CHAPTER XXVI. MUSIC, ACOUSTICS, OPTICS, FINE ARTS.

Previous

Neither the historic nor prehistoric records find man without musical instruments of some sort. They are as old as religion, and have been found wherever evidence of religious rites of any description have been found, as they constituted part of the instrumentalities of such rites. They are found as relics of worship and the dance, ages after the worshippers and the dancers have become part of the earth's strata. They have been found wherever the earliest civilisations have been discovered; and they appear to have been regarded as desirable and necessary as the weapons and the labour implements of those civilisations. They abounded in China, in India, and in Egypt before the lyre of Apollo was invented, or the charming harp of Orpheus was conceived.

There was little melody according to modern standards, but the musical instruments, like all other inventions, the fruit of the brain of man, were slowly evolved as he wanted them, and to meet the conditions surrounding him.

There were the conch shell trumpet, the stone, bone, wood and metal dance rattles, the beaks of birds, and the horns and teeth of beasts, for the same rattling purpose. The simple reed pipes, the hollow wooden drums, the skin drum-heads, the stretched strings of fibre and of tendons, the flutes, the harps, the guitars, the psalteries, and hundreds of other forms of musical instruments, varied as the skill and fancy of man varied, and in accordance with their taste and wants, along the entire gamut of noises and rude melodies. The ancient races had the instruments, but their voices, except as they existed in the traditions of their gods, were not harmonious.

As modern wants and tastes developed and music became a science the demands of the nineteenth century were met by a Helmholtz, who discovered and explained the laws of harmony, and by many ingenious manufacturers, who so revolutionised the pianoforte action, and the action of musical instruments constructed on these principles, that their predecessors would hardly be recognised as prototypes.

The story of the piano, that queen of musical instruments, involves the whole history of the art of music. Its evolution from the ancient harp, gleaned by man from the wind, "that grand old harper, who smote his thunder harp of pines," is too long a story to here recite in detail. It must suffice to say, it started with the harp, in its simplest form, composed of a frame with animal tendons stretched tight thereon and twanged by the fingers. Then followed strings of varied length, size, and tension, to obtain different tones, soon accompanied by an instrument called the plectrum—a bone or ivory stick with which to vibrate the strings, to save the fingers. This was the harp of the Egyptians, and of Jubal, "the father of all such as handle the harp and the organ," and half-brother of Tubal Cain, the great teacher "of every artificer in brass and iron." Then the harp was laid prostrate, its strings stretched over a sounding board, and each held and adapted to be tightened by pegs, and played upon by little hammers having soft pellets or corks at their ends. This was the psaltery and the dulcimer of the Assyrians and the Hebrews.

The Greeks derived their musical instruments from the Egyptians, and the Romans borrowed theirs from the Greeks, but neither the Greeks nor the Romans invented any.

Then, after fourteen or fifteen centuries, we find the harp, both in a horizontal and an upright position, with its strings played upon by keys. This was the clavicitherium. In the sixteenth century came the virginal, and the spinet, those soft, tinkling instruments favoured by Queen Elizabeth and Queen Mary, and which, recently brought from obscurity, have been made to revive the ancient Elizabethan melodies, to the delight of modern hearers. These were followed in the seventeenth century by the clavichord, the favourite instrument of Bach. Then appeared the harpsichord, a still nearer approach to the piano, having a hand or knee-worked pedal, and on which Mozart and Handel and Haydn brought out their grand productions. The ancient Italian cembello was another spinet.

Thus, through the centuries these instruments had slowly grown. By 1711 in Italy, under the inventive genius of Bartolommeo Cristofori of Florence, they had culminated in the modern piano. The piano as devised by him differed from the instruments preceding it chiefly in this, that in the latter the strings were vibrated by striking and pulling on them by pieces of quills attached to levers and operated by keys, whereas, in the piano there were applied hammers in place of quills.

