escaped erosion begins south of the stage station, capping a hill which has an elevation above the sea of 2,400 feet, being a little lower than the so-called Whale Mountain. The gravel is 50 to 100 feet thick, and has a width of 2,000 feet or more. It rises 300 to 500 feet above the valleys and caÑons on its sides. It extends in a direction a little south of west for about 4 miles, terminating on the south of Santa Maria Valley. A granite ridge runs 2 or 3 miles farther in the same direction, probably preserved by the gravels, which are now gone. A pretty valley, a mile long, has been eroded in the eastern end of the gravels, down to the underlying granite. Placer mining has been carried on for years here in a small way by Mexicans. Gold is said to be scattered everywhere through the gravels, which are often very firmly cemented. Lack of water, for the ridge is higher than any of the surrounding country, has prevented work on a large scale. Lately a mining district has been organized, and it is proposed to bring water 7 miles in pipe. In the gravels are washed bowlders, many of them being 2 feet in diameter and well polished. The remarkable thing about them, however, is that they are nearly all porphyries. The most abundant is a red feldspar quartz porphyry. Quartzite bowlders of all colors are numerous, and there are a few of the basic diorite so common in portions of the county. Garnets are said to be very abundant in the gravels, and many bowlders of a schist carrying them are also present. The matrix of this rock could not be made out in the field; it is very tough and heavy, and has never been seen in place. The red porphyry bowlders resemble those on the mesa farther west, but have never been found in place. Never, in the mountains east or north, has porphyry of this kind been seen, either by myself or described by others. From the old stage station the upper course of the stream was north and south as far as it can be traced. There are indications that one branch extended easterly toward Julian. These gravels appear on a hill surrounded by deep caÑons, about 2 miles east of the top of the grade above Foster’s. At the top of the grade the hills on the west are flat-topped, and covered with gravels to a depth of 150 feet. These have much the same character, and probably belong to the same channel. More investigation is needed to determine whether the course of the old stream was down toward the San Diego River, in Cajon Valley, or west toward the high mesas south and southeast of Poway Valley. It seems probable, however, that the stream flowed west, and that the mesas have been formed partly from the bowlders which they brought down. This mesa, as well as the gravels at the head of the grade, has an elevation of 1,500 feet. The source of the porphyry bowlders and the garnetiferous schists of this old river is a matter of great perplexity. The gravel deposit has every characteristic of an old river channel, and not that of an elevated arm of the sea; besides, the presence of gold in the gravels indicates their derivation from the country farther east. The gold may have been derived from Julian or Mesa Grande, or some more remote point. The river must have flowed across the gold belt, but then the question arises, how could a river of such magnitude have existed so near the summit? The only way out of the difficulty is to suppose that a great uplift has taken place along the crest and western slope, coupled with an enormous amount of erosion; and that this stream once, before this great change took place in the configuration of the country, headed many miles to the northeast, far beyond the drainage of the western slope. The bowlders consist largely of hard rocks, and are very smoothly rounded and polished, indicating that they have been transported a long distance, and subjected to attrition through a protracted interval. It is quite possible that this river emptied into or near San Diego Bay, and that the immense beds of bowlder conglomerates about the bay owe their formation largely to this river action.

The first outcrop of crystalline rocks in Mission Valley is about 3 miles above the old Mission, where the San Diego River enters a caÑon. It is a volcanic tufa, consisting of grayish to greenish fragments of a fine-grained rock imbedded in a brown matrix. This has a width of about half a mile. Along the caÑon, dikes of a greenish amygdaloid have been intruded in the rock, and are particularly numerous north of the river. One of these dikes in the caÑon was observed to be amygdaloidal in the center. Farther up the caÑon there is a great variety of tufas. The first contains feldspathic and hornblendic fragments nearly blended in a base consisting of crystallized feldspar and dark chloritic particles. Above this is a dike of brownish crystalline rock, much altered; the only distinguishable mineral being feldspar, in small crystals. Then follows another tufa, with nearly blended micaceous fragments. The next rock is a fine crystalline one with very regular bedding planes, a foot or more thick; dip 30° to 40° southeast, strike north 35° east. Then follows a dark, aphanitic, structureless rock for some distance. At one point a branching dike of almost pure feldspathic material spreads out into this aphanitic rock in radiating arms. Apparent bedding planes run through them, as well as the country rock, showing that these planes are not those of sedimentation, but are due to some secondary cause. These rocks occupy the caÑon for 1½ miles, and are all undoubtedly of volcanic or intrusive origin. A series of rocks of metamorphic origin outcrops a thousand feet along the caÑon. The first of these is a micaceous felsite. That is followed by fine-grained granitic rocks carrying garnets, and this by a hornblendic felsite. The latter finally becomes mixed and blended with a coarse micaceous diorite, containing a glassy feldspar. This rock is the chief one exposed through the caÑon. It has granitic and syenitic facies. The tuffs exposed at the mouth of the caÑon extend in a direction a little east of south for 3 miles, until covered by the mesas which extend west from Cajon Valley. They show a comparatively uniform character, the fragments being generally nearly blended. The ridge which these rocks form is separated from the granite by an elevated mesa a mile wide. The tuffs are exposed along Chaparral CaÑon to within 2 miles of the mission.

The granite ridge at the lower end of Cajon Valley does not extend more than 2 miles north of the caÑon, when it becomes covered with bedded deposits and bowlders of late Tertiary age. Granite does not appear in Sycamore CaÑon until the northeast boundary of the Cajon grant is reached. High hills of gravel and bowlders lie east of the caÑon and extend toward Foster’s. The main body of granite is met at the head of the caÑon. It extends along the east side of the road to Poway Valley. Bunches of dark, coarse diorite occur in it in many places. The gravel mesa south of Poway Valley has an elevation of 1,200 feet. Small areas of gravel also remain on the hills northeast of the valley. The granite ridge, flanked by porphyries, does not outcrop very prominently south of Los PeÑasquitos CaÑon. The ridge southwest of Poway Valley seems to be formed largely of gravels, rising 1,500 feet.

The usual brecciated tuffs outcrop in the gulches and along the creek just above Los PeÑasquitos ranch house. They appear along the old road to Escondido for 2 miles. A body of chloritic granite appears in the center in the form of a long dike, extending from the PeÑasquitos Creek a mile or more north of the road. Toward the east the breccia becomes finer and almost loses its fragmental character. Between this formation and the granite a dark micaceous felsite, probably metamorphic, outcrops. The fragments in the tuff are diabasic at times and at others largely petrosilicious and feldspathic. The crystalline rock on the east is, perhaps, more nearly diorite than granite, as the feldspar is chiefly a glassy one. Black Mountain is formed of this dark breccia, while the high range of mountains which rises on the north and extends northwesterly between San Bernardino and the ocean, is formed partly of granitic rocks and partly of the tuffs and porphyries, the latter lying on the west.

A rolling, hilly country, containing much good land, stretches north toward Escondido. Remnants of the mesa conglomerates remain in places on the eastern edge of the PeÑasquitos grant. The granite is coarse and rises in huge, rounded knobs along the road. A little south of San Bernardino Post Office there rises a conical peak of micaceous diorite. A somewhat similar rock, but more diabasic in appearance, forms the mountain immediately west of the Post Office. This formation extends northwesterly for several miles, having a width of about a mile. The rock over much of this area closely resembles the gabbros and olivinitic diabases from the southern part of the county. It is penetrated by dioritic and granitic veins, in which the structure is often pegmatitic.

At the point where the road stops at the entrance of the caÑon of Diablo Creek, this basic formation is replaced on the west by a massive, jointed quartz rock, containing a little feldspar and chlorite, and in places becoming granitoid. It often has a fragmental character, with the quartzose bodies imbedded in a matrix more granitic, or simply darker and chloritic. This rock is quite uniform for 3 miles down the caÑon, quartz being the predominating constituent. It is very probable that this represents an original sedimentary terrain. It is followed on the western slope of the range by the dark tuffs before described. Here the matrix is often porphyritic, with a fluidal structure. Portions are real porphyries. A mile east of Olivenheim it resembles diorite porphyrite. The last exposure seen on the west was of the usual tufaceous character. This formation narrows northward, and on the road to San Marcos shows the width of a mile.

Northwest of San Marcos there is a large body of metamorphic rock, chiefly felsite schists and feldspathic quartzites. These extend in a northwest direction toward Buena Vista, but there are not many exposures. Dark diorite outcrops south of Buena Vista, and extends west for a mile and a half, when it sinks under the Tertiary deposits. The last outcrop seen was a dark micaceous diorite. A mile west of this point there is quite an outcrop of diabase containing an excess of dark feldspar. The sandy clays extend west from this point to Oceanside. Near Buena Vista station the diorite is impregnated with green copper carbonates, and a considerable amount of work has been done, but evidently no paying bodies of ore were found. Syenite outcrops near Kelly’s ranch house, and in the hills east. The crystalline rocks come nearer the ocean here than at any other place in the county.

