WEEK II DEAD RECKONING TUESDAY LECTURE Latitude And Longitude

Previous

Illustration of Latitude and Longitude

We have been using the words Latitude and Longitude a good deal since this course began. Let us see just what the words mean. Before doing that, there are a few facts to keep in mind about the earth itself. The earth is a spheroid slightly flattened at the poles. The axis of the earth is a line running through the center of the earth and intersecting the surface of the earth at the poles. The equator is the great circle, formed by the intersection of the earth's surface with a plane perpendicular to the earth's axis and equidistant from the poles. Every point on the equator is, therefore, 90° from each pole.

Meridians are great circles formed by the intersection with the earth´s surface of planes perpendicular to the equator.

Parallels of latitude are small circles parallel to the equator.

The Latitude of a place on the surface of the earth is the arc of the meridian intercepted between the equator and that place. It is measured by the angle running from the equator to the center of the earth and back through the place in question. Latitude is reckoned from the equator (0°) to the North Pole (90°) and from the equator (0°) to the South Pole (90°). The difference of Latitude between any two places is the arc of the meridian intercepted between the parallels of Latitude of the places and is marked N or S according to the direction in which you steam (T n´).

The Longitude of a place on the surface of the earth is the arc of the equator intercepted between the meridian of the place and the meridian at Greenwich, England, called the Prime Meridian. Longitude is reckoned East or West through 180° from the Meridian at Greenwich. Difference of Longitude between any two places is the arc of the equator intercepted between their meridians, and is called East or West according to direction. Example: Diff. Lo. T and T´ = E´ M, and E or W according as to which way you go.

Departure is the actual linear distance measured on a parallel of Latitude between two meridians. Difference of Latitude is reckoned in minutes because miles and minutes of Latitude are always the same. Departure, however, is only reckoned in miles, because while a mile is equal to 1´ of longitude on the equator, it is equal to more than 1´ as the latitude increases; the reason being, of course, that the meridians of Lo. converge toward the pole, and the distance between the same two meridians grows less and less as you leave the equator and go toward either pole. Example: TN, N´n´. 10 mi. departure on the equator = 10´ difference in Lo. 10 mi. departure in Lat. 55° equals something like 18´ difference in Lo.

The curved line which joins any two places on the earth´s surface, cutting all the meridians at the same angle, is called the Rhumb Line. The angle which this line makes with the meridian of Lo. intersecting any point in question is the Course, and the length of the line between any two places is called the distance between them. Example: T or T´.

Chart Projections

The earth is projected, so to speak, upon a chart in three different ways - the Mercator Projection, the Polyconic Projection and the Gnomonic Projection.

The Mercator Projection

You already know something about the Mercator Projection and a Mercator chart. As explained before, it is constructed on the theory that the earth is a cylinder instead of a sphere. The meridians of longitude, therefore, run parallel instead of converging, and the parallels of latitude are lengthened out to correspond to the widening out of the Lo. meridians. Just how this Mercator chart is constructed is explained in detail in the Arts. in Bowditch you were given to read last night. You do not have to actually construct such a chart, as the Government has for sale blank Mercator charts for every parallel of latitude in which they can be used. It is well to remember, however, that since a mile or minute of latitude has a different value in every latitude, there is an appearance of distortion in every Mercator chart which covers any large extent of surface. For instance, an island near the pole, will be represented as being much larger than one of the same size near the equator, due to the different scale used to preserve the accurate character of the projection.

The Polyconic Projection

The theory of the Polyconic Projection is based upon conceiving the earth´s surface as a series of cones, each one having the parallel as its base and its vertex in the point where a tangent to the earth at that latitude intersects the earth´s axis. The degrees of latitude and longitude on this chart are projected in their true length and the general distortion of the earth´s surface is less than in any other method of projection.

Polyconic Projection

A straight line on the polyconic chart represents a near approach to a great circle, making a slightly different angle with each meridian of longitude as they converge toward the poles. The parallels of latitude are also shown as curved lines, this being apparent on all but large scale charts. The Polyconic Projection is especially adapted to surveying, but is also employed to some extent in charts of the U. S. Coast & Geodetic Survey.