In the 1876 exhibition at Philadelphia, a piano The Greeks derived their musical instruments from the Egyptians, and the Romans borrowed theirs from the Greeks, but neither the Greeks nor the Romans invented any.

Then, after fourteen or fifteen centuries, we find the harp, both in a horizontal and an upright position, with its strings played upon by keys. This was the clavicitherium. In the sixteenth century came the virginal, and the spinet, those soft, tinkling instruments favoured by Queen Elizabeth and Queen Mary, and which, recently brought from obscurity, have been made to revive the ancient Elizabethan melodies, to the delight of modern hearers. These were followed in the seventeenth century by the clavichord, the favourite instrument of Bach. Then appeared the harpsichord, a still nearer approach to the piano, having a hand or knee-worked pedal, and on which Mozart and Handel and Haydn brought out their grand productions. The ancient Italian cembello was another spinet.

Thus, through the centuries these instruments had slowly grown. By 1711 in Italy, under the inventive genius of Bartolommeo Cristofori of Florence, they had culminated in the modern piano. The piano as devised by him differed from the instruments preceding it chiefly in this, that in the latter the strings were vibrated by striking and pulling on them by pieces of quills attached to levers and operated by keys, whereas, in the piano there were applied hammers in place of quills.

In the 1876 exhibition at Philadelphia, a piano was displayed which had been made by Johannes Christian Schreiber of Germany in 1741.

Then in the latter part of the eighteenth century Broadwood and Clementi of London and Erard of Strasburg and Petzold of Paris commenced the manufacture of their fine instruments. Erard particularly made many improvements in that and in the nineteenth century in the piano, its hammers and keys, and Southwell of Dublin in the dampers.

By them and the Collards of London, Bechstein of Berlin, and Chickering, Steinway, Weber, Schomacher, Decker and Knabe of America, was the piano "ripened after the lapse of more than 2,000 years into the perfectness of the magnificent instruments of modern times, with their better materials, more exact appliances, finer adjustments, greater strength of parts, increase of compass and power, elastic responsiveness of touch, enlarged sonority, satisfying delicacy, and singing character in tone."

A piano comprises five principal parts: first, the framing; second, the sounding board; third, the stringing; fourth, the key mechanism, or action, and fifth, the ornamental case. To supply these several parts separate classes of skilled artisans have arisen, the forests have been ransacked for their choicest woods, the mines have been made to yield their choicest stores, and the forge to weld its finest work. Science has given to music the ardent devotion of a lover, and resolved a confused mass of more or less pleasant noises into liquid harmonies. In 1862 appeared Helmholtz's great work on the "Law and Tones and the Theory of Music." He it was who invented the method of analysing sound. By the use of hollow bodies called resonators he found that every sound as it generally occurs in nature and as it is produced by most of our musical instruments, or the human voice, is not a single simple sound, but a compound of several tones of different intensity and pitch; all of which different tones combined are heard as one; and that the difference of quality or timbre of the sounds of different musical instruments resides in the different composition of these sounds; that different compound sounds contain the same fundamental tone but differently mixed with other tones. He explained how these fundamental and compound tones might be fully developed to produce either harmonious or dissonant sensations. His researches were carried farther and added to by Prof. Mayer of New Jersey. These theories were practically applied in the pianos produced by the celebrated firm of Steinway and Sons of New York; and their inventions and improvements in the iron framing, in laying of strings in relation to the centre of the sounding-board, in "resonators" in upright frames, and in other features, from 1866 to 1876, produced a revolution in the art of piano making.

If the piano is properly the queen of musical instruments, the organ may be rightly regarded, as it has been named, "King in the realm of music." It is an instrument, the notes of which are produced by the rush of air through pipes of different lengths, the air being supplied by bellows or other means, and controlled by valves which are operated by keys, and by which the supply of air is admitted or cut off.