Between Escondido and Moosa CaÑon, granites, with bunches of dark diorite, are the only rocks seen. A broad, sandy valley extends up San Luis Rey River to within 5 miles of Pala, when the high granite mountains close in, forming a caÑon. The valley widens at Pala, and for many miles a broad, sloping deposit of bowlders and gravel borders the river, and rises high against the foot of Smith’s Mountain. It is often 2 miles wide and represents a great amount of erosion. A mile northeast of Pala is a high hill of diabase, similar to that in the southern part of the county. On the eastern slope of this hill is an enormous pegmatite vein, carrying a very interesting set of minerals. This vein is twenty or more feet wide, and dips west at a small angle. There are masses of great size of almost pure mica and feldspar, or quartz and feldspar—in the latter case very fine specimens of graphic granite have been formed. Near the southern end of this vein is a deposit of lepidolite mica, 10 feet thick at the widest part, and appearing in detached bodies for several hundred feet. It is fine-grained and shows a pale purple color. In places it is pure, in others filled with large radial aggregates of pink tourmaline (rubellite). Some of the aggregates are a foot across, others are long and slender, with arborescent forms. North of the main deposit it is found in quartz in fan-shaped aggregates, the crystals being more than a foot long, but greatly decomposed. Black tourmaline is abundant in the pegmatite surrounding the lepidolite, but in poor, brittle crystals. Green tourmaline is present in places in the form of minute grains. Garnets are also to be found in places. The vein as a whole is inclosed in the diabase.

The western end of Smith’s Mountain shows many bodies of dark dioritic rocks. The major part of the rock is, however, gneiss and mica schist, all very easily decomposed, leaving an immense amount of bowlders and gravel along all of the gulches. Mica schists cover an extensive area along the southern slope of Smith’s Mountain, on the Pauma grant. These are undoubtedly a continuation of the schists of the Julian belt, but carry no minerals. The belt of schists extends nearly if not quite through to Julian. Warner Valley is located at the head of San Luis Rey River. It is entirely surrounded by granite mountains. There is not as great a variety of intrusive rock here as in other parts of the county.

Point Loma forms a peninsula, the greatest length of which is about 6 miles, and greatest breadth, 1½ miles. During Quaternary times it was an island, but owing partly to an elevation of the coast, and partly to the detritus brought down by the San Diego River, it becomes joined to the mainland. It rises 400 feet in almost perpendicular cliffs at its southern end, gradually lessening in height toward Old Town. The rock of which it is formed consists of soft shales and sandstones, the latter often quite consolidated. The strata at the extreme end of the point dip south, but in a short distance turn and maintain a quite uniform dip to the northeast nearly the whole length of the peninsula. This abrupt elevation evidently owes its origin to a fault accompanied by an uplift, and not to erosion. Beginning at Ocean Beach, and following along the base of the cliffs to the light-house, hundreds of faults can be counted. Near Ocean Beach fifteen can be counted in the space of 200 feet. The direction of these faults is nearly at right angles to the strike. The most of them are nearly vertical and clean cut. The throw varies from a few inches to many feet. Sometimes the north and sometimes the south wall has risen. An interesting overthrust fault is exposed in the cliffs north of Ballast Point. (Fig. 12.)

Fig. 12.

A conglomerate of late Tertiary age overlies the Cretaceous rocks unconformably on the extreme end of the point. These conglomerates are firmly cemented and form high cliffs. They dip at an angle of 30° to the southeast. The pebbles are in part derived from the sandstone of the point, and in part from the crystalline rocks east of the mesa. Near the top of this conglomerate are immense, semi-angular bowlders. These have rolled down to the beach and are strewn around the end of the point. Many large ones are to be found a little west of the new light-house, but the greatest of all is on the eastern side. It is fully 10 feet in diameter, and formed of the same kind of rock as that on which the mesa rests 8 miles east of San Diego, viz: a green volcanic tuff. It is a very interesting question as to how these immense bowlders have been transported so far and left in the beds near the top of the cliffs. I can account for it only by supposing that the point with relation to the country back of San Diego was several thousand feet lower at one time, and that a river of great volume, flowing over a steep channel, entered the bay at this place, depositing irregular beds of bowlders. This old river may have been the same one which formed the auriferous gravel channel before mentioned. The fault planes on Point Loma extend through the conglomerate beds, indicating that the elevation took place after the bowlder beds were formed.

An interesting collection of fossils was gathered from the lowest strata exposed, and from the bowlders in the conglomerates. This collection numbers something over sixty Cretaceous species, many of which are new. The fossils are not abundant, nor are they well preserved. Nearly all of these are characteristic Chico (Upper Cretaceous) fossils. There is, however, one species found here in considerable abundance, but rather poorly preserved, which Dr. White has described under the name of Coralliochama Orcutti, and which he has made the chief foundation for a new division of the Cretaceous, termed the Wallala Beds. The name was given on account of the occurrence of this fossil, together with several other species, at or near Fort Ross, Sonoma County, and also at Todos Santos Bay, Lower California, where the best specimens were found. These beds stand in an unknown relation to the other Cretaceous deposits stratigraphically, but have been supposed, on account of the fossils, to indicate a division between the Chico and Shasta groups. I believe, however, that the occurrence of the most important fossil of this supposed division on Point Loma, in the same beds with undoubted Chico fossils, destroys the validity of the supposed Wallala Beds.

In a bluff at the northeastern end of the Point Loma peninsula, west of Old Town, there is a stratum of calcareous sandstone, carrying many fossils belonging to the Eocene, or lowest Tertiary. The strata dip northeast at a small angle, and though they cannot be traced continuously west to the outcrops of Cretaceous rocks, yet from the fact that they have the same dip, leads me to the belief that the two beds are conformable. This younger deposit corresponds to the Tejon, or Division B, of Professor Whitney. Everywhere in the State there exists the closest relation between the Chico and the Eocene. Here on Point Loma they are undoubtedly also conformable, but each is distinct as regards its fauna, for they are separated by nearly a thousand feet of unfossiliferous strata.

False Bay occupies the basin of a synclinal, for the strata dip northeasterly from Point Loma and south from the Soledad Hills. A violent disturbance, forming a great uplifted fold or perhaps a fault, has taken place along a line extending southeast from La Jolla through the Soledad Hills. At the eastern end of False Bay there is a small exposure of Eocene strata, dipping west. Near the mouth of Rose CaÑon the strata dip southwest, and at the mouth of the caÑon they dip 40° northeast. Along the road which leads over the hills to La Jolla the rocks are tilted at a very high angle to the southwest. The highest point of the Soledad Hills, rising 700 feet, lies over this disturbed region. Unconsolidated bowlder deposits lie on the top of the hills. The strata on the east side of Rose CaÑon are well exposed, but do not seem to partake of the disturbance shown on the west. This is probably no unconformity, as they contain Eocene fossils, and the Eocene in other spots appears to be conformable with the Chico. Along the coast between False Bay and La Jolla the strata dip south at a small angle. At La Jolla, near the caves, they have been folded so as to dip very steeply to the southwest for nearly a quarter of a mile across the strike. Near the eastern end of the cliffs a reversal takes place, and they dip northeast at nearly as great an angle. Around the little bay there are no exposures, but a mile northward begins a very high line of cliffs, which extend through to the mouth of Soledad CaÑon. This fold at La Jolla brings to the surface fossiliferous strata, bearing a number of species similar to those at Point Loma; among them is the Coralliochama Orcutti. The strata of the high cliffs north of La Jolla dip northerly at a small angle, and show only a few fossils of the Eocene age. The cliffs rise fully 400 feet. At the bottom of the cliffs are shales; higher up are great beds of conglomerate bowlders, chiefly a reddish porphyry.

Coal is reported to outcrop above the water at very low tide somewhere along this stretch of cliffs. It of course must occur in strata of Tertiary age. The coal vein struck in a boring at La Jolla must be Cretaceous. About 3 miles up the coast from La Jolla, there appears a dike of basalt cutting the Tertiary shales. At high tide it is nearly covered by the ocean. It has a course about 30° east of north, and stands vertical. It begins on the north, close in under the high cliffs, but does not extend into them, the only signs being a fault in line with the dike. It is not more than 2 feet wide at the northern point where it is exposed. It is dark and compact and so decayed as to be easily taken for an argillite. The walls of the dike are very smooth and regular, except near the southern point, where it runs into the water. Here it swells to a width of 30 feet. The edges of the dike are compact, while the vesicular portion is in the center, where there is often a flowage structure developed. The central portion is more or less laminated parallel to the wall, and thus is generally a well-pronounced columnar structure developed the whole width. The columns lie horizontally across the dikes and are 12 to 15 inches in diameter. The cavities are wholly or in part filled with calcite. Metamorphism of the adjoining shales is apparent for 2 feet away, but the sea water has so decomposed the shale that it is not so strongly marked as it would otherwise be. The dike projects above the water in places for a distance of 1,000 feet, making its total exposed length about 1,800 feet. In the mesa southeast of Rose CaÑon, and along the San Diego River, and back of San Diego, the formation belongs almost wholly to the late Tertiary. It is not certain whether the Miocene is present or not. A number of Miocene fossils have been found in the county, but perhaps the most of them have come from Carrizo Creek. Many fossils are given in Dr. Cooper’s list, as being found in the Pliocene of San Diego, which are more characteristic of the Miocene in other localities. I see no reason for doubting that the Miocene is present, but so intimately related to the Pliocene as to be stratigraphically inseparable from it. In the region between Rose CaÑon and the northern boundary of the county, I do not know that Miocene fossils have been found, but in Orange County they are well characterized.

The region occupied by San Diego Bay and the mesa back of it is composed, as far as we know, of Quaternary, Pliocene, and perhaps Miocene strata. Sandstones characterize the lower formation, and loosely cemented conglomerates, increasing in thickness toward the mountains, the upper. These were deposited in a sort of basin, of which Point Loma and the Soledad hills formed the northern and western borders. Many oscillations of level have taken place, the most recent being an elevation of 40 feet, shown by an old beach line on Point Loma. The shells in this beach are the same as those now living in the adjoining ocean. It is a peculiar fact that the mesas are slightly higher near their western terminations than farther east, indicating a recent uplift along the ocean. Water is scarce through this mesa formation. At the end of Point Loma there is a strong sulphur spring exposed at low tide. Its waters may possess medicinal properties, and should be examined.