Gnomonic Projection

The theory of this projection is to make a curved line appear and be a straight line on the chart, i.e., as though you were at the center of the earth and looking out toward the circumference. The Gnomonic Projection is of particular value in sailing long distance courses where following a curved line over the earth´s surface is the shortest distance between two points that are widely separated. This is called Great Circle Sailing and will be talked about in more detail later on. The point to remember here is that the Hydrographic Office prints Great Circle Sailing Charts covering all the navigable waters of the globe. Since all these charts are constructed on the Gnomonic Projection, it is only necessary to join any two points by a straight line to get the curved line or great circle track which your ship is to follow. The courses to sail and the distance between each course are easily ascertained from the information on the chart. This is the way it is done:

(Note to Instructor: Provide yourself with a chart and explain from the chart explanation just how these courses are laid down.)

Spend the rest of the time in having pupils lay down courses on the different kinds of charts. If these charts are not available assign for night work the following articles in Bowditch, part of which reading can be done immediately in the class room - so that as much time as possible can be given to the reading on Dead Reckoning: 167-168-169-172-173-174-175-176 - first two sentences 178-202-203-204-205-206-207-208.

Note to pupils: In reading articles 167-178, disregard the formulÆ and the examples worked out by logarithms. Just try to get a clear idea of the different sailings mentioned and the theory of Dead Reckoning in Arts. 202-209.


WEDNESDAY LECTURE

Useful Tables—Plane And Traverse Sailing

The whole subject of Navigation is divided into two parts, i.e., finding your position by what is called Dead Reckoning and finding your position by observation of celestial bodies such as the sun, stars, planets, etc.

To find your position by dead reckoning, you go on the theory that small sections of the earth are flat. The whole affair then simply resolves itself into solving the length of right-angled triangles except, of course, when you are going due East and West or due North and South. For instance, any courses you sail like these will be the hypotenuses of a series of right-angled triangles. The problem you have to solve is, having left a point on land, the latitude and longitude of which you know, and sailed so many miles in a certain direction, in what latitude and longitude have you arrived?

Dead Reckoning Illustration

If you sail due North or South, the problem is merely one of arithmetic. Suppose your position at noon today is Latitude 39° 15' N, Longitude 40° W, and up to noon tomorrow you steam due North 300 miles. Now you have already learned that a minute of latitude is always equal to a nautical mile. Hence, you have sailed 300 minutes of latitude or 5°. This 5° is called difference of latitude, and as you are in North latitude and going North, the difference of latitude, 5°, should be added to the latitude left, making your new position 44° 15' N and your Longitude the same 40° W, since you have not changed your longitude at all.

In sailing East or West, however, your problem is more difficult. Only on the equator is a minute of longitude and a nautical mile of the same length. As the meridians of longitude converge toward the poles, the lengths between each lessen. We now have to rely on tables to tell us the number of miles in a degree of longitude at every distance North or South of the equator, i.e., in every latitude. Longitude, then, is reckoned in miles. The number of miles a ship makes East or West is called Departure, and it must be converted into degrees, minutes and seconds to find the difference of longitude.

A ship, however, seldom goes due North or South or due East or West. She usually steams a diagonal course. Suppose, for instance, a vessel in Latitude 40° 30' N, Longitude 70° 25' W, sails SSW 50 miles. What is the new latitude and longitude she arrives in? She sails a course like this:

Course SSW

Now suppose we draw a perpendicular line to represent a meridian of longitude and a horizontal one to represent a parallel of latitude. Then we have a right-angled triangle in which the line AC represents the course and distance sailed, and the angle at A is the angle of the course with a meridian of longitude. If we can ascertain the length of AB, or the distance South the ship has sailed, we shall have the difference of latitude, and if we can get the length of the line BC, we shall have the Departure and from it the difference of longitude. This is a simple problem in trigonometry, i.e., knowing the angle and the length of one side of a right triangle, what is the length of the other two sides? But you do not have to use trigonometry. The whole problem is worked out for you in Table 2 of Bowditch. Find the angle of the course SSW, i.e., S 22° W in the old or 202° in the new compass reading. Look down the distance column to the left for the distance sailed, i.e., 50 miles. Opposite this you find the difference of latitude 46-4/10 (46.4) and the departure 18-7/10 (18.7). Now the position we were in at the start was Lat. 40° 30' N, Longitude 70° 25' W. In sailing SSW 50 miles, we made a difference of latitude of 46' 24" (46.4), and as we went South - toward the equator - we should subtract this 46' 24" from our latitude left to give us our latitude in.

Now we must find our difference of longitude and from it the new or Longitude in. The first thing to do is to find the average or middle latitude in which you have been sailing. Do this by adding the latitude left and the latitude in and dividing by 2.

40° 30' 00"
39 43 36
—————
2) 80 13 36
—————
40° 06' 48" Mid. Lat.