The earliest description appears to be that in the "Spiritalia" of Hero of Alexandria (150-200 B. C.) and Ctesibius of Alexandria was the inventor. A series of pipes of varying lengths were filled by an air-pump which was operated by a wind-mill. Organs were again originated in the early Christian centuries; and a Greek epigram of the fourth century refers to one as provided with "reeds of a new species agitated by blasts of wind that rush from a leathern cavern beneath their roots, while a robust mortal, running with swift fingers over the concordant keys, makes them smoothly dance and emit harmonious sounds."

The same in principle to-day, but more complicated in structure, "yet of easy control under the hands of experts, fertile in varied symphonious effects, giving with equal and satisfying success the gentlest and most sympathetic tones as well as complete and sublimely full utterances of musical inspiration."

The improvements of the century have consisted in adding a great variety of stops; in connections and couplers of the great keyboard and pipes; in the pedal part; in the construction of the pipes and wind chests; and principally in the adaptation of steam, water, air, and electricity, in place of the muscles of men, as powers in furnishing the supply of air. Some of the great organs of the century, having three or four thousand pipes, with all the modern improvements, and combining great power with the utmost brilliancy and delicacy of utterance, and with a blended effect which is grand, solemn and most impressive, render indeed this noble instrument the "king" in the realm of music.

In the report of 1895 of the United States Commissioner of patents it is stated that "the autoharp has been developed within the past few years, having bars arranged transversely across the strings and provided with dampers which, when depressed, silence all the strings except those producing the desired chords.

"An ingenious musical instrument of the class having keyboards like the piano or organ has been recently invented. All keyboard instruments in ordinary use produce tones that are only approximately correct in pitch, because these must be limited in number to twelve, to the octave, while the tones of the violin are absolute or untempered. The improved instrument produces untempered tones without requiring extraordinary variations from the usual arrangement of the keys."

Self-playing musical instruments have been known for more than forty years, but it is within the past twenty-five years that devices have been invented for controlling tones by pneumatic or electrical appliances to produce expressions. Examples of the later of these three kinds of musical instruments may be found in the United States patents of Zimmermann in 1882, Tanaka, 1890, and Gally, 1879.

The science of acoustics and its practical applications have greatly advanced, chiefly due to the researches of Helmholtz, referred to above.

When the nature and laws of the waves of sound became fully known a great field of inventions was opened. Then came the telephone, phonograph, graphophone and gramophone.

The telephone depends upon a combination of electricity and the waves of the human voice. The phonograph and its modifications depend alone on sound waves—the recording of the waves from one vibrating membrane and their exact reproduction on another vibrating membrane.

The acoustic properties of churches and other buildings were improved by the adaptation of banks of fine wires to prevent the re-echoing of sounds. Auricular tubes adapted to be applied to the ears and concealed by the hair, and other forms of aural instruments, were devised.

The Megaphone of Edison appeared, consisting of two large funnels having elastic conducting tubes from their apices to the aural orifice. Conversation in moderate tones has been heard and understood by their use at a distance of one and a half miles. The megaphone has been found very useful in speaking to large outdoor crowds.