On the southern shore of False Bay is a large deposit of calcareous tufa. The central portion is quite pure and a number of feet thick; just how thick is not known. It extends along the shore some distance, and often contains bowlders and shells. This is evidently a deposit from some former spring of great size. The mesas lying west of the extensive volcanic tuffs have been derived largely from the decay of the latter, and have heavier soil. North of Soledad they become more sandy, and maintain this character to the Santa Margarita Creek. This light soil, however, is being successfully cultivated in many places and for certain kinds of fruit, without irrigation. The surface of the higher portion of Point Loma, as well as some of the mesas north, is covered with spherical nodules, a quarter to half an inch in diameter, of sand cemented with red oxide of iron. These literally cover the ground in places so that it is difficult to walk. The origin of these at first seemed very puzzling, but on examining the face of a cliff on the top of which these were found, an explanation was reached. They were seen to grow smaller away from the surface of the ground until a depth of 2 feet was reached, when they cease. Their formation is due to the oxidation of the iron in the sandstone, and its segregation in little nodules on the same principle as the formation of concretions.

Fig. 13.

The cliffs of Eocene sandstone along the ocean grow gradually lower north of Soledad CaÑon. At Encinitos the cliffs are higher again and for a short distance the strata dip south, but toward Oceanside they resume the northerly dip and disappear several miles south of that place. Faults grow less numerous the farther we get from Point Loma. The mesa is low about Oceanside; it was either never very prominent or else the erosion has been great.

On the north bank of the Santa Margarita Creek, near the ranch house, is an interesting cliff of Quaternary sands and gravel, showing a number of strata deposited under different conditions on an old beach. (Fig. 13.)

The Tertiary beds north of the Santa Margarita Creek are very different in outline from those south. Instead of their extending in a gradual slope from the older mountains to the ocean, there arises in them, near their western border, a range of mountains, known as the San Onofre Mountains. These extend parallel to the ocean at an average distance of 2 miles. They rise north of the Santa Margarita Creek and extend to the San Onofre Creek. They have a gradual slope on the west, rising to an elevation of 1,400 feet, but are quite abrupt on the east. Los Flores Creek cuts through the southern end of this range, showing that while the soft, clayey sandstones between it and the Santa Margarita Mountains slope only 5° to 10° southwest, the rocks of the range itself dip west at an angle of 35° to 40°. The formation is a breccia, the fragments of which are argillitic, micaceous, and hornblendic schists. Some of these fragments are of great size, one bowlder of hornblende schist being 8 feet in diameter. Pebbles of white quartz and other hard metamorphics are also present. The soft, coarse sandstone in which the fragments are imbedded show no traces of any granitic matter. The range was ascended 2 miles north of the Los Flores ranch house, and found to consist entirely of fragmental schists, such as those mentioned, dipping southwest at an angle of 45°. The mountains were also climbed at their northern end, near San Onofre Creek. Here there is a very abrupt escarpment on the eastern side. The strata dip toward the ocean at a high angle, while the irregular hills and ridges of soft, light-colored sandstone lying east toward the Santa Margarita Mountains are nearly level. After a careful study of the range the conclusion was reached that its origin was due to a great fault, represented by the very abrupt eastern slope, tilting the elevated portion to the west at a high angle. I believe that this fault took place after the deposition of the Tertiary strata. As far as my observation went the Tertiary beds on the east do not rise to meet the San Onofre range, as they would to a certain extent if it were present when they were deposited; on the contrary, they dip toward it. West of the range the ocean is bordered by very high cliffs of Quaternary clays, and in only two or three places do the Tertiary rocks outcrop. Small patches of sandstone outcrop near the road at the western foot of the mountains; they also dip west at a high angle. Many of the fragments at the northern end of the range show their derivation from a massive crystalline rock. The hornblende schists are generally garnetiferous. Blue glaucophane schists are also very common. South of Mission Viejo Creek, Orange County, there is an outcrop of rock, apparently in place, which greatly resembles these schists. Good outlines of these mountains, indicative of structure, can be seen to great advantage from the San Luis Rey Mission. On the west slope of the San Onofre Mountains, 4 miles north of Los Flores, is an outcrop of a garnetiferous hornblende schist, which certainly appears to be in place. This rises 10 feet above the side of a gulch, and is fully 20 feet across. One mile north and in line of strike with the last is another outcrop of similar rock, which is so large that it certainly seems that it must be in place. The only point north of the San Onofre where this breccia appears is at Arch Beach, Orange County. The Santa Margarita Mountains are bordered by very extensive bowlder deposits, which rise as high as 1,500 feet on their western side.

The topography of the northwestern part of the county between Temecula, Elsinore, and the ocean, is very complicated. This section is occupied by rugged, brush-covered mountains and narrow, deep valleys, with the exception of the Santa Rosa plateau, where the configuration of the county has been entirely changed by extensive lava eruptions, stretching over a distance of 10 miles. This mountain region narrows toward the north to form the Santa Ana range. The variety of rock formations is very large. The northern portion is unsurveyed. On the south are the two large grants, the Santa Margarita and the Santa Rosa. Between these lies De Luz Valley. The Santa Margarita Mountains extend north and south, forming the eastern borders of the grant and rising to an elevation of 3,100 feet. The granite of the region about De Luz Valley is far from being homogeneous. A part of it is undoubtedly intrusive, and a part may represent an original sedimentary formation. Bedding planes are present in much of this supposed metamorphic granite, but generally no schistose structure. The presence of the De Luz warm springs is perhaps due to a dike of dark, aphanitic diorite, which has cut through the granite in an irregular manner. A very interesting breccia outcrops in the bed of the creek below the warm springs. (Fig. 14.)

Fig. 14.

The fragments are chiefly granite and an aphanitic rock. They are quite angular, showing only a slight rounding of the corners. Some of the larger fragments are a foot in diameter. The boundaries are very irregular. Long arms of the inclosing granite project into the breccia. The base or matrix varies from a coarse syenitic rock to an aphanite. It often seems to present a blending of different kinds of fragments. Besides the large inclusions there are scattered through the matrix small angular pieces, which are so regular in outline and distribution as to give to the rock the appearance of a porphyritic structure. The granite in the hills west of the valley contains much biotite and quartz in long, rounded grains, presenting a pseudo-porphyritic aspect. This appearance is characteristic of much of the granite of this section. Imbedded in the granite are masses of dark aphanitic rock. The lower granite hills are covered with considerable sandy soil. There are isolated peaks of a coarse white granite, much like that of the Sierra Nevada, arranged in some sort of regularity in north and south lines. One rugged peak of this coarse granite rises 2,500 feet west of the valley. At the northern end of the valley the bedding planes in the finer grained granites are very regular; strike north 45° west, dip 65° southwest. There is, however, no schistose structure present.

A half mile above the warm springs is another conglomerate or tuff, which seems so related to the granite that the latter must really be eruptive. In a little valley southwest of De Luz and just east of the Santa Margarita grant there is a large outcrop of diabase. It has been intruded in a fine-grained, jointed granite. Farther down the valley, on the road to De Luz Station, there is a narrow outcrop of black quartz feldspar porphyry, followed on the east by a dark felsitic mica schist; strike northwest, dip 60° southwest. Immediately west of the deep canons which lead down to De Luz Creek, rises the Santa Margarita Mountains. They consist of a fine-grained granite, verging at times on a quartz porphyry. The main crest is 2 miles long, the highest peak of which is nearly 3,200 feet. The rock is perfectly massive, but shows apparent bedding planes; strike north 30° west, dip 80° northeast. The porphyritic facies of this formation occur in the western slope. On the western slope of the main range, at an altitude of 2,500 feet, there is a plateau-like area of a thousand acres or more of fine grass land. It is dotted with white oak trees. The western slope of this plateau is very abrupt and brushy. The formation is partly porphyry and partly dark diabase and diorite. The most interesting fact connected with the Santa Margarita range is the occurrence of sandstone at an elevation of 2,600 feet on its western slope. The sandstone occupies very limited detached areas in the heads of the gulches, and is evidently the remnant of a once far more extensive formation. The sandstone is largely kaolinitic, and has evidently been derived from the adjoining rocks. At the foot of the southern end of the mountains appears very quartzose rocks, probably of metamorphic origin. Coarse granite has been intruded into them in small bunches. Granite extends southwesterly in the form of a wedge as far as the Santa Margarita ranch house, and is there covered by modern deposits. Between De Luz and Fallbrook the country is gently rolling, with knobs of granitic rocks projecting here and there. About Fallbrook, and for some distance east, the granite does not outcrop much, owing to its easy decomposition. A little east of De Luz Station is a small body of mica schist; dip 30° east, strike north 15° west.

The road from Fallbrook to Temecula leads through a long, narrow valley. On either hand rise high mountains of bare granite. Immense bowlders, 20 to 30 feet across, line the valley, having fallen from the cliffs. The granite here is a coarse rock, rich in biotite, and though great masses could be obtained free from checks, yet does not seem durable. The valley owes its origin to a difference in rapidity of decay along certain lines. On this section there appears no trace of the schist belt extending northwest from Julian. This coarse granite is undoubtedly intrusive and has cut it off.

