ON ARITHMETIC. The man who is ignorant that two and two make four, is stigmatized with the character of hopeless stupidity; except, as Swift has remarked, in the arithmetic of the customs, where two and two do not always make the same sum. We must not judge of the understanding of a child by this test, for many children of quick abilities do not immediately assent to this proposition when it is first laid before them. "Two and two make four," says the tutor. "Well, child, why do you stare so?" The child stares because the word make is in this sentence used in a sense which is quite new to him; he knows what it is to make a bow, and to make a noise, but how this active verb is applicable in the present case, where there is no agent to perform the action, he cannot clearly comprehend. "Two and two are four," is more intelligible; but even this assertion, the child, for want of a distinct notion of the sense in which the word are is used, does not understand. "Two and two are called four," is, perhaps, the most accurate phrase a tutor can use; but even these words will convey no meaning until they have been associated with the pupil's perceptions. When he has once perceived the combination of the numbers with real objects, it will then be easy to teach him that the words are called, are, and make, in the foregoing proposition, are synonymous terms. We have chosen the first simple instance we could recollect, to show how difficult the words we generally use in teaching arithmetic, must be to our young pupils. It would be an unprofitable task to enumerate It is not from want of capacity that so many children are deficient in arithmetical skill; and it is absurd to say, "such a child has no genius for arithmetic. Such a child cannot be made to comprehend any thing about numbers." These assertions prove nothing, but that the persons who make them, are ignorant of the art of teaching. A child's seeming stupidity in learning arithmetic, may, perhaps, be a proof of intelligence and good sense. It is easy to make a boy, who does not reason, repeat by rote any technical rules which a common writing-master, with magisterial solemnity, may lay down for him; but a child who reasons, will not be thus easily managed; he stops, frowns, hesitates, questions his master, is wretched and refractory, until he can discover why he is to proceed in such and such a manner; he is not content with seeing his preceptor make figures and lines upon a slate, and perform wondrous operations with the self-complacent dexterity of a conjurer. A sensible boy is not satisfied with merely seeing the total of a given sum, or the answer to a given question, come out right; he insists upon knowing why it is right. He is not content to be led to the treasures of science blindfold; he would tear the bandage from his eyes, that he might know the way to them again. That many children, who have been thought to be slow in learning arithmetic, have, after their escape from the hands of pedagogues, become remarkable for their quickness, is a fact sufficiently proved by experience. We shall only mention one instance, which we happened to meet with whilst we were writing this chapter. John Ludwig, a Saxon peasant, was dismissed from school when he was a child, after four years ineffectual struggle to learn the common rules of arithmetic. He had been, during this time, beaten and scolded in vain. He spent several subsequent years in common We should like to see the book which helped Mr. Ludwig to conquer his difficulties. Introductions to Arithmetic are, often, calculated rather for adepts in science, than for the ignorant. We do not pretend to have discovered any shorter method than what is common, of teaching these sciences; but, in conformity with the principles which are laid down in the former part of this work, we have endeavoured to teach their rudiments without disgusting our pupils, and without habituating them to be contented with merely technical operations. In arithmetic, as in every other branch of education, the principal object should be, to preserve the understanding from implicit belief; to invigorate its powers; to associate pleasure with literature, and to induce the laudable ambition of progressive improvement. As soon as a child can read, he should be accustomed to count, and to have the names of numbers early connected in his mind with the combinations which they represent. For this purpose, he should be taught to add first by things, and afterwards by signs or figures. He should be taught to form combinations of things by adding them together one after another. At the same time that he acquires the names that have been given to these combinations, he should be taught the figures or symbols that represent them. For example, when it is familiar to the child, that one almond, and one almond, are called two almonds; that one almond, and two almonds, are called three almonds, and so on, he should be taught to distinguish the figures that represent these assemblages; that 3 means one and two, &c. Each operation of arithmetic should One of the earliest operations of the reasoning faculty, is abstraction; that is to say, the power of classing a number of individuals under one name. Young children call strangers either men or women; even the most ignorant savages We may err either by accustoming our pupils too much to the consideration of tangible substances when we teach them arithmetic, or by turning their attention too much to signs. The art of forming a sound and active understanding, consists in the due mixture of facts and reflection. Dr. Reid has, in his "Essay on the Intellectual Powers of Man," page 297, pointed out, with great ingenuity, the admirable economy of nature in limiting the powers of reasoning during the first years of infancy. This is the season for cultivating the senses, and whoever, at this early age, endeavours to force the tender shoots of reason, will repent his rashness. In the chapter "on Toys," we have recommended the use of plain, regular solids, cubes, globes, &c. made of wood, as playthings for children, instead of uncouth figures of men, women and animals. For teaching arithmetic, half inch cubes, which can be easily grasped by infant fingers, may be employed with great