But let us go back a little: In 1845, Chas. Bourseuil of France published the idea that the vibrations of speech uttered against a diaphragm might break or make an electric contact, and the electric pulsations thereby produced might set another diaphragm vibrating which should produce the transmitted sound waves. In 1857, another Frenchman, Leon Scott, patented in France his Phonautograph—an instrument consisting of a large barrel-like mouth-piece into which words were spoken, a membrane therein against which the voice vibrations were received, a stylus attached to this vibrating membrane, and a rotating cylinder covered with blackened paper, against which the stylus bore and on which it recorded the sound waves in exact form received on the vibrating diaphragm. Then came the researches and publications of Helmholtz and KÖnig on acoustic science, 1862-1866. Then young Philip Reis of Frankfort, Germany, attempted to put all these theories into an apparatus to reproduce speech, but did not quite succeed. Then in 1874-1875, Bell took up the matter, and at the Philadelphia exhibition, 1876, astonished the world by the revelations of the telephone. In April, 1877, Charles Cros, a Frenchman, in a communication to the Academy of Sciences in Paris, after describing an apparatus like the Scott phonautograph, set forth how traced undulating lines of voice vibrations might be reproduced in intaglio or in relief, and reproduced upon a vibrating membrane by a pointed stylus attached thereto and following the line of the original pulsations. The communication seems to have been pigeon-holed, and not read in open session until December, 1877, and until after Thomas A. Edison had actually completed and used his phonograph in the United States. Cros rested on the suggestion. Edison, without knowing of Cros' suggestion, was first to make and actually use the same invention. Edison's cylinder, on which the sounds were recorded and from which they were reproduced, was covered by tin foil. A great advance was made by Dr Chichester A. Bell and Mr. C. S. Tainter, who in 1886 patented in the United States means of cutting or engraving the sound waves in a solid body. The solid body they employed was a thin pasteboard cylinder covered with wax. This apparatus they called the graphophone. Two years thereafter, Mr. Emile Berliner of Washington had invented the gramophone, which consists in etching on a metallic plate the record of voice waves. He has termed his invention, "the art of etching the human voice." He prepares a polished metal plate, generally zinc, with an extremely thin coating of film or fatty milk, which dries upon and adheres to the plate. The stylus penetrates this film, meeting from it the slightest possible resistance, and traces thereon the message. The record plate is then subjected to a particularly constituted acid bath, which, entering the groove or grooves formed by the stylus, cuts or etches the same into the plate. The groove thus formed may be deepened by another acid solution. When thus produced, as many copies of the record as desired may be made by the electrotyper or print plater.

The public is now familiar with the different forms of this wonderful instrument, and like the telephone, they no longer seem marvellous. Yet it is only within the age of a youth or a maiden when the allegations or predictions that the human voice would soon be carried over the land, and reproduced across a continent, or be preserved or engraven on tablets and reproduced at pleasure anywhere, in this or any subsequent generation, were themselves regarded as strange messages of dreamers and madmen.

Optical Instruments.—There were practical inventions in optical instruments long before this century. Achromatic and other lenses were known, and the microscope, the telescope and spectacles.

The inventive genius of this century in the field of optics has not eclipsed the telescope and microscope of former ages. They were the fruits of the efforts of many ages and of many minds, although Hans Lippersheim of Holland in 1608 appears to have made the first successful instrument "for seeing things at a distance." Galileo soon thereafter greatly improved and increased its capacity, and was the first to direct it towards the heavens. And as to the microscope, Dr. Lieberkulm, of Berlin, in 1740, made the first successful solar microscope. As well known, it consisted essentially of two lenses and a mirror, by which the sun's rays are reflected on the first lens, concentrated on the object and further magnified by the second lens.

The depths of the stars and the minutest mote that floats in the sun beam reflect the glory of those inventions.

The invention of John Dolland of London, about 1758, of the achromatic lens should be borne in mind in connection with telescopes, microscopes, etc. He it was who invented the combination of two lenses, one concave and the other convex, one of flint glass and the other of crown glass, which, refracting in contrary ways, neutralised the dispersion of colour rays and produced a clear, colourless light.

Many improvements and discoveries in optics and optical instruments have been made during the century, due to the researches of such scientists as Arago, Brewster, Young, Fresnel, Airy, Hamilton, Lloyd, Cauchy and others, and of the labours of the army of skilled experts and mechanicians who have followed their lead.

Sir David Brewster, born in Scotland in 1781, made (1810-1840) many improvements in the construction of the microscope and telescope, invented the kaleidoscope, introduced in the stereoscope the principles and leading features which those beautiful instruments still embody, and rendered it popular among scientists and artists.

It is said that Prof. Eliot of Edinburgh in 1834 was the first to conceive of the idea of a stereoscope, by which two different pictures of the same object, taken by photography, to correspond to the two different positions of an object as viewed by the two eyes, are combined into one view by two reflecting mirrors set at an angle of about 45°, and conveying to the eyes a single reflection of the object as a solid body. But Sir Charles Wheaton in 1838 constructed the first instrument, and in 1849 Brewster introduced the present form of lenticular lenses.