A wholly different series of rocks is exposed in the Temecula CaÑon, not more than 2 miles north of the country just described. This caÑon is deep and rocky, taking a very direct course from Temecula to the ocean. At the upper entrance there is a narrow exposure of granite. This is followed by quartzite, dipping 45° southwest. The rocks shortly become massive and are replaced by dark syenitic ones with an excess of hornblende. Two miles down, granite appears for a short distance, and in it a quarry has been opened. The rock can be obtained in blocks of any size from great masses which have broken off and rolled into the caÑon. Gneissoid rocks soon replace the granite, and these are followed by hornblendic rocks, which vary from a schistose to a massive structure. In places they contain feldspar and pass into syenites; in others the rock is almost pure hornblende. The greater portion of these rocks are of metamorphic origin. The dip is generally vertical, strike east and west to northwest. The syenites are followed by mica schists, and these by coarse biotite granite about 5 miles above Howe Station. In the granite are many pegmatitic veins, carrying biotite, garnets, and tourmaline. Fine-grained granite, varying at times to syenite, forms the rock along the caÑon for many miles below this point.

The most interesting geological feature about this northwestern part of San Diego County is the long plateau, confined chiefly to the Santa Rosa grant. This plateau lies near the western corner of the grant, and extends east nearly to Murrieta. The lava is broken up into detached tables by erosion, which become very strongly pronounced toward the western end of the flow. The western body of lava is the highest. It has a length of nearly 2 miles and is broken into three peaks or ridges, sloping generally a few degrees to the east; height 2,850 feet. There are two terrace-like tables lower down its southern slope. The lava is, perhaps, a hundred feet thick at its eastern end, and has been so much eroded toward the western portion that the underlying sandstone is exposed along the crest of the ridge, with lava lying in broken masses along its sides. The sandstones form quite an extensive bed under the lava flow, being 200 or 300 feet thick, and horizontally bedded, wherever bedding is present. The upper part is very soft and granular, the lower portion is hard and stained reddish. It carries many bowlders 6 to 8 inches in diameter, different from any other rock seen in the adjacent mountains: quartzite mica schist, aphanitic rocks, and some granitic ones. These are washed smooth. The sandstones contain much kaolinitic matter, and at one spot show an incipient crystallization. A number of contiguous grains, over a space half an inch in diameter, show the same orientation. Near the bottom the sandstones are impregnated with iron. The western ridge in particular shows a great amount of erosion. The lava is nearly gone in places, but occurs southward in scattered outcrops for half a mile. At the northern end the sandstone rises fully 300 feet above the lava. Lava is present on its sides. Much of the sandstone closely resembles a granite decomposed in situ. Fragments of the mica schist resemble that in the hills west of Temecula. Northward half a mile is the deep caÑon of the San Mateo. The country descends very rapidly from the lava ridge, especially so on the north, where the caÑon is fully 1,500 feet deep. It is a number of miles in any direction to mountains which are as high as this lava-capped sandstone ridge, and the amount of erosion must have been enormous since it was deposited. Mesa Redonda has an elevation of 2,750 feet, and is separated from the lava just described by a valley fully 800 feet deep, and nearly a mile broad. Mesa Redonda is formed by a lava table, probably basalt, 150 to 200 feet thick. It is quite precipitous on three sides. The lava is bedded, dipping 5° to 8° northeast. Underneath is a body of coarse, friable sandstone, similar to that just described. Some pebbles and bowlders of lava lie in the upper portion of the sandstone. The sandstone consists of angular quartz grains and kaolinic matter, and often presents the appearance as if it had been partly fused by the lava. In the top of the sandstones are pebbles of quartz, feldspar, and mica schist. The sandstone shows no bedded structure, but seems to form a mantle over the hill, following the irregularities of the underlying granite. It descends 700 feet on the southern slope of the mountains which rise so abruptly from De Luz Valley. The lava has spread out in thin sheets on the southern slope of the mountain, descending more than a thousand feet on the east side of Cottonwood Creek. These thin beds are not massive, but are formed of angular lava bowlders. The flows were so thin that they either broke up on cooling, or later through atmospheric agencies. Fig. 15 is a sketch of Mesa Redonda from the north.

Fig. 15.

Fig. 16.

Cienega Peak lies east of Mesa Redonda and is separated from it by two gulches opening in opposite directions. It has an elevation of 2,400 feet, and the mesas east rise still less. Sandstone underlies this as it does the other lava flows. Near the eastern end of the southern slope, a lava flow has broken out from a basin-like depression which opens southward, and flowed down the mountain for a mile, descending a vertical distance of 1,800 feet. It appears to have broken up entirely into angular bowlders. The stream was probably very liquid, like the others, and formed a thin flow. It takes a slightly winding course and slopes often 30°. One short branch appears on the western side about half way down, and another on the east near the bottom. The lava descends in successive terraces, like steps, from the crater depression. The width varies from 500 to 700 feet, terminating in a straight line about a hundred feet above the bed of the caÑon at the head of De Luz Valley. This distance may represent the amount of erosion since the stream flowed. There are also caÑons worn to some depth on each side. The surface of the flow is rounding, and appearances indicate that it descended over a surface not much different from the one now shown. A large part of the bowlders in the creek for several miles are lava. Fig. 16 shows this lava stream as it lies on the mountain side, and also Cienega Peak, from which it flowed. These lava beds appear very prominent from De Luz Valley. The long, winding flow is known locally as the Oak Ridge, on account of its being covered with oaks, while the adjacent mountains are barren and brushy. It is hard to reconcile the appearance of these isolated peaks, with often precipitous sides, and deep valleys between them, showing a great amount of erosion, with the thin sheets spread out on the southern side of the mountain in so many places, which from their position indicate so little erosion since they flowed. It is possible that the mesas, with the high precipitous cliffs, represent remnants of an older flow, and yet the lithological character of the lava seems to point to a single origin. With the exception of the long southerly flow and another short one west of it, the lava everywhere presents bluffs on its southern side, with deep gulches between them. Toward the northeast and east there is a gentle slope. A large part is coarsely vesicular; dense massive portions are mixed irregularly in places with the vesicular. The lava table-lands lie nearly 2,000 feet above De Luz Valley. This abrupt escarpment extends east as far as the lava does, though less marked. There has either been an enormous erosion in the region lying south, or a great fault elevating the plateau. A detached portion of the lava plateau caps the hills west of Murrieta, extending in a north and south line for a distance of 2 miles. Whether these detached portions all had their source in one great flow and have been separated by erosion, or were formed from different sources, was not fully determined. It seems probable, however, that the main portions did belong to one flow, from the fact that they have a uniform slope and are underlaid by similar sandstone, which may once have been the bed of a stream.

The range of mountains lying west of the valley which extends from Temecula to Elsinore, also has the appearance of having been elevated by a fault. From the entrance to the Temecula CaÑon, northward past Elsinore, and along the eastern base of the Santa Ana Mountains, these abrupt escarpments and indications of a fault become more pronounced. The eastern part of the Santa Rosa plateau, with its lava fields, forms the southern end of the escarpment. The valley in which are located the towns of Temecula, Murrieta, and Wildomar, rises gradually toward the east. The western portion is very fertile. Artesian water is found at Murrieta. The eastern portion, which rises toward the granite mountains, is more gravelly, while east of Temescal there is a stretch of many miles of these dry gravel hills, probably of Quaternary age. The town of Temecula has an elevation of 1,000 feet. Immediately west and north of the caÑon there arise hills of metamorphic rocks, having an elevation of 1,800 feet. They are covered with dense brush on their eastern slopes, but contain some fertile valleys to the west. For several miles the rock is almost wholly metamorphic. It extends south to the caÑon and north to the lava plateau. It is chiefly a fine, dark mica schist; strike indistinct but north 60° west, to east and west, dip vertical. On the west it changes to a quartzite. Dikes of granite cut this rock; one is noticeable for several miles by its more pronounced croppings over the hills.

East of Murrieta the granite begins near the boundary of the grant, and forms a line of barren hills extending northerly. East of these the country is less rocky and quite fertile. Many springs abound in the granite through this section. Near the Hot Springs is a dike of granite porphyry. Numerous bunches of a dark, coarse, dioritic rock are scattered through the light-colored country granite. They weather away more slowly than the granite. The metamorphic rocks of the Santa Rosa plateau extend north to the entrance to the caÑon, up which the road passes to Parker Deer’s. The strike in the caÑon is a little east of north. The metamorphic rocks terminate in a range of hills which form the southern boundary of the Rinconada. Northward the country is formed of rugged granite mountains. The Los Alamos opens westward into deep caÑons, which lead down to the coast. A dark dioritic granite is included in the usual light-colored variety, sometimes in bowlder-like masses and sometimes in dike form. The metamorphic rocks extend 2 miles west of Parker Deer’s house. They include mica felsite and dark vitreous quartzite. They are often intruded by granite bosses and dikes of quartz porphyry. The lava table-land lies just south of the ranch house. It is about 40 feet thick, and has underneath a kaolinic stratum 12 to 14 feet thick, which is impregnated with bog iron; one assay has shown 10 per cent. This is quite similar to the sandstone under the table-land farther west, but is less quartzose. A similar deposit, impregnated with iron, was seen north of Mesa Redonda. The Santa Rosa grant consists chiefly of broad, open valleys, having an altitude of 1,700 to 1,800 feet, with rocky ridges between them.