Take the nearest degree, i.e., 40°, as your answer. With this 40° enter the same Table 2 and look for your departure, i.e., 18.7 in the difference of latitude column. 18.4 is the nearest to it. Now look to the left in the distance column opposite 18.4 and you will find 24, which means that in Lat. 40° a departure of 18.7 miles is equivalent to 24' of difference of Longitude. We were in 70° 25' West Longitude and we sailed South and West, so this difference of Longitude should be added to the Longitude left to get the Longitude in:

Lo. left 70° 25' W
Diff. Lo. 24
—————
Lo. in 70° 49' W

The whole problem therefore would look like this:

Lat. left 40° 30' N
Diff. Lat. 46 24
——————
Lat. in 39° 43' 36" N
Lo. left 70° 25' W
Diff. Lo. 24
————
Lo. in 70° 49' W

There is one more fact to explain. When the course is 45° or less (old compass reading) you read from the top of the page of Table 2 down. When the course is more than 45° (old compass reading) you read from the bottom of the page up. The distance is taken out in exactly the same way in both cases, but the difference of Latitude and the Departure, you will notice, are reversed. (Instructor: Read a few courses to thoroughly explain this.) From all this explanation we get the following rules, which put in your Note-Book:

To find the new or Lat. in: Enter Table 2 with the true course at the top or bottom of the page according as to whether it is less or greater than 45° (old compass reading). Take out the difference of Latitude and Departure and mark the difference of Latitude minutes ('). When the Latitude left and the difference of Latitude are both North or both South, add them. When one is North and the other South, subtract the less from the greater and the remainder, named North or South after the greater, will be the new Latitude, known as the Latitude in.

To find the new or Lo. in: Find the middle latitude by adding the latitude left to the latitude in and dividing by 2. With this middle latitude, enter Table 2. Seek for the departure in the difference of latitude column. Opposite to it in the distance column will be the figures indicating the number of minutes in the difference of longitude. With this difference of Longitude, apply it in the same way to the Longitude left as you applied the difference of Latitude to the Latitude left. The result will be the new or Longitude in.

Now if a ship steamed a whole day on the same course, you would be able to get her Dead Reckoning position without any further work, but a ship does not usually sail the same course 24 hours straight. She usually changes her course several times, and as a ship's position by D.R. is only computed once a day - at noon - it becomes necessary to have a method of obtaining the result after several courses have been sailed. This is called working a traverse and sailing on various courses in this fashion is called Traverse Sailing.

Put in your Note-Book the following example and the way in which it is worked:

Departure taken from Barnegat Light in Lat. 39° 46' N, Lo. 74° 06' W, bearing by compass NNW, 15 knots away. Ship heading South with a Deviation of 4° W. She sailed on the following courses:

Courses Sailed

Calculations

The rule covering all these operations is as follows:

1. Write out the various courses with their corrections for Leeway, Deviation, Variation and the distance run on each.

2. In four adjoining columns headed N, S, E, W respectively, put down the Difference of Latitude and Departure for each course.

3. Add together all the northings, all the southings, all the eastings and all the westings. Subtract to find the difference between northings and southings and you will get the whole difference of Latitude. The difference between the eastings and westings will be the whole departure.

4. Find the latitude in, as already explained.

5. Find the Lo. in, as already explained.

6. With the whole difference of Latitude and whole Departure, seek in Table 2 for the page where the nearest agreement of Difference of Latitude and Departure can be found. The number of degrees at the top or bottom of the page (according as to whether the Diff. of Lat. or Dep. is greater) will give you the true course made good, and the number in the distance column opposite the proper Difference of Latitude and Departure will give you the distance made.

It is often convenient to use the reverse of the above method, i.e., being given the latitude and longitude of the position left and the latitude and longitude of the position arrived in, to find the course and distance between them by Middle Latitude Sailing. The full rule is as follows:

1. Find the algebraic difference between the latitudes and longitudes respectively.

2. Using the middle (or average) latitude as a course, find in Table 2 of Bowditch the Diff. of Lo. in the distance column. Opposite, in the Diff. of Lat. column, will be the correct Departure.

3. With the Diff. of Lat. between the position left and the position arrived in, and the Departure, just secured, seek in Table 2 for the page where the nearest agreement to these values can be found. On this page will be secured the true course and distance made, as explained in the preceding method.

4. Use this method only when steaming approximately an East and West course.

For an example of this method, see Bowditch, p. 77, example 3.


