CHAPTER XXVIII. CARRYING MACHINES.

Previous

The reflecting observer delights occasionally to shift the scenes of the present stage and bring to the front the processions of the past. That famous triumphal one, for instance, of Ptolemy of Philadelphus, at Alexandria, about 270 B. C., then in the midst of his power and glory, in which there were chariots and cumbrous wagons drawn by elephants and goats, antelopes, oryxes, buffaloes, ostriches, gnus and zebras; then a tribe of the Scythians, when with many scores of oxen they were shifting their light, big round houses, made of felt cloth and mounted on road carts, to a new camping place; next a wild, mad dash of the Roman charioteers around the amphitheatre, or a triumphal march with chariots of carved ivory bearing aloft the ensigns of victory; and now an army of the ancient Britons driving through these same charioteers of CÆsar with their own rude chariots, having sharp hooks and crooked iron blades extending from their axles; now a "Lady's Chair" of the fourteenth century—the state carriage of the time—with a long, wooden-roofed and windowed body, having a door at each end, resting on a cumbrous frame without springs, and the axles united rigidly to a long reach; next comes a line of imposing clumsy state coaches of the sixteenth century, with bodies provided with pillars to support the roof, and adorned with curtains of cloth and leather, but still destitute of springs; and here in stately approach comes a line of more curious and more comfortable "royal coaches" of the seventeenth century, when springs were for the first time introduced; and now rumbles forward a line of those famous old English stage coaches originated in the seventeenth century, which were two days flying from Oxford to London, a distance of fifty-five miles; but a scene in the next century shows these ponderous vehicles greatly improved, and the modern English stage mail-coaches of Palmer in line. Referring to Palmer's coaches, Knight says: "Palmer, according to De Quincey, was twice as great a man as Galileo, because he not only invented mail-coaches (of more general practical utility than Jupiter's satellites), but married the daughter of a duke, and succeeded in getting the post-office to use them. This revolutionised the whole business." The coaches were built with steel springs, windows of great strength and lightness combined, boots for the baggage, seats for a few outside passengers, and a guard with a grand uniform, to protect the mail and stand for the dignity of his majesty's government.

By the system of changing horses frequently great speed was attained, and the distance from Edinburgh to London, 400 miles, was made in 40 hours. Other lines of coaches, arranged to carry double the number of passengers outside than in, fourteen to six, were made heavier, and took the road more leisurely.

The carts and conveyances of the poor were cumbrous, heavy contrivances, without springs, mostly two-wheel, heavy carts.

The middle classes at that time were not seen riding in coaches of their own, but generally on horseback, as the coaches of the rich were too expensive, and the conveyances of the poor were too rude in construction, and too painful in operation.

Let the observer now pass to the largest and most varied exhibition of the best types of modern vehicles of every description that the world had ever seen, the International Exhibition at Philadelphia in 1876, and behold what wonderful changes art, science, invention, and mechanical skill had wrought in this domain. Here were the carriages of the rich, constructed of the finest and most appropriate woods that science and experience had found best adapted for the various parts, requiring the combination of strength and lightness, the best steel for the springs, embodying in themselves a world of invention and discovery, and splendid finish and polish in all parts unknown to former generations.

Here, too, were found vehicles of a great variety for the comfort and convenience of every family, from the smallest to the largest means.

The farmer and the truckman were especially provided for. One establishment making an exhibition at that time, employed some six hundred or seven hundred hands, four hundred horse-power of steam, turning out sixty wagons a day, or one in every ten minutes of each working day in the year.

Here England showed her victoria, her broughams, landaus, phÆtons, sporting-carts, wagonettes, drays and dog-carts; Canada her splendid sleighs; France her superb barouches, carriages, double-top sociables, the celebrated Collinge patent axle-trees and springs; Germany the best carriage axles, springs and gears; Russia its famous low-wheeled fast-running carriages; Norway its carryalls, or sulkies, and sleighs strongly built, and made of wood from those vast forests that ever abound in strength and beauty. One ancient sleigh there was, demurely standing by its modern companions, said to have been built in 1625, and it was still good. America stood foremost in carriage wheels of best materials and beautiful workmanship, bent rims, turned and finished spokes, mortised hubs, steel tires, business and farm wagons, carts and baby carriages. Each trade and field of labour had its own especially adapted complete and finished vehicle. There were hay wagons and hearses; beer wagons and ice carts; doctors' buggies, express wagons, drays, package delivery wagons; peddlers' wagons with all the shelves and compartments of a miniature store, skeleton wagons, and sportsmen's, and light and graceful two and four "wheelers." Beautiful displays of bent and polished woods, a splendid array of artistic, elegant, and useful harnesses, and all the traps that go to make modern means of conveyance by animal power so cheap, convenient, strong and attractive that civilisation seemed to have reached a stop in principles of construction of vehicles and in their materials, and since contents itself in improving details.