On the trail from Santa Rosa to Howe Station, the metamorphic rocks extend to within a mile and a half of the latter place. They are chiefly light-colored, granular quartzites. Dikes of diabase and gabbro appear in many places on the Santa Rosa grant. Ores of gold, silver, and copper are found in the metamorphic rocks of the grant, but they have never been developed. Selected samples of galena assay several hundred dollars to the ton in silver. The veins are, however, small and bunchy, and it is not probable that they can be profitably worked. The granite varies from one with mica, as the only dark constituent, to one with much hornblende. It is uniformly coarse and of undoubted eruptive origin, judging from the manner in which it has broken through the metamorphic rocks.

The table-land west of Murrieta is about a mile broad and fully as high as that near Parker Deer’s house. It is separated from the lava farther west by a mile of brush-covered hills. The lava was supposed to extend no farther than the big caÑon west of Murrieta, but a close examination revealed a small outcrop on the hills about a mile south of Wildomar. The elevation is about 600 feet above the valley. It is perhaps one fourth of a mile across. In places it extends down the hill nearly one third of its elevation above the valley. It presents the appearance of having flowed out of the summit of the hill when it had much the same form as now, and down over its sloping surface. This eruption is fine-grained, and not vesicular. Much of it has a conglomeritic character, appearing to have been broken up when almost solid, and then cemented. The fragments are more or less rounded and elongated, and are at times almost blended in the matrix. There are signs of former solfataric action on the summit, there being a considerable deposit of a light yellowish material, consisting chiefly of alumina and magnesia. Under the lava is sandstone 10 to 20 feet thick, composed of quartz grains and kaolinic matter, exactly similar to that under Mesa Redonda. It would be easily taken for granite decomposed in situ, but for the large quartz grains. The sandstone has an apparent southerly dip. It is very difficult to account for the presence of the sandstone under the lava, unless we suppose it covered the adjacent country, and was only preserved by the greater permanency of the lava. Another hill of lava was found 200 feet lower, about a mile south of this, and west of the caÑon leading up to Parker Deer’s. It occupies a sort of depression between three hills, with gulches cutting into it between them. The lava is very similar to that just described.

A long, high ridge running northwest and southeast, adjoining the lava, is very interesting. It is about 200 feet higher, and covered with dense brush, as is all the country in this vicinity. The greater part of the hill is formed of a coarse tuff, whose fragments stand out in sharp relief on the surface of the huge projecting, bowlder-like masses. The matrix, which is darker and softer, weathers out, leaving the surface of the rock covered with a great variety of fragments. Some are scoriaceous or amygdaloidal, others are very coarsely crystalline and porphyritic with feldspar or hornblende. Some of the fragments are themselves tufaceous, containing large masses of hornblende in a dioritic matrix. On the southern end of the hill, a great variety of dikes intersect the tufa. This is in all probability the neck of an old volcano, but appears to have no relation to the modern lavas near it. Owing to the exceeding difficulty of traversing these hills, the exact relations of the formations were not ascertained. About 10 miles east of Temecula, near the point where the creek takes a turn to the southeast and enters a caÑon, there has been another lava eruption, but the time at my disposal did not permit me to examine it. A great variety of rocks are exposed along the road from Elsinore to Menifee Valley. For nearly 2 miles east of the station the rock is a white, glassy diorite, with an excess of feldspar. At the point where the road crosses the railroad, metamorphic schists appear. The rock is a fine, dark mica felsite. It is so compact that it breaks with a conchoidal fracture. A great irregularity in strike and dip exists; the average strike is a little west of north, dip northeast. As far as the top of the grade, the rocks are in part metamorphic and part dioritic. There are many dikes; some fine-grained granites, others micaceous diorite porphyrites. The hills along the west side of Menifee Valley seem to be mostly metamorphic, with some bunches and veins of granite.

All of the mountainous region lying south of the road from Temecula to San Jacinto is granite or diorite, excepting a strip of micaceous schist and gneisses near Glen Oak Valley. These strike northwest toward Menifee.

No opportunity was given me to examine the mountainous regions comprised in the San Jacinto range. The line of hills lying northeast of the town and having a northwest direction are composed largely of gneiss and mica schist, with some bodies of white crystalline limestone. In the line of strike these hills finally disappear north of San Jacinto Lake, under Quaternary clays and gravels, which form rather an abrupt rise from the San Jacinto Valley and extend northerly to the San Bernardino Mountains. The deposits show a great deal of disturbance. A part of them may be Tertiary. Dikes of dark, heavy diabase and diorite are common about the sulphur springs north of San Jacinto.

The hills for a distance of 3 miles north of Elsinore are formed of slate and mica schists; strike north 70° west, dip vertical to 45° east. This is a continuation of the same series of rocks exposed on the road to Menifee. A lenticular body of limestone occurs in these slates about 3 miles north and east of Elsinore. It is highly metamorphosed, has a gray to dark color, and is traceable for 500 or 600 feet. At one spot a stratum of quartzite divides it. It was carefully examined for fossils, but none were found. About 4 miles from Elsinore granitic rocks appear, followed by dark diorites in the vicinity of the Good Hope Mine. The Pinacate district, taken as a whole, is rather peculiar. At first sight it seems to be formed of granite, dark diorite, gneiss, mica schist, and other metamorphic rocks, arranged in the most irregular manner. The belt of metamorphics northeast and east of Elsinore is terminated on an irregular east and west line by these granitic bodies, which inclose portions of the schists, and extend into the main body as long, dike-like arms. In the vicinity of the Good Hope Mine the strata of metamorphic rocks inclosed in the granitic rocks have a north and south strike, and are traceable for a mile or more. The veins of the Good Hope Mine are in a dike of light-colored biotite granite. It has considerable width on the surface, 100 feet or more, but below ground some distance it is not over 12 feet. On the surface it is greatly decomposed and cut by numerous small veins, which are so scattered that they hardly pay for working. Below they unite to form larger veins, generally one on the foot and another nearer the hanging wall. The latter is more irregular, often running out at a small angle. The foot wall, a dark compact diorite, is very regular. The walls are separated by well-defined clay seams from the vein matter, the decomposed granite. Clay seams also separate the different veins. The foot wall diorite forms the country rock indefinitely eastward. The hanging wall is a fine, dark brown mica schist. The quartz is generally friable, and the granite vein matter much decomposed. The quartz at a depth of 300 feet carried one third of the gold in the sulphurets. A small amount of silver is also found. This vein is located for over a mile; direction a little east of north, dip 65° west. It is remarkable that there is no barren quartz; all the ore pays for working. In the lower workings the veins become more regular.

The Good Hope is the first mine in this district to reach a paying basis, and that has succeeded in finding a regular, defined quartz ledge. About 3 miles northwest is another vein, which has an east and west direction. It seems to lie wholly in granite, save for a narrow stratum of mica schist on one wall. The vein is located for a mile, but no extensive development has yet been made on it. On the hills, a short distance southwest, is an old Mexican mining camp. Many small veins are found in the vicinity, generally in a dark micaceous diorite. There are also bunch-like masses of coarse white granite, blending into gneiss and the gneiss into mica schist. The strike is exceedingly irregular, changing from north and south to east and west in the course of a few feet. Toward Elsinore mica schist, quartzose, and feldspathic rocks replace the greater portion of the granite. For some distance the schists are cut up by dikes of fine-grained granite, running in different directions, and small bunches of the same rock, often only a few feet across, but sharply differentiated from the schists. Judging from the exposure here, I think we might say that at the time of the metamorphism the action was so intense as to change the sedimentary rocks to mica schists and gneisses and through these to squeeze the liquified portions of the same formation in dikes and fissures. Small fragments of mica schist were noticed in the eruptive masses. In a region like this it is often difficult to draw the line between eruptive and metamorphic rocks. It has been shown before that lamination is no sure indication of sedimentary structure.

Lake Elsinore is bordered on the west by a high and rugged granite range. In the mountains west of Elsinore the granite which cuts off the metamorphic rocks on the Santa Ana range is again replaced by the Metamorphic Series, which are here very greatly altered. They strike a little west of north and dip vertical or at a steep angle to the east. The boundary of the granite is very irregular, and masses outcrop in the metamorphics near the main contact line. Much of this crystalline rock perhaps more truly belongs to the diorites.

The new silver mines lie just north of the San Diego County line, and west of the divide, a position which brings them into Orange County. The formations in which the veins occur vary from a dark brown felsite, often micaceous, to a finely banded quartzose rock. The latter is very compact, and often almost massive. In places hard, blocky argillites appear. The two or more veins found here carry galena bearing silver, and also much magnetite and iron sulphurets, with some of the baser metals. The veins are characterized by a dark red gossan cap on or near the surface. Carbonates are found in this. These deposits exist as impregnations along a fissure, which is not very strongly pronounced. The ore is usually quite massive. The little gangue present is calcite. Not enough development has been made here at the time of my visit to show how extensive the deposits are. The metamorphic rocks extend north along the mountains, forming the summit and eastern slope for a number of miles. Granite borders them on the west toward San Juan. It is probable that this belt of mineral-bearing rocks runs continuously through to Silverado CaÑon. At some time this Elsinore basin opened out through the Temescal Valley, but now a low divide separates it from the head of Temescal Creek. Gravel-topped hills lie along the mountains west of the creek. At the terra cotta works a drill was sunk over 600 feet without reaching the bottom of the basin. The Cheney Coal Mine is located 5 miles northwest of Elsinore, in the same basin. The beds dip to the west and southwest, having clay below, and sandstone followed by clay above. The coal is 7 to 8 feet thick, generally solid, but in places showing a parting in the middle. A great deal of faulting has taken place, but there seems to be no system about it. The throw of the faults sometimes amounts to 30 feet, often disturbing the pitch of the vein, and making it greater. The strata evidently belong to the Miocene-Tertiary, for a little farther down the valley fossils of that age are found. This old Tertiary valley, undoubtedly an arm of the sea, opened into the large valleys of San Bernardino and Los Angeles Counties, and extended southerly to Temecula; though south of Elsinore the Tertiary is covered by Quaternary gravels. The depth is unknown, but the width is quite narrow, being from 1 to 2 miles. Not more than a quarter of a mile northeast of the coal mine the metamorphic rocks, quartzites, and hard, blocky argillites outcrop. East of Temescal Creek northward the mountains are formed of a quartz feldspar porphyry of a dark gray color; at times it blends into portions not distinctly porphyritic.

