THE POSSIBILITIES IN AVIATION

Previous

Men now fly and will probably keep on flying; but aviation is still too hazardous to become the popular sport of the average man. The overwhelmingly important problem with the aeroplane is that of stability. These machines must have a better lateral balance when turning corners or when subjected to wind gusts: and the balance must be automatically, not manually, produced.

Blanc Monoplane
Blanc Monoplane

Other necessary improvements are of minor urgency and in some cases will be easy to accomplish. Better mechanical construction, especially in the details of attachments, needs only persistence and common sense. Structural strength will be increased; the wide spread of wing presents difficulties here, which may be solved either by increasing the number of superimposed surfaces, as in triplanes, or in some other manner. Greater carrying capacity—two men instead of one—may be insisted upon: and this leads to the difficult question of motor weights. The revolving air-cooled motor may offer further possibilities: the two-cycle idea will help if a short radius of action is permissible: but a weight of less than two pounds to the horse-power seems to imply, almost essentially, a lack of ruggedness and surety of operation. A promising field for investigation is in the direction of increasing propeller efficiencies. If such an increase can be effected, the whole of the power difficulty will be greatly simplified.

Melvin Vaniman Triplane
Melvin Vaniman Triplane

Jean de Crawhez Triplane
Jean de Crawhez Triplane

A Triplane
A Triplane

This same motor question controls the proposal for increased speed. The use of a reserve motor would again increase weights; though not necessarily in proportion to the aggregate engine capacity. Perhaps something may be accomplished with a gasoline turbine, when one is developed. In any case, no sudden increase in speeds seems to be probable; any further lightening of motors must be undertaken with deliberation and science. If much higher maximum speeds are attained, there will be an opportunity to vary the speed to suit the requirements. Then clutches, gears, brakes, and speed-changing devices of various sorts will become necessary, and the problem of weights of journal bearings—already no small matter—will be made still more serious. And with variable speed must probably come variable sail area—in preference to tilting—so that the fabric must be reefed on its frame. Certainly two men, it would seem, will be needed!

Better methods for starting are required. The hydroplane idea promises much in this respect. With a better understanding and control of the conditions associated with successful and safe descent—perhaps with improved appliances therefor—the problem of ascent will also be partly solved. If such result can be achieved, these measures of control must be made automatic.

The building of complete aeroplanes to standard designs would be extremely profitable at present prices, which range from $2500 to $5000. Perhaps the most profitable part would be in the building of the motor. The framing and fabric of an ordinary monoplane could easily be constructed at a cost below $300. The propeller may cost $50 more. The expense for wires, ropes, etc., is trifling; and unless special scientific instruments and accessories are required, all of the rest of the value lies in the motor and its accessories. Within reasonable limits, present costs of motors vary about with the horse-power. The amateur designer must therefore be careful to keep down weight and power unless he proposes to spend money quite freely.

The Case of the Dirigible

Not very much is being heard of performances of dirigible balloons just at present. They have shown themselves to be lacking in stanchness and effectiveness under reasonable variations of weather. We must have fabrics that are stronger for their weight and more impervious. Envelopes must be so built structurally as to resist deformation at high speeds, without having any greatly increased weight. A cheap way of preparing pure hydrogen gas is to be desired.

Most important of all, the balloon must have a higher speed, to make it truly dirigible. This, with sufficient steering power, will protect it against the destructive accidents that have terminated so many balloon careers. Here again arises the whole question of power in relation to motor weight, though not as formidably as is the case with the aeroplane. The required higher speeds are possible now, at the cost merely of careful structural design, reduced radius of action, and reduced passenger carrying capacity.

Better altitude control will be attained with better fabrics and the use of plane fin surfaces at high speeds. The employment of a vertically-acting propeller as a somewhat wasteful but perhaps finally necessary measure of safety may also be regarded as probable.

Giraudon's Wheel Aeroplane
Giraudon’s Wheel Aeroplane

The Orthopter

The aviplane, ornithoptÈre or orthopter is a flying machine with bird-like flapping wings, which has received occasional attention from time to time, as the result of a too blind adherence to Nature’s analogies. Every mechanical principle is in favor of the screw as compared with any reciprocating method of propulsion. There have been few actual examples of this type: a model was exhibited at the Grand Central Palace in New York in January of this year.