Brewster also demonstrated the utility of dioptric lenses, and zones in lighthouse illumination; and in which field Faraday and Tyndall also subsequently worked with the addition of electrical appliances. The labours of these three men have illuminated the wildest waters of the sea and preserved a thousand fleets of commerce and of war from awful shipwreck.

As illustrating the difficulties sometimes encountered in introducing an invention into use, the American Journal of Chemistry some years ago related that the AbbÉ Moigno, in introducing the stereoscope to the savants of France, first took it to Arago, but Arago had a defect of vision which made him see double, and he could only see in it a medley of four pictures; then the AbbÉ went to Savart, but unfortunately Savart had but one eye and was quite incapable of appreciating the thing. Then Becquerel was next visited, but he was nearly blind and could see nothing in the new optical toy. Not discouraged, the AbbÉ then called upon Puillet of the Conservatoire des Arts et Metiers. Puillet was much interested, but he was troubled with a squint which presented to his anxious gaze but a blurred mixture of images. Lastly Brot was tried. Brot believed in the corpuscular theory of light, and was opposed to the undulatory theory, and the good AbbÉ not being able to assure him that the instrument did not contradict his theory, Brot refused to have anything to do with it. In spite, however, of the physical disabilities of scientists, the stereoscope finally made its way in France.

Besides increasing the power of the eye to discover the secrets and beauties of nature, modern invention has turned upon the eye itself and displayed the wonders existing there, behind its dark glass doors. It was Helmholtz who in 1851 described his Ophthalmoscope. He arranged a candle so that its rays of light, falling on an inclined reflector, were thrown through the pupil of the patient's eye, whose retina reflected the image received on the retina back to the mirror where it could be viewed by the observer. This image was the background of the eye, and its delicate blood vessels and tissues could thus be observed. This instrument was improved and it gave rise to the contrivance of many delicate surgical instruments for operating on the eye.

The Spectroscope is an instrument by which the colours of the solar rays are separated and viewed, as well as those of other incandescent bodies. By it, not only the elements of the heavenly bodies have been determined, but remarkable results have been had in analysing well-known metals and discovering new ones. Its powers and its principles have been so developed during the century by the discoveries, inventions and investigations of Herschel, Wollaston, Fraunhofer, Bronsen and Kirchoff, Steinheil, Tyndall, Huggins, Draper and others, that spectrum analysis has grown from the separation of light into its colours by the prism of Newton, to what Dr. Huggins has aptly termed "a new sense."

We have further referred to this wonderful discovery in the Chapter on Chemistry.

The inventions and improvements in optical instruments gave rise to great advances in the making of lenses, based on scientific principles, and not resting alone on hard work and experience. Alvan Clark a son of America, and Prof. Ernst Abbe of Germany, have within the last third of the century produced a revolution in the manufacture of lenses, and thereby extended the realms of knowledge to new worlds of matter in the heavens and on earth.

Solarmeter.—In 1895 a United States patent was granted to Mr. Bechler for an instrument called a solarmeter. It is designed for taking observations of heavenly bodies and recording mechanically the parts of the astronomical triangle used in navigation and like work. Its chief purpose is to determine the position of the compass error of a ship at sea independently of the visibility of the sea horizon. If the horizon is clouded, and the sun or a known star is visible, a ship's position can still be determined by the solarmeter.

Instruments for Measuring the Position and Distances of Unseen Objects.—Some of the latest of such instruments will enable one to see and shoot at an object around a corner, or at least out of sight. Thus a United States patent was granted to Fiske in 1889, wherein it is set forth that by stationing observers at points distant from a gun, which points are at the extremities of a known base line, and which command a view of the area within the range of the gun, the observers discover the position and range of the object by triangulation and set certain pointers. By means of electrical connection between those pointers and pointers at the gun station based on the system of the Wheatstone bridge, the latter pointers, or the guns themselves serving as pointers, may be placed in position to indicate the line of fire. By a nice arrangement of mirror and lenses attached to a firearm the same object may be accomplished. Similar apparatuses in which the reflectory surfaces of mirrors mounted on an elevated frame-work, and known as Polemoscopes and Altiscopes and Range-Finders, have also been invented, and used with artillery. But such devices may be profitably used for more peaceful and amusing purposes.