Three miles north of the San Diego County line granite appears again on the east flank of the Santa Ana range and extends north to Cold Water CaÑon. Between Temescal Creek and the mountains is a broad, sloping gravel and bowlder deposit of great thickness, resting on the Tertiary. Two miles south of the Temescal Post Office there is an outcrop of soft sandstone carrying Miocene fossils. It dips southwest at an angle of 30°. Extensive clay banks of various colors and nearly horizontally bedded lie along the flanks of the mountains both east and west of the creek. An interesting series of rocks is exposed up Cold Water CaÑon. This caÑon has been eroded near the northern termination of the granitic portion of the Santa Ana Mountains. The first rock exposed is a micaceous diorite, decomposed to a great depth, but very tough when fresh. This is followed by syenite. A mile up the caÑon, near the western edge of this rock and wholly inclosed in it, is a small mass of jasper schist and a lenticular body of semi-crystalline limestone. No traces of fossils were found in it. West of the syenite is another diorite dike. Then follows banded jaspery rocks, sometimes verging on micaceous felsite or quartzites. There are also some slates, and all are often greatly contorted; strike north to northeast. North of the caÑon these rocks extend to the summit, while south the Santiago Peak, the highest of the range, and the ridges leading up to it from the east, consist of a coarse quartzose granite, with but little if any triclinic feldspar. A variety of dikes occur near the summit north of the caÑon, among them hornblende porphyry, porphyritic granite, and syenite. Fossils were found on the ridge leading up to the summit, north of Cold Water CaÑon. They occur in a grayish rock, apparently a fine micaceous felsite. They are poorly preserved, on account of the extreme degree of metamorphism to which the rocks have been subjected. The rocks have become so altered by pressure that they will not break on the lines of bedding, but perpendicular thereto. The fossils consist of impressions of a small bivalve shell. Only about a dozen specimens could be found. The rocks are more altered than any others I have ever seen carrying fossils. These are the first fossils reported from the metamorphic rocks of the Santa Ana range. These fossils when determined will give a clue to the age of the metamorphic gold-bearing rocks of this portion of the State, and also of the granite, concerning which much diversity of opinion has existed.

Dawson CaÑon, which heads in the Temescal Mountains, was explored and found to contain interesting geological features. A fine opportunity is given for the study of the relation of the granite to the extensive porphyry intrusives. For 2 miles east of Temescal Creek no eruptives appear; the rocks being wholly of the Metamorphic Series, with exposures of highly altered sandstones, clay shale, conglomerates, etc., striking northwest and dipping southeast at 45° to 50°. About 3 miles up the caÑon the argillaceous rocks are replaced by a coarse granite, rich in mica and quartz. This is the prevailing rock up the caÑon for 2 miles, and it apparently extends much farther east. It shows a great variation in appearance; much of it contains large crystals of flesh-colored orthoclase. In this granite, particularly on the north side of the caÑon, there are dikes of many kinds of rocks. Large dikes of beautiful diorite porphyrites, both light and dark colored, appear in places. At one spot 4 miles from the mouth of the caÑon, there are rectilinear dikes of fine-grained granite, intersecting each other like artificial stone fences. For the distance of a mile east, after the granite begins in the caÑon, the hills north show nothing but metamorphic schists. The porphyry in the mountains south does not reach the caÑon. The great mass of this rock is dark, but in the vicinity of the granite it is lighter colored and more feldspathic, sometimes assuming a granitic structure. In places it is a gray, hard rock, of almost conchoidal fracture, and faint feldspar crystals. The granite near the contact is usually sharply defined, and has a faintly porphyritic appearance at times. The line of junction of the two formations is sharply defined, not only lithologically, but physically. It is difficult to say which is the older. No granite appears in dikes in the porphyry, but there are many dikes of a porphyry-like appearance, resembling the light-colored porphyry in the granite itself. The line of junction is very irregular, and it is certain that the two formations do not belong to the same eruptive mass.

East of the head of Dawson CaÑon there is another outcrop of considerable extent of metamorphic rock, micaceous felsites, and other dark schists. A mile west of the Gavilan Mines is a high conical peak formed of coarse, dark diabase. The mines of this district are in white biotite granite, continuous with that of the Pinacate district. The metamorphic rocks south of Dawson CaÑon strike east and west, dip north, and extend in a westerly direction nearly to Temescal Post Office. North of the caÑon, 2 miles from its mouth, there are a number of outcrops in vein-like forms and in bunches, of a black crystalline material, evidently tourmaline, identical with that at the Temescal Mine. These occur in the metamorphic sandstone and shales. The next large caÑon in the Santa Ana range north of Cold Water CaÑon shows highly disturbed Tertiary strata at its mouth, dipping away from the range at a high angle. They are soft, white clayey deposits, containing small nodules of selenite. The first of the older rocks exposed in the caÑon is a hornblende porphyry, with variations to a granular diorite. For 3 miles up the caÑon the only rocks seen are crushed and silicified ones of the Metamorphic Series. They dip, as a usual thing, at a high angle to the east, though in spots it is to the west or horizontal. Quartzose sandstones prevail, with blocky argillitic rocks and conglomerates. Near the summit there are dikes of green tufaceous porphyries.

Temescal Valley is underlaid by clays of a great variety of colors. They are being used very extensively for the coarser kinds of pottery and drain pipe. The Miocene deposits of the valley dip westward from the Temescal range, and instead of also dipping away from the Santa Ana Mountains basin-like, they dip west into the latter range. The dip of these beds 3 miles south of South Riverside is 5° to 10° southwest, and as the Santa Ana Mountains are approached the dip increases, and at a distance of a fourth of a mile, up to the metamorphics, it varies from 45° to vertical. The strata are not exposed all the distance across the valley, but there is no sign of a fold or overthrow; everything seems to point to a gradually increasing dip. This is indicative of an elevation of the region toward Temescal, or a sinking of the Santa Ana Mountains. This is undoubtedly the fault line which follows the range for such a long distance south. Several thin seams of coal outcrop for a distance of 10 miles along the base of the mountains. They have been opened in a number of places and all the strata found dipping into the mountains. The coal seams are often only a few hundred feet away from the metamorphics, and dip toward them at a very regular angle of 45°. Judging from the position of the strata it is not probable that the coal underlies the valley, and as it is so close to the mountains, formed wholly of rocks of the Metamorphic Series, it cannot be of great extent. I believe that appearances point to the whole of the coal beds having been eroded, save the limited, steeply inclined portion at the foot of the mountains. A crowding of the strata against the mountains during the movements along the fault line, have given rise to the steep dip. The highest portion of the Tertiary beds has an elevation of 1,500 feet. A very even, gently sloping plain extends from this elevation toward South Riverside. It is formed of unconsolidated wash from the mountains, deposited on and dipping in the opposite direction from the Tertiary. The Tertiary formation consists of clays in various conditions of consolidation, others chalky in appearance, and a great thickness of argillaceous quartz-sand loosely cemented. Poorly preserved fossils are found in places. Near the southeastern corner of Mr. Hoag’s ranch is a hill with hardened concretionary sandstone outcropping around it. Nearly every portion of this contains fragments of bones supposed to be cetacean. Artesian wells are obtained near Temescal Post Office at a depth of 300 feet. The water is abundant and of excellent quality, and is flumed to South Riverside.

Bunches of granite outcrop in the metamorphic rocks along the east side of Temescal Creek north of Dawson CaÑon. At the dam of the San Jacinto Company there is a large outcrop of the beautiful diorite porphyrite, similar to that seen in Dawson CaÑon. This extends northwesterly along Temescal Creek toward South Riverside, where it is quarried. It makes an excellent and durable building stone, being compact and free from much mica or hornblende. West of this is a narrow strip of coarse granite, followed by diabase. North of Mr. Hoag’s ranch, and west of the dam, is a dike of black porphyry. Westward the crystalline rocks are overlaid by the Tertiary.

The dam commenced across the Temescal Creek at this point, where it enters the caÑon, was intended to have been extended down to the bedrock, and thus bring to the surface the water which flowed beneath the surface channel. The diorite porphyrite is followed on the east by black porphyry.

Geology of the Temescal Tin District.—The Temescal Tin Mine is located in the northern part of the San Jacinto grant, and about 5 miles southeast of South Riverside. This portion of the grant consists of rolling hills. On the west is a large body of porphyry, extending nearly to the Temescal Creek.

