The most striking feature of the mountains—certainly the one which comes first to a visitor’s attention—is the color banding. No matter where one looks this feature greets his view. If he enters the park at the St. Mary Entrance, there ahead on the sides of Singleshot and East Flattop Mountains are white and purple bands. Should he enter first the Swiftcurrent Valley, he would soon note the banding in the mountains lying to his right and left, and finally culminating in the precipitous Garden Wall at the head of the valley. The visitor soon realizes that every mountain within the park is composed of rock layers of various colors. With very few exceptions these strata are of sedimentary origin; that is, they accumulated by depositions of muds and sands in a body of water and are now mainly limestones, shales, and sandstones. These sedimentary rocks all belong to a single large unit known as the Belt series, so named because of exposures in the Little Belt and Big Belt Mountains farther south in Montana. In Glacier National Park these rocks, which have a maximum thickness of more than 20,000 feet, are in the form of a large syncline (downfold), the east and west edges of which form the crests of the Lewis and Livingstone Ranges (Figure 3D). Throughout the large area of western Montana, northern Idaho, and southern British Columbia where Belt rocks occur, they are important mountain-makers. In addition to the ranges already mentioned they are the principal rocks in many others, including the Mission, Swan, and Flathead in the region south of Glacier Park; the Bitterroot and Coeur d’Alene between Idaho and Montana; and the Purcell in British Columbia. Further, rocks of similar age form the core of the Uinta Range in Utah and the lower section of the Grand Canyon in Arizona. During the Proterozoic Era of Earth history a long, narrow section of North America extending from the Arctic Ocean southward, probably as far as Arizona and southern California, slowly sank to form a large, shallow, sea-filled trough known as a geosyncline (Figure 1). Streams from adjacent lands carried muds and sands into the sea, at times almost FIGURE 1. BELT GEOSYNCLINE Throughout the geologic past the appearance and disappearance of seas on the continents have been frequent events. In fact such changes are slowly taking place even today. Hudson Bay and the Baltic and North Seas are examples of shallow seas situated on the continents. The area around Hudson Bay is rising; as attested by the fact that some of the fish weirs constructed in water along the shore during the past several hundred years are now a considerable distance inland. We know also that our Atlantic coast has been subsiding for a number of years at an annual rate of about 0.02 feet. To be sure, these movements are slow, but if continued over a long period they might conceivably make some rather profound changes, even as the birth and death of the Belt sea. Within Glacier National Park the Belt series is divided on the basis of lithologic differences into six distinct formations. Because each has a characteristic color, these formations can easily be identified, often from distances of several miles. Usually two, sometimes three or four, of them comprise a single mountain, the oldest always at the mountain base and the youngest on the summit, this being the relative position in which they were deposited in the form of sediment. |