Born with the ear attuned to music and the eye to observe beauty, the hand of Art was to trace and make permanent the fleeting forms which melody and the eye impressed upon the soul of man.

In fact modern science has demonstrated that tones and colours are inseparable. Bell and Tainter with their photophone have converted the undulatory waves of light into the sweetest music. Reversing the process, beautiful flashes of light have been produced from musical vibrations by the phonophote of M. Coulon and the phonoscope of Henry Edmunds.

Entrancing as the story is, we can only here allude to a few of those discoveries and inventions that have become the handmaidens of the art which guided the chisel of Phidias and inspired the brush of Raphael.

Photography.—The art of producing permanent images of the "human face divine," natural scenes, and other objects, by the agency of light, is due more to the discoveries of the chemist than to the inventions of the mechanic; and to the chemists of this century. At the same time a mechanical invention of old times became a necessary appliance in the reduction of the theories of the chemists to practice:—The Camera Obscura, that dark box in which a mirror is placed, provided also with a piece of ground glass or white cardboard paper, and having a projecting part at one end in which a lens is placed, whereby when the lens part is directed to an object an image of the same is thrown by the rays of light focused by the lens upon the mirror, and reflected by the mirror to the glass or paper board, was invented by Roger Bacon about 1297, or by Alberta in 1437, described by Leonardo da Vinci in 1500 as an imitation of the structure of the eye, again by Baptista Porta in 1589, and remodelled by Sir Isaac Newton in 1700. Until the 19th century it was used only in the taking of sketches and scenes on or from the card or glass on which the reflection was thrown.

Celebrated chemists such as Sheele of the 18th century, and Ritter, Wollaston, Sir Humphry Davy, Young, Gay-Lussac, Thenard, and others in the early part of the 19th century, began to turn their attention to the chemical and molecular changes which the sunlight and its separate rays effected in certain substances, and especially upon certain compounds of silver. In sensitising the receiving paper, glass, or metal with such a compound it must necessarily be protected from exposure to sunlight, and this fact, together with the desire to sensitise the image produced by the camera, not only suggested but seemed to render that instrument indispensable to photography. Nevertheless the experiments of chemists fell short of the high mark, and it was reserved for an artist to unite the efforts of the sun and the chemists in a successful instrument.

It was Louis Jacques MandÉ Daguerre, born at Corneilles, France, in 1789, and who died in 1851, who was the first to reduce to practice the invention called after his name. He was a brilliant scene painter, and especially successful in painting panoramas. In 1822, assisted by Bouton, he had invented the diorama, by which coloured lights representing the various changes of the day and season were thrown upon the canvasses in his beautiful panoramas of Rome, London, Naples and other great cities. Several years previous to 1839 he and Joseph N. Niepce, learning of the efforts of chemists in that line, began independently, and then together, to develop the art of obtaining permanent copies of objects produced by the chemical action of the sun. Niepce died while they were thus engaged. Daguerre prosecuted his researches alone, and toward the close of 1838 his success was such that he made known his invention to Arago, and Arago announced it in an eloquent and enthusiastic address to the French Academy of Sciences in January 1839. It at once excited great attention, which was heightened by the pictures produced by the new process. The French Government, in consideration of the details of the invention and its improvements being made public and on request of Daguerre, granted him an annuity and one also to Niepce's son.