The first rock exposed along the road to the mine east of the creek is a dark flinty one. This is followed by a body of black porphyry, with white feldspar crystals. The porphyry is about a mile across, and is followed on the east by massive black crystalline rock, and that by a felsite. These rocks are soon replaced by granite, in which there are dikes of fine-grained, highly quartzose granite. Little black veinlets of tourmaline aggregates are very numerous in the granite, extending through all the rock up to the porphyry. They have a northeast direction. The material forming them is the same as the gangue of the tin veins. A half mile south of the road is a caÑon. Here the porphyry is seen extending up to the granite. The granite is greatly broken near the contact, and though there is no blending of one into the other, there is a confused mixture of broken portions of both rocks. Bunches and dike-like bodies of granite are inclosed in the porphyry. The little veinlets of tourmaline seem to have replaced the feldspar and mica, leaving the quartz. These veins grow larger toward Cajalco Hill. Just west of the works is a great mass of the black veinstone, the gangue of the tin ore. This rises in high, rugged croppings, and covers an area of about 300 by 250 feet. This is the greatest body of vein matter to be seen in the district. The tin deposit worked lies in an eastern prolongation of this cropping. The course of the veins is north 45° east, dip 65° to 70° northwest. The country rock is a coarse hornblendic biotite granite. The vein has the usual character of mineral deposits, swelling at times to a width of 8 feet, and then contracting to much less. The highest grade ore is found in the narrower portions, where it is sometimes almost pure tin oxide, running as high as 70 per cent. The vein matter does not consist wholly of tourmaline, but contains quartz grains scattered through it in about the same proportion as in the granite. The tin is not found in the quartzose part of the gangue to any extent, but in the irregular vein-like deposits of pure tourmaline, which lie in the quartzose gangue. The tin occurs in this in bunches and stringers of nearly pure ore, or disseminated through it. This is particularly the case where the width of the vein is 6 to 8 feet. Where it pinches, the whole vein is sometimes formed of the tourmaline aggregate and tin ore. The vein has usually clay seams on both walls; sometimes it is frozen to one wall; wherever the walls come together and cut out the vein matter, the seams remain. The tourmaline vein matter is an aggregate of needle-like crystals. There are two varieties of tin ore: the yellow, appearing in thin layers in an uncrystalline form; the brown, in granular form in the massive specimens, or in small, clear, reddish brown crystals lining cavities. In the latter case it forms handsome specimens. A small amount of arsenical pyrites is present in places in the vein, and iron pyrites in the granite. The quartzose portion of the vein matter often blends into the granite walls, and there are bodies of evidently granitic origin wholly inclosed in the vein matter. A careful study of the vein matter, and its relation to the walls, shows that it is simply a portion of the granite, in which the feldspar and dark silicates, hornblende, and mica have been removed and tourmaline substituted. The quartz has the same character and color as that in the granite, and many transition stages in the process are shown. Where the action has been more intense, near and along the fissures, the quartz has been wholly removed and the tourmaline deposited, together with the tin. Cajalco was the center of this action. The veins decrease in size farther away.

At the time of my visit the mine had been opened to a depth of 180 feet, by two working shafts. The total length opened on the vein is 300 feet. Two levels have been run and work was in progress on the third. The main ore body lies in the center of the workings, and extends downward in the dip of the veins. The ore milled averaged 5 per cent of tin oxide, though large portions, as before stated, are very high grade. The company has also prospected Cajalco Hill by tunnel and open cuts, and one or more of the veins south by shafts. At the time of my visit two of Husband’s pneumatic stamps were in operation. They weigh 900 pounds each, and drop one hundred and thirty-five times per minute.

South and southeast of the works are many bunchy veins of the black tin gangue. They often carry considerable iron. They extend, generally nearly parallel, in a northeast and southwest direction. Some appear as mere bunches on the surface. These veins closely resemble the main vein at Cajalco Hill, and are due to the same action, and it has been supposed that many of them will be found to carry tin, though it is not present on the surface. About 2 miles south the granite is replaced by a banded feldspar porphyry. This cuts off the tourmaline veins. The granite about the works, and especially toward the contact with the porphyry, is cut by many dikes of a fine-grained granite, having an excess of quartz and feldspar. Associated with the porphyry are strata of metamorphic rocks, of a hard, dark, quartzose character. A quarter of a mile northwest of the mine is a bunch-like outcrop of porphyry, carrying silver and copper carbonate. The black veins outcrop for a distance of 2 miles northwest from the mine, extending into the porphyry, which replaces the granite in that direction. The granite extends eastward for many miles.

The general geological features which obtain here are: A semi-circular area of granite over 2 miles in diameter, surrounded on the northwest and south by porphyries and joined on the east to a great body of granitic rocks extending indefinitely in that direction. Around the border of this granite protuberance are many dikes of a fine-grained granite. Cutting through the granite in a northeast and southwest direction are the black tourmaline veins, which form the gangue of the tin ore when it is present.

Tin occurs here under conditions different from any other known deposit. Tin veins are almost always found in granitic formations, but such an extensively developed tourmaline veinstone is remarkable. The direction of the fissure system shown here is an uncommon one in California. The veinstone, together with the associated metals, has probably resulted from a process of sublimation along lines of fracture, removing those portions of the granite easily affected, over a large area, as at Cajalco Hill, and in the immediate contact completely replacing it with the massive aggregate of minute tourmaline crystals.

Thanks are due to the manager, Captain Harris, for the facility freely afforded me for examining the mine, the works, and the country about.

North of South Riverside the Tertiary beds dip at a small angle to the north. The Santa Ana River has cut its course through the hills at the northern end of the Santa Ana Mountains. No outcrop of the metamorphic rocks appears in the caÑon. The Tertiary strata no longer dip toward the west, but in the Chino hills north of the river show a great anticlinal arch. Along the south side of the river the beds dip 70° northeast; farther west, near the heart of the range, they dip 60° southwest, strike north 30° west. Near the upper end of the caÑon there are fault lines dipping toward the range, which show an elevation of the hanging wall. Bedrock CaÑon is the first large one which opens to the Santa Ana River from the western slope of the mountains. Opposite the mouth of this caÑon the greatest amount of water appears in the bed of the river, indicating the presence of hard rock only a little distance below. Coal veins are located near the head of this caÑon, one 700, the other one 1,300 feet above the river. They dip only a few degrees to the southwest. They are exposed on cliffs facing the mountains to the northeast. Below them are very hard sandstones carrying fossils, probably Cretaceous. One prospect shows a number of seams within a width of 8 feet. The widest is 29 inches, the others much smaller. The other prospects show only one 39-inch seam. Their position, lying so flat high on the mountains, indicates an uplift without great disturbance, while the gypsum mines farther down on the flank of the mountains dip at a high angle to the southeast. It may be that all of the coal deposits of the western slope of the Santa Ana Mountains belong to the Cretaceous, and have been greatly separated by faulting and folding. A deposit of white, granular gypsum has been opened in Gypsum CaÑon, 2 miles south of the river. The beds have a thickness of 8 or 10 feet. At one spot a large mass of crystalline dolomite was found. The deposits run with the strata, north and south, and dip west 60°. As we approach Olive, the few croppings seen still dip south or southwest, but at a less angle. South of the mouth of Silverado CaÑon a line of hills extends north and south, bordering the Santa Ana Plain. The western portion of these hills is formed of basalt considerably decomposed. The basalt varies from scoriaceous to fine-grained and compact. Its eastern edge was seen to rest on Miocene sandstones, and it dips west at a small angle, perhaps 10°. The lava seems to have been squeezed up in fissures, judging from the way in which it outcrops. Its greatest elevation is 800 feet. At some places the sandstones, where not covered with lava, have been silicified, turned to quartzite, or rendered granitic in appearance. This may be due to an intrusive neck of lava, or more probably to the action of thermal springs.

An interesting fold of the Tertiary strata was observed at the entrance of Santiago CaÑon. The sandstones and conglomerates on the eastern side dip to the northeast at an angle of 30°, while those on the west side dip in the opposite direction. The valley has been eroded in the summit of an anticlinal. The rocks of the eastern side rise again against the side of the mountains, thus forming a synclinal. Up the caÑon the sandstones on the west maintain a southwest dip of 45° to 50°, and strike north 40° west. The caÑon finally leaves the anticlinal, and the rocks dip southwest on both sides. Toward the summit of the hill, north of the Harris Coal Mine, the dip increases to 70°, but on the top they turn so that the strata lie horizontal. Here they consist of clay shale. The strata at the coal mine swing around, and one mile northeast they strike north and south and dip west. This hill seems to form the southern termination of the anticlinal ridge north of Santiago CaÑon. Southeast of this point there is a simple monoclinal fold or slope away from the older rocks of the high mountains. There has apparently been a fault extending northwest in this anticlinal ridge, bringing up the clay shales which farther south were shown to belong to the Cretaceous. Harris Coal Mine shows a seam 18 inches wide, shale forming the foot wall and sandstone the upper. There is a fault of 200 feet cutting this coal seam. The sandstone at the mouth of Silverado CaÑon dips south 30°, forming bold cliffs. A half mile up the caÑon there are heavy beds of clay shale inclosed in the sandstone. Cretaceous fossils appear in the shales, as well as in a coarse sandstone which underlies them. This sandstone is replaced by conglomerates near the contact with the underlying Metamorphic Series. The sandstone rises to a height of 2,500 feet, with bold, almost perpendicular cliffs facing the mountains. Portions of the sandstone containing the fossils are often very much hardened.

