LaunchingThe Wright machines (at least in their original form) have usually been started by the impetus of a falling weight, which propels them along skids until the velocity suffices to produce ascent. The preferred designs among French machines have contemplated self-starting equipment. This involves mounting the machine on pneumatic-tired bicycle wheels so that it can run along the ground. If a fairly long stretch of good, wide, straight road is available, it is usually possible to ascend. The effect of altitude and atmospheric density on sustaining power is forcibly illustrated by the fact that at Salt Lake City one of the aviators was unable to rise from the ground. Wright Biplane on Starting Rail, showing Pylon and Weight To accelerate a machine from rest to a given velocity in a given time or distance involves the use of propulsive force additional to that necessary to maintain the velocity attained. Apparently, therefore, any self-starting machine must have not only the extra weight of framework and wheels but also extra motor power. Launching System for Wright Aeroplane The Nieuport Monoplane The velocity necessary to just sustain the load at a given angle of inclination is called the critical or soaring velocity. For a given machine, there is an angle of inclination (about half a right angle) at which the minimum speed is necessary. This speed is called the “least soaring velocity.” If the velocity is now increased, the angle of inclination may be reduced and the planes will soar through the air almost edgewise, apparently with diminished resistance and power consumption. This decrease in power as the speed increases is called Langley’s Paradox, from its discoverer, who, however, pointed out that the rule does not hold in practice when frictional resistances are A Biplane Economical and practicable starting of an aeroplane thus requires a free launching space, along which the machine may accelerate with nearly flat planes: a downward slope would be an aid. When the planes are tilted for ascent, after attaining full speed, quick control is necessary to avoid the possibility of a back-somersault. A fairly wide launching platform of 200 feet length would ordinarily suffice. The flight made by Ely in January of this year, from San Francisco to the deck of the cruiser Pennsylvania and back, demonstrated the possibility of starting from a limited area. The wooden platform built over the after deck of the warship was 130 feet long, and sloped. On the return trip, the aeroplane ran down this slope, dropped somewhat, and then ascended successfully. Ely at Los Angeles (Photo by American Press Association) DescendingWhat happens when the motor stops? The velocity of the machine gradually decreases: the resistance to forward movement stops its forward movement and the excess of weight over upward pressure due to velocity causes it to descend. It behaves like a projectile, but the details of behavior are seriously complicated by the variation in head resistance and sustaining force due to changes in the angle of the planes. The “angle of inclination” is now not the angle made by the planes with the horizontal, but the angle which they make with the path of flight. Theory indicates that this should be about two-thirds the angle which the path itself makes with the horizontal: that is, the planes themselves are inclined downward toward the front. The forces which determine the descent are fixed by the velocity and the angle between the planes and the path of flight. Manipulation of the rudders and main planes or even the motor may be practised to ensure lancing to best advantage; but in spite of these (or perhaps on account of these) scarcely any part of aviation offers more dangers, demands more genius on the part of the operator, and has been less satisfactorily analyzed than the question of “getting down.” It is easy to stay up and not very hard to “get up,” weather conditions being favorable; but it is an “all-sufficient job” to come down. Under the new rules of the International Aeronautic Federation, a test flight for a pilot’s license must terminate with a descent (motor stopped) in which the aviator is to land within fifty yards of the observers and come to a full stop inside of fifty yards therefrom. The elevation at the beginning of descent must be at least 150 feet. Descending GlidersIf the motor and its appurtenances, and some of the purely auxiliary planes, be omitted, we have a glider. The glider is not a toy; some of the most important problems The Witteman Glider ModelsThe building of flying models has become of commercial importance. It is not difficult to attain a high ratio of surface to weight, but it is almost impossible to get motor power in the small units necessary without exceeding the permissible limit of motor weight. No gasoline engine or electric motor can be made sufficiently light for a toy model. Clockwork springs, if especially designed, may give the necessary power for short flights, but no better form of power is known just now than the twisted rubber band. For the small boy, a biplane with sails about eighteen inches by four feet, eighteen inches apart, anchored under his shoulders by six-foot cords while he rides his bicycle, will give no small amount of experience in balancing and will support enough of a load to make the experiment interesting. Some Details: BalancingFrench Monoplane It is