At first only pictures of natural objects were taken; but in learning of Daguerre's process Dr. John William Draper of New York, a native of England and adopted son of America, the brilliant author of The Intellectual Development of Europe, and other great works, in the same year, 1839, took portraits of persons by photography, and he was the first to do this. Draper was also the first in America to reveal the wonders of the spectroscope; and he was first to show that each colour of the spectrum had its own peculiar chemical effect. This was in 1847.

The sun was now fairly harnessed in the service of man in the new great art of Photography. Natural philosophers, chemists, inventors, mechanics, all now pressed forward, and still press forward to improve the art, to establish new growths from the old art, and extend its domains. Those domains have the generic term of Photo-Processes. Daguerreotypy, while the father of them all, is now hardly practised as Daguerre practised it, and has become a small subordinate sub-division of the great class. Yet more faithful likenesses are not yet produced than by this now old process. Among the children of the Photo-Process family are the Calotype, Ambrotype, Ferreotype, Collodion and Silver Printing, Carbon Printing, Heliotype, Heliogravure, Photoengraving (relief intaglio-Woodburytype), Photolithography; Alberttype; Photozincograph, Photogelatine-printing; Photomicrography (to depict microscopic objects), Kinetographs, and Photosculpture. A world of mechanical contrivances have been invented:—Octnometers, Baths, Burnishing tools, Cameras and Camera stands, Magazine and Roll holders; Dark rooms and Focussing devices, Heaters and Driers; Exposure Meters, etc. etc.

The Kinetograph, for taking a series of pictures of rapidly moving objects, and by which the living object, person or persons, are made to appear moving before us as they moved when the picture was taken, is a marvellous invention; and yet simple when the process is understood. Photography and printing have combined to revolutionise the art of illustration. Exact copies of an original, whether of a painting or a photograph, are now produced on paper with all the original shades and colours. The long-sought-for problem of photographing in colours has in a measure been solved. The "three colour processes" is the name given to the new offspring of the inventors which reproduces by the camera the natural colours of objects.

The scientists Maxwell Young and Helmholtz established the theory that the three colours, red, green, and blue, were the primary colours, and from a mixture of these, secondary colours are produced. Henry Collen in 1865 laid down the lines on which the practical reduction should take place; and within the last decade F. E. Ives of Philadelphia has invented the Photochromoscope for producing pictures in their natural colours. The process consists in blending in one picture the separate photographic views taken on separate negative plates, each sensitised to receive one of the primary colours, which are then exposed and blended simultaneously in a triple camera.

Plates and films and many other articles and processes have helped to establish the Art of Photography on its new basis.

Among the minor inventions relating to Art, mention may be made of that very useful article the lead pencil, which all have employed so much time in sharpening to the detriment of time and clean hands. Within a decade, pencils in which the lead or crayon is covered instead of with wood, with slitted, perforated or creased paper, spirally rolled thereon, and on which by unrolling a portion at a time a new point is exposed; or that other style in which a number of short, sharpened marking leads, or crayons, are arranged in series and adapted to be projected one after the other as fast as worn away.

In Painting modern inventions and discoveries have simply added to the instrumentalities of genius but have created no royal road to the art made glorious by Titian and Raphael. It has given to the artists, through its chemists, a world of new colours, and through its mechanics new and convenient appliances.

Air Brushes have proved a great help by which the paint or other colouring matter is sprayed in heavy, light, or almost invisible showers to produce backgrounds by the force of air blown upon the pigments held in drops at the end of a fine spraying tube. Made of larger proportions, this brush has been used for fresco painting, and for painting large objects, such as buildings, which it admits of doing with great rapidity.

A description of modern methods of applying colours to porcelain and pottery is given in the chapter treating of those subjects.

Telegraphic pictures:—Perhaps it is appropriate in closing this chapter that reference be made to that process by which the likeness of the distant reader may be taken telegraphically. A picture in relief is first made by the swelled gelatine or other process; a tracing point is then moved in the lines across the undulating surface of the pictures, and the movements of this tracer are imparted by suitable electrical apparatus to a cutter or engraving tool at the opposite end of the line and there reproduced upon a suitable substance.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page