The first crystalline rocks met are dark and fine grained, with traces of bowlder-like inclusions, and are evidently eruptive tuffs. Above these are green, dioritic rocks. These intrusives are followed for several miles by sandstone and shale, in which the stratification is often obliterated. In other places thin layers of sandstone and shale are wonderfully contorted. The dip is at a high angle either east or west. In the vicinity of the old Silverado Camp there are dikes and bunches of a green dioritic rock. The mines in the Silverado district are again being developed to some extent. The mineral belt is about 2 miles wide, and extends nearly north and south. The country is formed to a great extent of dikes of greenish to blackish rocks, often showing distinct hornblende crystals. The dip of the metamorphic rocks is east about 45°. There is one main mineral vein located, beginning about a mile north of Silverado, and extending in a southerly direction for 7 or 8 miles. The Quincy Mine is one of the most northern ones. The vein has a width of 2 feet; the ore, silver-bearing galena in a calcite gangue. It carries but little base metal of any kind. The ore has a peculiar appearance, the galena being distributed through the gangue in little leafy crystals or aggregates. The fissure is well defined and regular, with a pale green syenitic rock on the hanging wall, and a dark diorite on the foot wall. This hanging wall rock weathers to a light gray color, producing a rock known as porphyry among the miners. South of this mine a side vein carries much antimony. The Quincy has been opened along a length of 500 feet. The ore is quite uniform, producing one eighth in concentrates. The Quincy camp has an elevation of 2,300 feet. South of Silverado CaÑon, in Silver and Pine CaÑons, a great amount of work was done during the former excitement. The sides of the steep, rocky caÑons are fairly honey-combed with tunnels, which were undertaken without sufficient prospecting, and, of course, never struck anything. The New York Mine spent much money, but did not prove a success. West is the Princess, and farther still, about 1,200 feet above the caÑon, is the Blue Light Mine, on which much work has been done and rich ore taken out. The mines south of the caÑon are in a feldspathic rock, which weathers white. It is undoubtedly an intrusive porphyry, for traces of feldspar crystals are to be seen. The mines are characterized by a large amount of zinc-blende, iron pyrites, and not a large percentage of lead, making them more difficult to reduce. The porphyry is mineralized in many places where no traces of the precious metals occur. Litigation and poor management seem to be the chief factors in stopping work in this district. Though some of the ore runs into hundreds of dollars to the ton, the most of it is medium to low grade.

About a mile and a half down the caÑon from the old Silver Post Office, and in a caÑon coming in from the south, is a cropping of dark, somewhat argillaceous limestone inclosed in shales. The limestone does not seem to have been highly metamorphosed, yet the fossils which it contains are almost obliterated. The faint impressions are those of coral stems, stromatopora, and some other low forms of life. Half a mile farther down the caÑon is a cropping of brecciated marble. At many points, particularly on the north side of the caÑon, there are great masses of apparently conglomeritic character, but with a crystalline structure. The matrix has a green to brown color, and in it are imbedded pebbles of the same degree of fineness, but often distinguished by much brighter red, purple, and green colors. In this caÑon, as in others of this range, the water holds much lime in solution, and extensive tufas are frequently to be seen. The basal members of the Cretaceous at the mouth of Silverado CaÑon consist of conglomerates passing up into sandstone, and those into shales; dip 55° away from the mountains in the highest ridge, but in the course of a quarter of a mile becoming much less. The change in dip is very sharp, giving the appearance of a fault.

A caÑon which enters Silverado CaÑon from the northeast near its mouth was followed up nearly to its head for the purpose of investigating some limestone outcrops. The first outcrop in this caÑon is the usual dark porphyry. Beyond this the stream has cut a deep caÑon through an immense conglomerate of porphyritic and quartzose pebbles. The porphyritic pebbles are dioritic and part red and black porphyries. Some of them are similar to dikes farther up the mountains. Through this great conglomerate bed there are dikes of black porphyry, with pale feldspar. Tufaceous porphyries form a large part of these dikes. The base is purple and the pebbles light green, or the reverse. These conglomeritic porphyries differ from the great beds of sedimentary origin, in having all the pebbles of a uniform character with a crystalline matrix. The sedimentary beds contain pebbles of all sizes and description, in a matrix of small pebbles or coarse sand. Farther up the caÑon the great body of the rock is crushed shale and black to gray sandstone; dip vertical, inclining most generally to the east, strike north and south. Two miles up the caÑon is a dike of diorite porphyrite, coarse in the middle and fine on the edges. Four miles up is a stratum of gray limestone. More outcrops appear on the north side of the caÑon, but whether they belong to the same stratum or different cannot be told, on account of the crushing undergone. These deposits are bunchy, swelling in one case to a width of 100 feet. It is not crystalline. The color is from black to gray. It contains fine specimens of a bivalve shell, and faint traces of corals and univalve shells. These beds are said to extend to the summit, and undoubtedly further examination would reveal more fossils. Several specimens were sent to the National Museum and pronounced Carboniferous in age. We have here, then, the first announcement of the age of the Santa Ana range. This range stands in such intimate relation to the granite and crystalline schists farther south, that an approximate determination of the latter is made possible. Professor Whitney and others following him have classified this range as Cretaceous. Their grounds are utterly untenable stratigraphically, but this discovery of Carboniferous fossils makes the evidence of greater age certain.

On the eastern side of the range, near its northern end, the sandstones were observed to be silicified, being filled with a network of quartz veinlets, exactly similar to the silicification of the metamorphic rocks of the Coast Range proper.

The lowest Cretaceous beds are between Silverado and Williams CaÑons, but the fossils are very similar to those generally found through the Cretaceous of this region. The lowest beds are a duplicate of those seen at the mouth of the Silverado CaÑon, though apparently a thousand feet lower in the series. Between the two beds there is another conglomerate stratum, carrying bowlders different from any seen in the Santa Ana Mountains. Many of the porphyry bowlders in the basal Cretaceous conglomerates resemble the porphyry about Temescal. The Santa Clara Coal Mine, at the mouth of Silverado CaÑon, is undoubtedly in strata of Cretaceous age, though no fossils are found in the strata above till the Miocene is reached. Up the Santiago CaÑon as far as Madame Modjeska’s place, the fossils are chiefly confined to the eastern side of the caÑon, but the character, dip, and strike of the strata on both sides are the same. The Cretaceous is separated from the metamorphics by a line of cross caÑons. The highest portions of the Cretaceous terminate in a line of hills with sharp eastern escarpments.

Shrewsbury CaÑon comes in just below Modjeska’s. After passing the Cretaceous, through which the caÑon has cut, the Metamorphic Series was seen to consist of slates and sandstones, followed by light-colored granitic rocks, chiefly hornblende and triclinic feldspar. The metamorphic rocks generally dip to the east.

A mile above Modjeska’s the Santiago CaÑon cuts through bold cliffs of Cretaceous sandstones and conglomerates, and higher up still has eroded a caÑon in the Metamorphic Series. The cliffs, a little back from the stream, rise probably 1,000 feet. Sandstone belonging to the Metamorphic Series outcrops in the caÑon for some distance, and is followed by conglomeritic porphyries, containing purple and red bowlders. In some places the inclusions are angular. These rocks are extensively developed about the Santiago Mines and higher up in the mountains.

Just below the Alma Mine, on its western side, the creek has cut through dikes of diorite, which are coarse in the center and fine on the edges. On the hill south of the Alma Mine the diorite is on the opposite or eastern side of the vein. Although the exposures are poor, all the crystalline rocks have the character of intrusives. No blending into the metamorphic rocks has been noticed. About 3 miles up Shrewsbury CaÑon several claims are located on the southern continuation of the veins of the Silverado district. Near the head of Santiago CaÑon these again appear well defined, and considerable active work was going on here at the time of my visit. The veins here have a direction a little east of south, dipping to the east somewhat less than 45°. It appears that the mineral belt follows a certain line, generally quite regular, without any particular reference to the dikes and bunches of intrusives scattered irregularly here and there. The fissure system has taken a comparatively regular line and the walls may or may not be intrusive. The Alma Mine, the northern claim of the Santiago Silver Mining Company, has been worked by the former operators in a very irregular manner. The veins and stringers as far as exposed lie wholly in the crushed quartzose argillites. A tunnel is now being run to open what is supposed to be the main vein, several hundred feet farther east, and which has syenite on the hanging wall. Other tunnels are being run along the creek, one near a body of granitoid rocks, others in slate or quartzite. The ore is a leafy galena, arranged often in narrow bands with the crystalline orientation different in alternating bands. Sometimes it occurs in the form of large solid bunches. Thus far the ore deposits have been found quite irregular, but it is thought that the main body has not yet been reached. Very little base metal is present. South, on the hill, the Morrow claims have been bonded by the same company and are being opened. On the summit of the hill diorite lies on the eastern side of the veins. Down the southern slope the veins lie wholly in metamorphic rocks; the foot wall being more silicious, the hanging argillaceous. The mineralized portion has a width of 20 feet. A small vein occurs in the upper side, and a heavier one, sometimes reaching 3 feet, on the foot wall. There are occasional stringers in the crushed portions between. The gangue is calcite, with some quartz, all mixed with the broken clayey slates. More zinc-blende and iron pyrites are found here, also a little antimony. In the Alma Mine the richest galena is very fine, and sometimes resembles antimonial ores.

South of these mines, toward Trabuco CaÑon, another claim is being worked. South of the Trabuco the conglomerates hide the lode, except at one spot, where it appears and has been worked. The Cretaceous formation grows lower as the Trabuco is approached, and does not appear prominent south of it. In all probability it is covered by the Tertiary, for the elevation and consequent erosion have not been as great in this direction.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page