The First Balloon Flight Across the British Channel The Wright biplane has already been shown (see pages 31, 37, 121, 122). It was distinguished by the absence of a wheel frame or car and by the wing-warping method of stabilizing. Later Wright machines have the spring frame and wheels for self-starting. The best known aeroplane of this design was built to meet specifications of the United Wright Motor. The ownership of the Wrights in the wing-warping The Fort Myer machine had sails of forty feet spread, six and one-half feet deep, with front elevating planes three by sixteen feet. It made about forty miles per hour with two passengers. The apparatus was specified to carry a passenger weight of 350 pounds, with fuel for a 125-mile flight. The main planes were six feet apart. The steering rudder (double) was of planes one foot deep and nearly six feet high. The four-cylinder-four-cycle, water-cooled motor developed twenty-five horse-power at 1400 revolutions. The two propellers, eight and one-half feet in diameter, made 400 revolutions. The flight by Mr. Wilbur Wright from the Statue of Liberty to the tomb of General Grant, in New York, 1909, and the exploits of his brother in the same year, when a new altitude record of 1600 feet was made and H.R.H. the Crown Prince of Germany was taken up as a passenger, are only specimens of the later work done by these pioneers in aerial navigation. Like the Wrights, the Voisin firm from the beginning adhered firmly to the biplane type of machine. The sketch gives dimensions of one of the early cellular forms built for H. Farman (see illustration, page 147). The metal screw makes about a thousand revolutions. The A modified cellular biplane also built for Farman had a main wing area of 560 square feet, the planes being seventy-nine inches wide and only fifty-nine inches apart. The tail was an open box, seventy-nine inches wide and of about ten feet spread. The cellular partitions in this tail were pivoted along the vertical front edges so as to serve as steering rudders. The elevating rudder was in front. The total weight was about the same as that of the first machine and the usual speed twenty-eight miles per hour. Voisin-Farman Biplane Henry Farman has been flying publicly since 1907. He The Champagne Grand Prize Won by Henry Farman Farman's First Biplane at Issy-les-Moulineaux Returning to the Hangar after a Flight The June Bug, one of the first Curtiss machines, is shown below. This was one of the lightest of biplanes, having a wing spread of forty-two feet and an area of 370 square feet. The wings were transversely arched, being furthest apart at the center: an arrangement which has not been continued. It had a box tail, with a steering rudder of about six square feet area, above the tail. The horizontal rudder, in front, had a surface of twenty square feet. Four triangular ailerons were used for stability. The machine had a landing frame and wheels, made about forty miles per hour, and weighed, in operation, 650 pounds. The 'June Bug' Mr. Curtiss first attained prominence in aviation circles by winning the Scientific American cup by his flight at the speed of fifty-seven miles per hour, in 1908. In the following year he exhibited intricate curved flights at Mineola, and circled Governor’s Island in New York Curtis Biplane (Photo by Levick, N.Y.) Curtiss' Hydro-Aeroplane at San Diego Getting under Way The aeroscaphe of Ravard was a machine designed to move either on water or in air. It was an aeroplane with pontoons or floaters. The supporting surface aggregated 400 square feet, and the gross weight was about 1100 pounds. A fifty horse-power Gnome seven-cylinder motor at 1200 revolutions drove two propellers of eight and ten and one-half feet diameter respectively: the propellers Flying over the Water at Fifty Miles per Hour Ely’s great shore-to-warship flight was made without the aid of the pontoons which he carried. Ropes were stretched across the landing platform, running over sheaves and made fast to heavy sand bags. As a further precaution, a canvas barrier was stretched across the forward end of the platform. The descent brought the machine to the platform at a distance of forty feet from the upper end: grappling hooks hanging from the framework of the aeroplane then caught the weighted ropes, and the speed was checked (within about sixty feet) so gradually that “not a wire or bolt of the biplane was injured.” BlÉriot-Voisin Cellular Biplane with Pontoons Latham's 'Antoinette' James J. Ward at Lewiston Fair, Idaho Marcel Penot in the Mohawk Biplane Recent combinations of aeroplane and automobile, and aeroplane with motor boat, have been exhibited. One of the latter devices is like any monoplane, except that the lower part is a water-tight aluminum boat body carrying three passengers. It is expected to start of itself from the water and to fly at a low height like a flying fish at a speed of about seventy-five miles per hour. Should anything go wrong, it is capable of floating on the water. In the San Diego Curtiss flights, the machine skimmed along the surface of the bay, then rose to a height of a hundred feet, moved about two miles through the air in a circular course, and finally alighted close to its starting-point in the water. Turns were made in water as well as in air, a speed of forty miles per hour being attained while “skimming.” The “hydroplanes” used