To this century is due the development of that class of carriages, the generic term for which is Velocipedes—a word which would imply a vehicle propelled by the feet, although it has been applied to vehicles propelled by the hands and steered by the feet. This name originated with the French, and several Frenchmen patented velocipedes from 1800 to 1821.

Tricycles having three wheels, propelled by the hands and steered with the feet, were also invented in the early part of the century.

The term Bicycle does not appear to have been used until about 1869.

Although such structures had been referred to in publications before, yet the modern bicycle appears to have been first practically constructed in Germany. In 1816 Baron von Drais of Manheim made a vehicle consisting of two wheels arranged one before the other, and connected by a bar, the forward wheel axled in a fork which was swiveled to the front end of the bar and had handles to guide the machine, with a seat on the bar midway between the two wheels, and arranged so that the driver should bestride the bar. But there was no support for the rider's feet, and the vehicle was propelled by thrusting his feet alternately against the ground. This machine was called the "Draisine" and undoubtedly was the progenitor of the modern bicycle. Denis Johnson patented in England in 1818 a similar vehicle which he named the "Pedestrian Curricle." Another style was called the "Dandy Horse." Another form was that of Gompertz in England in 1821, who contrived a segmental rack connected with a frame over the front wheel and engaging a pinion on the wheel axle. With some improvements added by others, the vehicle came into quite extensive and popular use in some of the cities in Europe and America. It was also named the "Dandy" and the "Hobby Horse." Treadles were subsequently applied, but after a time the machine fell into disuse and was apparently forgotten. In 1863, however, the idea was revived by a Frenchman, Michaux, who added the crank to the front wheel axle of the "Draisine" (also called the "cÉlÉrifÈrÉ.") In 1866 Pierre Lallement of France, having adapted the idea of the crank and pedal movement and obtained a patent, went to America, where after two years of public indifference the machine suddenly sprung into favour. In 1869 a popular wave in its favour also spread over part of Europe, and all classes of people were riding it.

But the wheels had hard tires, the roads and many of the streets were not smooth, the vehicle got the name of the "bone-breaker" and its use ceased. During the few years following some new styles of frames were invented. Thus some very high wheels, with a small wheel in front, or one behind, wheels with levers in addition to the crank, etc., and then for a time the art rested again.

Some one then recalled the fact that McMillan, a Scotchman, about 1838-1841, had used two low wheels like the "Draisine" with a driving gear, and that Dalzell, also of Scotland, had in 1845 made a similar machine. Parts of these old machines were found and the wheel reconstructed. Then in the seventies the entire field was thrown open to women by the invention in England of the "drop frame," which removed completely the difficulty as to arrangement of the skirts and thus doubled the interest in and desire for a comfortable riding machine. But they were still, to a great degree, "bone-breakers."

Then J. B. Dunlop, a veterinary surgeon of Belfast, Ireland, in order to meet the complaints of his son that the wheel was too hard, thought of the pneumatic rubber tire, and applied it with great success. This was a very notable and original re-invention. A re-invention, because a man "born before his time" had invented and patented the pneumatic tire more than forty years before. It was not wanted then and everybody had forgotten it. This man was Robert William Thomson, a civil engineer of Adelphi, Middlesex county, England. In 1845 he obtained a patent in England, and shortly after in the United States. In both patents he describes how he proposed to make a tire for all kinds of vehicles consisting of a hollow rubber tube, with an inner mixed canvas and rubber lining, a tube and a screw cup by which to inflate it, and several ways for preventing punctures. To obviate the bad results of punctures he proposed also to make his tire in sectional compartments, so that if one compartment was punctured the others would still hold good. He also proposed to use vulcanised rubber, thus utilising the then very recent discovery of Goodyear of mixing sulphur with soft rubber, and to apply the same to the canvas lining.