easily possible to compute the areas, angles, and positions of auxiliary planes to give desired controlling or stabilizing effects; but the computation involves the use of accurate data as to positions of the various weights, and on the whole it is simpler to correct preliminary calculations by actually supporting the machine at suitable points and observing its balance. Stability is especially uncertain at very small angles of inclination, and such angles are to be avoided whether in ordinary operation or in A Problem in Steering It might be thought that, following analogies of marine engineering, the center of gravity of an aeroplane should be kept low. The effect of any unbalanced pressure or force against the widely extended sails of the machine is to rotate the whole apparatus about its center of gravity. The further the force from the center of gravity, the more powerful is the force in producing rotation. The defect in most aeroplanes (especially biplanes) is that the center of gravity is too low. If it could be made to coincide with the center of disturbing pressure, there would be no unbalancing effect from the latter. It is claimed that the steadiest machines are those having a high center of gravity; and the claim, from these considerations, appears reasonable. Lejeune Biplane WeightsIt has been found not difficult to keep down the weight of framework and supporting surfaces to about a pound per square foot. The most common ratio of surface to total weight is about one to two: so that the machinery and operator will require one square foot of surface for each pound of their weight. On this basis, the smallest possible man-carrying aeroplane would have a surface The Tellier Two-seat Six-cylinder Monoplane Motor weights can be brought down to about two pounds per horse-power, but such extreme lightness is not always needed and may lead to unreliability of operation. The effect of an accumulation of ice, sleet, snow, rain, or dew might be serious in connection with flights in high altitudes or during bad weather. After one of his last year’s flights at Étampes Mr. Farman is said to have descended with an extra load of nearly 200 pounds on this account. With ample motor power, great flexibility in weight sustention is made possible by varying the inclination of the planes. In January of this year, Sommer at Douzy carried six passengers in a large biplane on a cross-country flight: and within the week afterward a monoplane operated by Le Martin flew for five minutes with the aeronaut and seven passengers, at Pau. The total weight lifted was about half a ton, and some of the passengers must have been rather light. The two-passenger Fort Myer A Monoplane MiscellaneousFrench aviators are fond of employing a carefully designed car for the operator and control mechanism. The Wright designs practically ignore the car: the aviator sits on the forward edge of the lower plane with his legs hanging over. It has been found that auxiliary planes must not be too close to the main wings: a gap of a distance about 50% greater than the width of the widest adjacent plane must be maintained if interference with the supporting air currents is to be avoided. Main planes are now always arched; auxiliary planes, not as universally. The concave under surface of supporting wings has its analogy in the wing of the bird and had long years since been applied in the parachute. Cars and Framework The car (if used) and all parts of the framework should be of “wind splitter” construction, if useless resistance is Some Details The sketches give the novel details of some machines recently exhibited at the Grand Central Palace in New The Things to Look AfterThe operator of an aeroplane has to do the work of at least two men. No vessel in water would be allowed to attain such speeds as are common with air craft, unless provided with both pilot and engineer. The aviator is his own pilot and his own engineer. He must both manage his propelling machinery and steer. Separate control for vertical rudders, elevating rudders and ailerons, for starting the engine; the adjustment of the carbureter, the spark, and the throttle to get the best results from the motor; attention to lubrication and constant watchfulness of the water-circulating system: these are a few of the things for him to consider; to say nothing of the laying of his course and the necessary anticipation of wind and altitude conditions. These things demand great resourcefulness, but—for their best control—involve also no small amount of scientific knowledge. For example, certain adjustments at the motor may considerably increase its power, a possibly necessary increase under critical conditions: but if such adjustments also decrease the motor efficiency there must be a nice analysis of the two effects so that extra power may not be gained at too great a cost in radius of action. Some Recent French Machines The whole matter of flight involves both sportsman’s and engineers problems. Wind gusts produce the same When complete and automatic balance shall have been attained—as it must be attained—we may expect to see small amateur aeroplanes flying along country roads at low elevations—perhaps with a guiding wheel actually in contact with the ground. They will cost far less than even a small automobile, and the expense for upkeep will be infinitely less. The grasshopper will have become a water-spider. |