THURSDAY LECTURE

Examples On Plane And Traverse Sailing (Continued)

1. Departure taken from Cape Horn. Lat. 55° 58' 41" S, Lo. 67° 16' 15" W, bearing by compass SSW 20 knots. Ship heading SW x S, Deviation 4° E, steamed the following courses:

Courses Steamed

Remarks

Variation 18° E throughout. Current set NW magnetic 30 mi. for the day. Required Latitude and Longitude in and course and distance made good.

2. Departure taken from St. Agnes Lighthouse, Scilly Islands, Lat. 49° 53' S, Lo. 6° 20' W, bearing by compass E x S, distance 18 knots, Deviation 10° W, Variation 23° W. Ship headed N steamed on the following courses:

Courses steamed

Assign for Night Work the following articles in Bowditch: 179-180-181-182. Also additional problems in Dead Reckoning.


FRIDAY LECTURE

Mercator Sailing

This is a method to find the true course and distance between two points. The method can be used in two ways, i.e., by the use of Tables 2 and 3 (called the inspection method) and by the use of logarithms. The first method is the quicker and will do for short distances. The second method, however, is more accurate in all cases, and particularly where the distances are great. The inspection method is as follows (Put in your Note-Book):

Find the algebraic difference between the meridional parts corresponding to the Lat. in and Lat. sought by Table 3. Call this Meridional difference of Latitude. Find the algebraic difference between Longitude in and Longitude sought and call this difference of Longitude. With the Meridional difference of Latitude and the difference of Longitude, find the course by searching in Table 2 for the page where they stand opposite each other in the latitude and departure columns. Now find the real difference of latitude. Under the course just found and opposite the real difference of Latitude, will be found the distance sailed in the distance column. Example:

What is the course and distance from Lat. 40° 28' N, Lo. 73° 50' W, to Lat. 39° 51' N, Lo. 72° 45' W?

Lat. in 40° 28' N Meridional pts. 2644.2
Lat. sought 39 51 N Meridional pts. 2596.0
0° 37' Mer. diff. Lat. 48.2
Lo. in 73° 50' W
Lo. sought 72 45 W
1° 05' = 65'

On page 604 Bowditch you will find 48.7 and 64.7 opposite each other, and as 48.7 is in the Lat. column only when you read from the bottom, the course is S 53° E. The real difference of Lat. under this course is opposite 62 in the distance column. Hence the distance to be sailed is 62 miles.

If distances are too great, divide meridional difference of Lat., real difference of Latitude and difference of Longitude by 10 or any other number to bring them within the scope of the distances in Table 2. When distance to be sailed is found, it must be multiplied by the same number. For instance, if the difference of Lat., difference of Lo., etc., are divided by 10 to bring them in the scope of Table 2, and with these figures 219 is the distance found, the real distance would be 10 times 219 or 2190.

Now let us work out the same problem by logarithms. This will acquaint us with two new Tables, i.e., Tables 42 and 44. Put this in your Note-Book:

Lat. in 40° 28' N Mer. pts. 2644.2 Lo. in 73° 50'
Lat. sought 39 51 Mer. pts. 2596.0 Lo. sought 72 45
Real diff. 0° 37' 48.2 1° 05'
60
60
5
(Table 42) log (+ 10) 65 = 11.81291
Log 48.2 = 1.68305
Log tan TC (Table 44) 10.12986
TC = S 53° 26' E
Log sec TC (53° 26') = 10.22493
Log real diff. Lat. = 1.56820 +
11.79313
- 10
1.79313
Distance (Table 42) = 62.11 miles

Find algebraically the real difference of latitude, meridional difference of latitude and the difference of longitude. Reduce real difference of latitude and difference of longitude to minutes. Take log of the difference of longitude (Table 42) and add 10. From this log subtract the log of difference of meridional parts. The result will be the log tan of the True Course, which find in Table 44. On the same page find the log sec of true course. Add to this the log of the real difference of latitude, and if the result is more than 10, subtract 10. This result will be the log of the distance sailed. This method should be used only when steaming approximately a North and South course.

Note. - For detailed explanation of Tables 42 and 44 see Bowditch, pp. 271-276.

Assign for Night Reading Arts, in Bowditch: 183-184-185-186-187-188-189-194-259-260-261-262-263-264-265-266-267-268.

Also, one of the examples of Mercator sailing to be done by both the Inspection and Logarithmic method.


SATURDAY LECTURE

Great Circle Sailing—the Chronometer

In Tuesday's Lecture of this week, I explained how a Great Circle track was laid down on one of the Great Circle Sailing Charts which are prepared by the Hydrographic Office.