advantage; they can be easily arranged in various combinations; the eye can easily take in a sufficient number of them at once, and the mind is insensibly led to consider the assemblages in which they may be grouped, not only as they relate to number, but as they relate to quantity or shape; besides, the terms which are borrowed from some of these shapes, as squares, cubes, &c. will become familiar. As these children advance in arithmetic to square or cube, a number will be more intelligible to them than to a person who One cube and one other, are called two. Two what? Two cubes. One glass, and one glass, are called two glasses. One raisin, and one raisin, are called two raisins, &c. One cube, and one glass, are called what? Two things or two. By a process of this sort, the meaning of the abstract term two may be taught. A child will perceive the word two, means the same as the words one and one; and when we say one and one are called two, unless he is prejudiced by something else that is said to him, he will understand nothing more than that there are two names for the same thing. "One, and one, and one, are called three," is the same as saying "that three is the name for one, and one, and one." "Two and one are three," is also the same as saying "that three is the name of two and In a similar manner, the combinations which form four, may be considered. One, and one, and one, and one, are four. One and three are four. Two and two are four. Three and one are four. All these assertions mean the same thing, and the term four is equally applicable to each of them; when, therefore, we say that two and two are four, the child may be easily led to perceive, and indeed to see, that it means the same thing as saying one two, and one two, which is the same thing as saying two two's, or saying the word two two times. Our pupil should be suffered to rest here, and we should not, at present, attempt to lead him further towards that compendious method of addition which we call multiplication; but the foundation is laid by giving him this view of the relation between two and two in forming four. There is an enumeration in the note Before we proceed to the number ten, or to the new series of numeration which succeeds to it, we should make our pupils perfectly masters of the combinations which we have mentioned, both in the direct order in which they are arranged, and in various modes of succession; by these means, not only the addition, but the subtraction, of numbers as far as nine, will be perfectly familiar to them. It has been observed before, that counting by realities, and by signs, should be taught at the same time, so that the ear, the eye, and the mind, should keep pace with one another; and that technical habits should be acquired without injury to the understanding. If a The next step, is, by far the most difficult in the science of arithmetic; in treatises upon the subject, it is concisely passed over under the title of Numeration; but it requires no small degree of care to make it intelligible to children, and we therefore recommend, that, besides direct instruction upon the subject, the child should be led, by degrees, to understand the nature of classification in general. Botany and natural history, though they are not pursued as sciences, are, notwithstanding, the daily occupation and amusement of children, and they supply constant examples of classification. In conversation, these may be familiarly pointed out; a grove, a flock, &c. are constantly before the eyes of our pupil, and he comprehends as well as we do what is meant by two groves, two flocks, &c. The trees that form the grove are each of them individuals; but let their numbers be what they may when they are considered as a grove, the grove is but one, and may be thought of and spoken of distinctly, without any relation to the number of single trees which it contains. From these, and similar observations, a child may be led to consider ten as the name for a whole, an integer; a one, which may be represented by the figure (1): this same figure may also stand for a hundred, or a thousand, as he will readily perceive hereafter. Indeed, the term one hundred will become familiar to him in conversation long before he comprehends that the word ten is used as an aggregate term, like a dozen, or a thousand. We do not use the word ten as the French do une dizaine; ten does not, therefore, present the idea of an integer till we learn arithmetic. This is a defect in our language, which has arisen from the use of duodecimal numeration; the analogies As soon as distinct notions have been acquired of the manner in which a collection of ten units becomes a new unit of a higher order, our pupil may be led to observe the utility of this invention by various examples, before he applies it to the rules of arithmetic. Let him count as far as ten with black pebbles, An idea of decimal arithmetic, but without detail, may now be given to him, as it will not appear extraordinary to him that a unit should represent ten by having its place, or column changed; and nothing more is necessary in decimal arithmetic, than to consider that figure which represented, at one time, an integer, or whole, as representing at another time the number of tenth parts into which that whole may have been broken. Our pupil may next be taught what is called numeration, which he cannot fail to understand, and in which he should be frequently exercised. Common addition will be easily understood by a child who distinctly perceives that the perpendicular columns, or places in which figures are written, may distinguish their value under various different denominations, as gallons, furlongs, shillings, &c. We should not tease children with long sums in avoirdupois weight, or load their frail memories with tables of long-measure, and dry-measure, and ale-measure in the country, and ale-measure in London; only let them cast up a few sums in different denominations, with the tables before them, and let the practice of addition be preserved in their To children who have been trained in this manner, subtraction will be quite easy; care, however, should be taken to give them a clear notion of the mystery of borrowing and paying, which is inculcated in teaching subtraction.