The mechanism of an orthopter would be relatively complex, and the flapping wings would have to “feather” on their return stroke. The flapping speed would have to be very high or the surface area very great. This last requirement would lead to structural difficulties. Propulsion would not be uniform, unless additional complications were introduced. The machine would be the most difficult of any type to balance. The motion of a bird’s wing is extremely complicated in its details—one that it would be as difficult to imitate in a mechanical device as it would be for us to obtain the structural strength of an eagle’s wing in fabric and metal, with anything like the same extent of surface and limit of weight. According to Pettigrew, the efficiency of bird and insect flight depends largely upon the elasticity of the wing. Chatley gives the ratio of area to weight as varying from fifty (gnat) to one-half (Australian crane) square feet per pound. The usual ratio in aeroplanes is from one-third to one-half.

About the only advantages perceptible with the orthopter type of machine would be, first, the ability “to start from rest without a preliminary surface glide”; and second, more independence of irregularity in air currents, since the propulsive force is exerted over a greater extent than is that of a screw propeller.

The Helicopter

The gyroplane or helicopter was the type of flying machine regarded by Lord Kelvin as alone likely to survive. It lifts itself by screw propellers acting vertically. This form was suggested in 1852. When only a single screw was used, the whole machine rotated about its vertical axis. It was attempted to offset this by the use of vertical fin-planes: but these led to instability in the presence of irregular air currents. One early form had two oppositely-pitched screws driven by a complete steam engine and boiler plant. One of the Cornu helicopters had adjustable inclined planes under the two large vertically propelling screws. The air which slipped past the screws imposed a pressure on the inclined planes which was utilized to produce horizontal movement in any desired direction—if the wind was not too adverse. A gasoline engine was carried in a sort of well between the screws.

BrÉguet Gyroplane During Construction
BrÉguet Gyroplane During Construction
(Helicopter type)

The helicopter may be regarded as the limiting type of aeroplane, the sail area being reduced nearly to zero; the wings becoming mere fins, the smaller the better. It therefore requires maximum motor power and is particularly dependent upon the development of an excessively light motor. It is launched and descends under perfect control, without regard to horizontal velocity. It has very little exposed surface and is therefore both easy to steer and independent of wind conditions. By properly arranging the screws it can be amply balanced: but it must have a particularly stout and strong frame.

The development of this machine hinges largely on the propeller. It is not only necessary to develop power (which means force multiplied by velocity) but actual propulsive vertical force: and this must exceed or at least equal the whole weight of the machine. From ten to forty pounds of lifting force per horse-power have been actually attained: and with motors weighing less than five pounds there is evidently some margin. The propellers are of special design, usually with very large blades. Four are commonly used: one, so to speak, at each “corner” of the machine. The helicopter is absolutely dependent upon its motors. It cannot descend safely if the power fails. If it is to do anything but ascend and descend it must have additional propulsive machinery for producing horizontal movement.

Composite Types

The aeroplane is thus particularly weak as to stability, launching, and descending: but it is economical in power because it uses the air to hold itself up. The dirigible balloon is lacking in power and speed, but can ascend and descend safely, even if only by wasteful methods; and it can carry heavy weights, which are impossible with the structurally fragile aeroplane. The helicopter is wasteful in power, but is stable and sure in ascending and descending, providing only that the motor power does not fail.

Why, then, not combine the types? An aeroplane-dirigible would be open to only one objection: on the ground of stability. The dirigible-helicopter would have as its only disadvantage a certain wastefulness of power, while the aeroplane-helicopter would seem to have no drawback whatever.

All three combinations have been, or are being, tried. An Italian engineer officer has designed a balloon-aeroplane. The balloon is greatly flattened, or lens-shaped, and floats on its side, presenting its edge to the horizon—if inclination be disregarded. With some inclination, the machine acts like an aeroplane and is partially self-sustaining at any reasonable velocity.

The use of a vertically-acting screw on a dirigible combines the features of that type and the helicopter. This arrangement has also been the subject of design (as in Captain Miller’s flexible balloon) if not of construction. The combination of helicopter and aeroplane seems especially promising: the vertical propellers being employed for starting and descending, as an emergency safety feature and perhaps for aid in stabilizing. The fact that composite types of flying machine have been suggested is perhaps, however, an indication that the ultimate type has not yet been established.