Supposing, however, you do not have these charts on hand. There is an easy way to construct a great circle track yourself. Turn to Art. 194, page 82, in Bowditch. Here is a table with an explanation as to how to use it. Take, for instance, the same two points between which you just drew a line on the great circle track. Find the center of this line and the latitude of that point. At this point draw a line perpendicular to the course to be sailed, the other end of which must intersect the corresponding parallel of latitude given in the table. With this point as the center of a circle, sweep an arc which will intersect the point left and the point sought. This arc will be the great circle track to follow.

To find the courses to be sailed, get the difference between the course at starting and that at the middle of the circle, and find how many quarter points are contained in it. Now divide the distance from the starting point to the middle of the circle by the number of quarter points. That will give the number of miles to sail on each quarter point course. See this illustration:

Miles sailed

Difference between ENE and E = 2 pts. = 8 quarter points. Say distance is 1600 miles measured by dividers or secured by Mercator Sailing Method. Divide 1600 by 8 = 200. Every 200 miles you should change your course ¼ point East.

The Chronometer

The chronometer is nothing more than a very finely regulated clock. With it we ascertain Greenwich Mean Time, i.e., the mean time at Greenwich Observatory, England. Just what the words "Greenwich Mean Time" signify, will be explained in more detail later on. What you should remember here is that practically every method of finding your exact position at sea is dependent upon knowing Greenwich Mean Time, and the only way to find it is by means of the chronometer.

It is essential to keep the chronometer as quiet as possible. For that reason, when you take an observation you will probably note the time by your watch. Just before taking the observation, you will compare your watch with the chronometer to notice the exact difference between the two. When you take your observation, note the watch time, apply the difference between the chronometer and watch, and the result will be the CT.

For instance, suppose the chronometer read 3h 25m 10s, and your watch, at the same instant, read 1h 10m 5s. C-W would be:

3h 25m 10s
- 1 10 05
2h 15m 05s

Now suppose you took an observation which, according to your watch, was at 2h 10m 05s. What would be the corresponding C T? It would be

WT 2h 10m 05s
C-W 2 15 05
CT 4h 25m 10s

If the chronometer time is less than the W T add 12 hours to the C T, so that it will always be the larger and so that the amount to be added to W T will always be +. For instance, CT 1h 25m 45s, WT 4h 13m 25s, what is the C-W?

CT 13h 25m 45s
WT 4 13 25
————————
C-W 9h 12m 20s

Now, suppose an observation was taken at 6h 13m 25s according to watch time. What would be the corresponding CT?

WT 6h 13m 25s
C-W 9 12 20
————————
15h 25m 45s
- 12
————————
CT 3h 25m 45s

Put in your Note-Book: CT = WT + C-W.

If, in finding C-W, C is less than W, add 12 hours to C, subtracting same after CT is secured.

Example No. 1:
CT 3h 25m 10s
WT 1 10 05
————————
C-W 2h 15m 05s
WT 2h 10m 05s
+ C-W 2 15 05
————————
CT 4h 25m 10s
Example No. 2:
CT 1h 25m 45s
WT 4h 13m 25s
(+12 hrs.) CT 13h 25m45s
WT 4 13 25
————————
C-W 9h 12m 20s
WT 6h 13m 25s
+ C-W 9 12 20
————————
15h 25m 45s
(-12 hrs.) 12
————————
CT 3h 25m 45s

There is one more very important fact to know about the chronometer. It is physically impossible to keep it absolutely accurate over a long period of time. Instead of continually fussing with its adjustment and hands, the daily rate of error is ascertained, and from this the exact time for any given day. It is an invariable practice among good mariners to leave the chronometer alone. When you are in port, you can find out from a time ball or from some chronometer maker what your error is. With this in mind, you can apply the new correction from day to day. Here is an example (Put in your Note-Book):

On June 1st, CT 7h 20m 15s, CC 2m 40s fast. On June 16th, (same CT) CC 1m 30s fast. What was the corresponding G.M.T. on June 10th?

June 1st 2m 40s fast
16th 1m 30s fast
————————
1m 10s
60
60
10
15) 70s (4.6 sec. Daily Rate of error losing
June 1st-10th, 9 days times 4.6 sec. = 41 sec. losing
June 1st 2m 40s fast
June 10th 41s losing
————
June 10th 1m 59s fast
CT 7h 20m 15s
CC - 1 59
——————
G.M.T. 7h 18m 16s on June 10th
If CC is fast, subtract from CT
If CC is slow, add to CT


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page