"Six from four I can't, but six from ten, and four remains; four and four is eight." And then, "One that I borrowed and four are five, five from nine, and four remains." This is the formula; but is it ever explained—or can it be? Certainly not without some alteration. A child sees that six cannot be subtracted (taken) from four: more especially a child who is familiarly acquainted with the component parts of the names six and four: he sees that the sum 46 is less than the sum 94, and he knows that the lesser sum may be subtracted from the greater; but he does not perceive the means of separating them figure by figure. Tell him, that though six cannot be deducted from four, yet it can from fourteen, and that if one of the tens which are contained in the (9) ninety in the uppermost row of the second column, be supposed to be taken away, or borrowed, from the ninety, and added to the four, the nine will be reduced to 8 (eighty), and the four will become fourteen. Our pupil will comprehend this most readily; he will see that 6, which could not be subtracted from 4, may be subtracted from fourteen, and he will remember that the 9 in the next column is to be considered as only (8). To avoid confusion, he may draw a stroke across the (9) and write 8 over "If one number is to be deducted from another, the remainder will be the same, whether we add any given number to the smaller number, or take away the same given number from the larger." For instance:
Now in the common method of subtraction, the one which is borrowed is taken from the uppermost figure in the adjoining column, and instead of altering that figure to one less, we add one to the lowest figure, which, as we have just shown, will have the same effect. The terms, however, that are commonly used in performing this operation, are improper. To say "one that I borrowed, and four" (meaning the lowest figure in the adjoining column) implies the idea that what was borrowed is now to be repaid to that lowest figure, which is not the fact. As to multiplication, we have little to say. Our pupil should be furnished, in the first instance, with a table containing the addition of the different units, which form the different products of the multiplication table: these he should, from time to time, add up as an exercise in addition; We have heard that the multiplication table has been set, like the Chapter of Kings, to a cheerful tune. This is a species of technical memory which we have long practised, and which can do no harm to the understanding; it prevents the mind from no beneficial exertion, and may save much irksome labour. It is certainly to be wished, that our pupil should be expert in the multiplication table; if the cubes which we have formerly mentioned, be employed for this purpose, the notion of squaring figures will be introduced at the same time that the multiplication table is committed to memory. In division, what is called the Italian method of arranging the divisor and quotient, appears to be preferable to the common one, as it places them in such a manner as to be easily multiplied by each other, and as it agrees with algebraic notation. The usual method is this: division notation using usual method Italian method: division notation using Italian method The rule of three is commonly taught in a manner merely technical: that it may be learned in this manner, The calculation of the price of any commodity, or the measure of any quantity, where the first term is one, may be always stated as a sum in the rule of three; but as this statement retards, instead of expediting the operation, it is never practised. If one yard costs a shilling, how much will three yards cost? The mind immediately perceives, that the price added three times together, or multiplied by three, gives the answer. If a certain number of apples are to be equally distributed amongst a certain number of boys, if the share of one is one apple, the share of ten or twenty is plainly equal to ten or twenty. But if we state that the share of three boys is twelve apples, and ask what number will be sufficient for nine boys, the answer is not obvious; it requires consideration. Ask our pupil what made it so easy to answer the last question, he will readily say, "Because I knew what was the share of one." Then you could answer this new question if you knew the share of one boy? Yes. Cannot you find out what the share of one boy is when the share of three boys is twelve? Four. What number of apples then will be enough, at the same rate, for nine boys? Nine times four, that is thirty-six. In this process he does nothing more than divide Again, "If the share of three boys is five apples, how many will be sufficient for nine?" Our pupil will attempt to proceed as in the former question, and will begin by endeavouring to find out the share of one of the three boys; but this is not quite so easy; he will see that each is to have one apple, and part of another; but it will cost him some pains to determine exactly how much. When at length he finds that one and two-thirds is the share of one boy, before he can answer the question, he must multiply one and two-thirds by nine, which is an operation in fractions, a rule of which he at present knows nothing. But if he begins by multiplying the second, instead of dividing it previously by the first number, he will avoid the embarrassment occasioned by fractional parts, and will easily solve the question. 3:5:9:15 multiply 5 by 9 it makes 45 which product 45, divided by 3, gives 15. Here our pupil perceives, that if a given number, 12, for instance, is to be divided by one number, and multiplied by another, it will come to the same thing, whether he begins by dividing the given number, or by multiplying it. 12 divided by 4 is 3, which We recommend it to preceptors not to fatigue the memories of their young pupils with sums which are difficult only from the number of figures which they require, but rather to give examples in practice, where aliquot parts are to be considered, and where their ingenuity may be employed without exhausting their patience. A variety of arithmetical questions occur in common conversation, and from common incidents; these should be made a subject of inquiry, and our pupils, amongst others, should try their skill: in short, whatever can be taught in conversation, is clear gain in instruction. We should observe, that every explanation upon these subjects should be recurred to from time to time, perhaps every two or three months; as there are no circumstances in the business of every day, which recall abstract speculations to the minds of children; and the pupil who understands them to-day, may, without any deficiency of memory, forget them entirely in a few weeks. Indeed, the perception of the chain of reasoning, which connects demonstration, is what makes it truly advantageous in education. Whoever has occasion, in the business of life, to make use of the rule of three, may learn it effectually in a month as well as in ten years; but the habit of reasoning cannot be acquired late in life without unusual labour, and uncommon fortitude. |