And, now, when the last decade of the century had been reached, and after a century's hard work by the inventors, the present wonderful vehicle, known as the "safety bicycle," had obtained a successful and permanent foothold among the vehicles of mankind. Proper proportions, low wheels, chain-gearing, treadles, pedals and cranks, cushion and pneumatic tires, drop frames, steel spokes like a spider's web, ball-bearings for the crank and axle parts, a spring-supported cushioned seat which could be raised or lowered, adjustable handles, and the clearest-brained scientific mechanics to construct all parts from the best materials and with mathematical exactness—all this has been done. To these accomplishments have been added a great variety of tires to prevent wear and puncturing, among which are self-healing tires, having a lining of viscous or plastic rubber to close up automatically the air holes. Many ways of clamping the tire to the rim have been contrived. So have brakes of various descriptions, some consisting of disks on the driving shaft, brought into frictional contact by a touch of the toe on the pedal, as a substitute for those applied to the surface of the tire, known as "spoon brakes"; saddles, speed-gearings, men's machines in which by the removal of the upper bar the machine is converted into one for the use of women; the substitution of the direct action, consisting of beveled gearing for the sprocket chain, etc., etc.

The ideas of William Thomson as to pneumatic and cushioned tires are now, after a lapse of fifty years, generally adopted. Even sportsmen were glad to seize upon them, and wheels of sulkies, provided with the pneumatic tires, have enabled them to lower the record of trotting horses. Their use on many other vehicles has accomplished his objects, "of lessening the power required to draw carriages, rendering the motion easier, and diminishing the noise."

It is impossible to overlook the fact in connection with this subject that the processes and machinery especially invented to make the various parts of a bicycle are as wonderful as the wheel itself. Counting the spokes there are, it is estimated, more than 300 different parts in such a wheel. The best and latest inventions and discoveries in the making of metals, wood, rubber and leather have been drawn upon in supplying these useful carriers. And what a revolution they have produced in the making of good roads, the saving of time, the dispatch of business, and more than all else, in the increase of the pleasure, the health and the amusement of mankind!

It was quite natural that when the rubber cushion and pneumatic tires rounded the pleasure of easy and noiseless riding in vehicles that Motor vehicles should be revived and improved. So we have the Automobiles in great variety. Invention has been and is still being greatly exercised as to the best motive power, in the adaption of electric motors, oil and gasoline or vapour engines, springs and air pumps, in attempts to reduce the number of complicated parts, and to render less strenuous the mental and muscular strain of the operator.

Traction Engines.—The old road engines that antedated the locomotives are being revived, and new ideas springing from other arts are being incorporated in these useful machines to render them more available than in former generations. Many of the principles and features of motor vehicles, but on a heavier scale, are being introduced to adapt them to the drawing of far heavier loads. Late devices comprise a spring link between the power and the traction wheel to prevent too sudden a start, and permit a yielding motion; steering devices by which the power of the engine is used to steer the machine; and application of convenient and easily-worked brakes.

An example of a modern traction engine may be found attached to one or more heavy cars adapted for street work, and on which may be found apparatus for making the mixed materials of which the roadbed is to be constructed, and all of which is moved along as the road or street surface is completed. When these fine roads become the possession of a country light traction engines for passenger traffic will be found largely supplanting the horse and the steam railroad engines.

Brakes, railway and electric, have already been referred to in the proper chapters. In the latest system of railroading greater attention has been paid to the lives and limbs of those employed as workmen on the trains, especially to those of brakemen. And if corporations have been slow to adopt such merciful devices, legislatures have stepped in to help the matter. One great source of accidents in this respect has been due to the necessity of the brakemen entering between the cars while they are in motion to couple them by hand. This is now being abolished by automatic couplers, by which, when the locking means have been withdrawn from connection or thrown up, they will be so held until the cars meet again, when the locking parts on the respective cars will be automatically thrown and locked, as easily and on the same principle as the hand of one man may clasp the hand of another.

The comfort of passengers and the safety of freight have also been greatly increased by the invention of Buffers on railroad cars and trains to prevent sudden and violent concussion. Fluid pressure car buffers, in which a constant supply of fluid under pressure is provided by a pump or train pipe connected to the engine is one of a great variety.

Another notable improvement in this line is the splendid vestibule trains, in which the cars are connected to one another by enclosed passages and which at their meeting ends are provided with yieldingly supported door-like frames engaging one another by frictional contact, usually, whereby the shock and rocking of cars are prevented in starting and stopping, and their oscillation reduced to a minimum.

As collisions and accidents cannot always be prevented, car frames are now built in which the frames are trussed, and made of rolled steel plates, angles, and channels, whereby a car body of great resistance to telescoping or crushing is obtained.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page