What is Promised

The flying machine will probably become the vehicle of the explorer. If Stanley had been able to use a small high-powered dirigible in the search for Livingstone, the journey would have been one of hours as compared with months, the food and general comfort of the party would have been equal in quality to those attainable at home, and the expense in money and in human life would have been relatively trifling.

Wellman's America
Wellman’s America
(From Wellman’s Aerial Age)

Most readers will remember the fate of AndrÉe, and the projected polar expeditions of Wellman in 1907 and 1909. Misfortune accompanied both attempts; but one has only to read Peary’s story of the dogged tramp over the Greenland ice blink to realize that danger and misfortune in no less degree have accompanied other plans of Arctic pioneering. With proper design and the right men, it does not seem unreasonable to expect that a hundred flying machines may soar above Earth’s invisible axial points during the next dozen years. 3

The report of Count Zeppelin’s Spitzbergen expedition of last year has just been made public. This was undertaken to ascertain the adaptability of flying machines for Arctic navigation. Besides speed and radius of action, the conclusive factors include that of freedom from such breakdowns as cannot be made good on the road.

For exploration in other regions, the balloon or the aeroplane is sure to be employed. Rapidity of progress without fatigue or danger will replace the floundering through swamps, shivering with ague, and bickering with hostile natives now associated with tropical and other expeditions. The stereoscopic camera with its scientific adjuncts will permit of almost automatic map-making, more comprehensive and accurate than any now attempted in other than the most settled sections. It is not too much to expect that arrangements will be perfected for conducting complete topographical surveys without more than occasional descents. If extremely high altitudes must be attained—over a mile—the machines will be of special design; but as far as can now be anticipated, there will be no insurmountable difficulties. The virgin peaks of Ruwenzori and the Himalayas may become easily accessible—even to women and children if they desire it. We may obtain direct evidence as to the contested ascent of Mt. McKinley. A report has been current that a BlÉriot monoplane has been purchased for use in the inspection of construction work for an oil pipe line across the Persian desert; the aeroplane being regarded as “more expeditious and effectual” than an automobile.

The flying machine is the only land vehicle which requires no “permanent way.” Trains must have rails, bicycles and automobiles must have good roads. Even the pedestrian gets along better on a path. The ships of the air and the sea demand no improvement of the fluids in which they float. To carry mails, parcels, persons, and even light freight—these applications, if made commercially practicable tomorrow, 4 would surprise no one; their possibility has already been amply demonstrated. With the dirigible as the transatlantic liner and the aeroplane as the naphtha launch of the air, the whole range of applications is commanded. Hangars and landing stages—the latter perhaps on the roofs of buildings, revolutionizing our domestic architecture—may spring up as rapidly as garages have done. And the aeroplane is potentially (with the exception of the motorcycle) the cheapest of self-propelled vehicles.

Governments have already considered the possibilities of aerial smuggling. Perhaps our custom-house officers will soon have to watch a fence instead of a line: to barricade in two dimensions instead of one. They will need to be provided with United States Revenue aeroplanes. But how are aerial frontiers to be marked? And does a nation own the air above it, or is this, like the high seas, “by natural right, common to all”? Can a flying-machine blockade-runner above the three-mile height claim extraterritoriality?

The flying machine is no longer the delusion of the “crank,” because it has developed a great industry. A now antiquated statement put the capitalization of aeroplane manufactories in France at a million dollars, and the development expenditure to date at six millions. There are dozens of builders, in New York City alone, of monoplanes, biplanes, gliders, and models. A permanent exhibition of air craft is just being inaugurated. We have now even an aeronautic “trust,” since the million-dollar capitalization of the Maxim, BlÉriot, Grahame-White firm.