are rigid flat surfaces which utilize the pressure of the water for sustention, just as the main wings utilize air pressure. On account of the great density of water, no great amount of surface is required: but it must be so distributed as to balance the machine. The use of pontoons makes it possible to rest upon the water and to start from rest. A trip like Ely’s could be made without a landing platform, with this type of machine; the aeroplane could either remain alongside the war vessel or be hoisted aboard until ready to venture away again. There are various other biplanes attracting public attention in this country. In France the tendency is all toward Santos-Dumont's 'Demoiselle' The smallest of aeroplanes is the Santos-Dumont Demoiselle. The original machine is said to have supported 260 pounds on 100 square feet of area, making a speed of sixty miles per hour. Its proprietor was the first aviator in Europe of the heavier-than-air class. After having done pioneer work with dirigible balloons, he won the Deutsch prize for a hundred meter aeroplane flight (the first outside of the United States) in 1906; the speed being twenty-three miles per hour. His first flight, of 400 feet, in a monoplane was made in 1907. BlÉriot Monoplane The master of the monoplane has been Louis BlÉriot. Starting in 1907 with short flights in a Langley type of Latham's Fall into the Channel The Channel crossing has become a favorite feat. Mr. Other famous crossings include those of the Irish Sea, 52 miles, by Loraine; Long Island Sound, 25 miles, by Harmon; and Lake Geneva, 40 miles, by Defaux. It was just about a century ago that Cayley first described a soaring machine, heavier than air, of a form remarkably similar to that of the modern aeroplane. Aside from Henson’s unsuccessful attempt to build such a machine, in 1842, and Wenham’s first gliding experiments with a triplane in 1857, soaring flight made no real progress until Langley’s experiments. That investigator, with Maxim and others, ascertained those laws of aerial sustention the application of which led to success in 1903. De Lesseps in a BlÉriot Crossing the Channel (Photo by Levick, N.Y.) The Maxim Aeroplane Langley's Aeroplane (1896) The first flight in England by an English-built machine was made in January, 1909. That year, Count de Lambert flew over Paris, and in 1910 Grahame-White circled his machine over the city of Boston. The year 1910 surpassed Robart Monoplane. Tabuteau, almost on New Year’s eve, broke all distance records by a flight of 363 miles in less than eight hours; while Barrier at Memphis probably reached a speed of eighty-eight miles per hour (timing unofficial). With the new year came reports of inconceivable speeds by a machine skidding along the ice of Lake Erie; the successful receipt by Willard and McCurdy of wireless messages from the earth to their aeroplanes; and the proposal by the United States Signal Corps for the use of flying machines for carrying Alaskan mails. Vina Monoplane. McCurdy all but succeeded in his attempt to fly from Key West to Havana, surpassing previous records by remaining aloft above salt water while traveling eighty miles. Lieutenant Bague, in March, started from Antibes, near Nice, for Corsica. After a 124-mile flight, breaking all records for sea journeys by air, he reached the islet of Gorgona, One of the most spectacular of recent achievements is that of Renaux, competing for the Michelin Grand Prize. A purse of $20,000 was offered in 1909 by M. Michelin, the French tire manufacturer, for the first successful flight from Paris to Clermont-Ferrand—260 miles—in less than six hours. The prize was to stand for ten years. It was prescribed that the aviator must, at the end of the journey, circle the tower of the Cathedral and alight on the summit of the Puy de Dome—elevation 4500 feet—on a landing place measuring only 40 by 100 yards, surrounded by broken and rugged ground and usually obscured by fog. The flight was attempted last year by Weymann, who fell short of the goal by only a few miles. Leon Morane met with a serious accident, a little later, while attempting the trip with his brother as a passenger. Renaux completed the journey with ease in his Farman biplane, carrying a passenger, his time being 308 minutes. This Michelin Grand Prize is not to be confused with the Speeds have increased 50% during the past year; even with passengers, machines have moved more than a mile a minute: average motor capacities have been doubled or tripled. The French men and machines hold the records for speed, duration, distance, and (perhaps) altitude. The highest altitude claimed is probably that attained by Garros at Mexico City, early this year—12,052 feet above sea level. The world’s speed record for a two-man flight appears to be that of Foulois and Parmalee, made at Laredo, Texas, March 3, 1911: 106 miles, cross-country, in 127 minutes. Three-fourths of all flights made up to this time have been made in France—a fair proportion, however, in American machines. NOTE The rapidity with which history is made in aeronautics is forcibly suggested by the revision of text made necessary by recent news. The new Deutschland has met the fate of its predecessors; the Paris-Rome-Turin flight is at this moment under way; and Lieutenant Bayne, attempting once more his France-to-Corsica flight, has—for the time being at least—disappeared. |