According to the New York Sun, over $500,000 has been subscribed for aviation prizes in 1911. The most valuable prizes are for new records in cross-country flights. The Paris Journal has offered $70,000 for the best speed in a circling race from Paris to Berlin, Brussels, London, and back to Paris—1500 miles. Supplementary prizes from other sources have increased the total stake in this race to $100,000. A purse of $50,000 is offered by the London Daily Mail for the “Circuit of Britain” race, from London up the east coast to Edinburgh, across to Glasgow, and home by way of the west coast, Exeter, and the Isle of Wight; a thousand miles, to be completed in two weeks, beginning July 22, with descents only at predetermined points. This contest will be open (at an entrance fee of $500) to any licensee of the International Federation. A German circuit, from Berlin to Bremen, Magdeburg, DÜsseldorf, Aix-la-Chapelle, Dresden, and back to the starting point, is proposed by the Zeitung am Mittag of Berlin, a prize of $25,000 having been offered. In this country, a comparatively small prize has been established for a run from San Francisco to New York, via Chicago. Besides a meet at Bridgeport, May 18-20, together with those to be held by several of the colleges and the ones at Bennings and Chicago, there will be, it is still hoped, a national tournament at Belmont Park at the end of the same month. Here probably a dozen aviators will contest in qualification for the international meet in England, to which three American representatives should be sent as competitors for the championship trophy now held by Mr. Grahame-White. It is anticipated that the chances in the international races favor the French aviators, some of whom—in particular, Leblanc—have been making sensational records at Pau. Flights between aviation fields in different cities are the leading feature in the American program for the year. A trip is proposed from Washington to Belmont Park, via Atlantic City, the New Jersey coast, and lower New York bay. The distance is 250 miles and the time will probably be less than that of the best passenger trains between Washington and New York. If held, this race will probably take place late in May. It is wisely concluded that the advancement of aviation depends upon cross-country runs under good control and at reasonable speeds and heights rather than upon exhibition flights in enclosures. It is to be hoped that commercial interests will not be sufficiently powerful to hinder this development.

We shall of course have the usual international championship balloon race, preceded by elimination contests. From present indications Omaha is likely to be chosen as the point of departure.

The need for scientific study of aerial problems is recognized. The sum of $350,000 has been offered the University of Paris to found an aeronautic institute. In Germany, the university at GÖttingen has for years maintained an aerodynamic laboratory. Lord Rayleigh, in England, is at the head of a committee of ten eminent scientists and engineers which has, under the authority of Parliament, prepared a program of necessary theoretical and experimental investigations in aerostatics and aerodynamics. Our American colleges have organized student aviation societies and in some of them systematic instruction is given in the principles underlying the art. A permanent aeronautic laboratory, to be located at Washington, D.C., is being promoted.

Aviation as a sport is under the control of the International Aeronautic Federation, having its headquarters at Paris. Bodies like the Royal Aero Club of England and the Aero Club of America are subsidiaries to the Federation. In addition, we have in this country other clubs, like the Aeronautic Society, the United States Aeronautical Reserve, etc. The National Council of the Aero Clubs of America is a sort of supreme court for all of these, having control of meets and contests; but it has no affiliation with the International body, which is represented here by the Aero Club of America. The Canadian Auto and Aero Club supervises aviation in the Dominion.

Aviation has developed new legal problems: problems of liability for accidents to others; the matter of supervision of airship operators. Bills to license and regulate air craft have been introduced in at least two state legislatures.

Schools for instruction in flying as an art or sport are being promoted. It is understood that the Wright firm is prepared to organize classes of about a dozen men, supplying an aeroplane for their instruction. Each man pays a small fee, which is remitted should he afterward purchase a machine. Mr. Grahame-White, at Pau, in the south of France, conducts a school of aviation, and the arrangements are now being duplicated in England. Instruction is given on BlÉriot monoplanes and Farman biplanes, at a cost of a hundred guineas for either. The pupil is coached until he can make a three-mile flight; meanwhile, he is held partially responsible for damage and is required to take out a “third-party” insurance policy.

There is no lack of aeronautic literature. Major Squier’s paper in the Transactions of the American Society of Mechanical Engineers, 1908, gave an eighteen-page list of books and magazine articles of fair completeness up to its date; Professor Chatley’s book, Aeroplanes, 1911, discusses some recent publications; the Brooklyn Public Library in New York issued in 1910 (misdated 1909) a manual of fourteen pages critically referring to the then available literature, and itself containing a list of some dozen bibliographies.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page