Silk. The silk of commerce is obtained from the cocoons of several species of insects. These insects resemble strongly the ordinary caterpillars. At a certain period of its existence the silkworm gives off a secretion of jelly-like substance. This hardens on exposure to the air as the worm forces it out and winds it about its body. It takes about three days for the worm to form the cocoon. After the cocoon has been formed the silkworm passes from the form of a caterpillar into a moth which cuts an opening through the cocoon and flies away. It is very important that the moth should not be allowed to escape from the cocoon; the mere There are a great many varieties of caterpillars, but few of them secrete a sufficient quantity of silk to render them of commercial value. The principal species is the mulberry silkworm which produces most of the silk in commerce. It is cultivated and fed on mulberry leaves. There are other varieties of silkworms that are not capable of being cultivated and are called wild silkworms. The silk produced by the wild worms of China and India is called “tussah” (or “tussur”). The silk is inferior to that produced by the cultivated worms and is used for making pile fabrics, such as velvet, plush, etc. The color of the cocoons varies greatly. Most of the European cocoons are bright yellow, though some are white. The Eastern cocoons, on the other hand, are mostly white, while a few are yellow. The wild silks are for the most part Écru color, though some are pale green. The color, except in the wild silks, is derived from the gum which is secreted by the worm, and with which the fibers are stuck together. This gum comprises from 15 to 30 per cent of the weight and is removed by boiling in soap and water before the silk is dyed. All silks except the wild silks, after the gum is removed, are from white to cream in color. The tussah, or wild silks, remain an Écru color. The greatest care has to be exercised throughout in the care of the moths, eggs, worms, and cocoons—this Raw Silk. The cocoons are next sent to the reelers or filatures. A number of cocoons, greater or less, according to the size of thread desired, are placed in a basin of hot water, which softens the gum. After the outside fibers are removed so that the ends run free, the ends are collected through a guide and are wound upon a reel. As the silk cools and dries, the gum hardens, sticking the fibers from the different cocoons together in one smooth thread varying in size according to the number of cocoons used. After the silk has been reeled and dried it is twisted into hanks and sent to America and other countries as raw silk. Most of the raw silk of commerce is produced in China, Japan, and Italy. It is also produced to a large extent in Italy, Turkey, and Greece, also France and Portugal. The cultivation of silk is not only carried on by private firms, but is encouraged by the government to the extent of granting money to the manufacturers. Various attempts have been made to raise silkworms in the United States. All have failed on account of the high price of labor necessary to feed the worms. Throwing. The manufacture in the United States begins with raw silk. We import our raw silk chiefly from Italy, China, and Japan. It is handled here first by the “throwster,” who winds it from the skein and makes various kinds of thread for different purposes. Raw silk wound on spools in a single thread, and Silk yarn that is used for weaving is divided into two kinds, “tram” and “organzine.” Tram silk is made by twisting two or more loosely twisted threads. It is heavier than organzine and is used for filling. Organzine silk is produced by uniting a number of strongly twisted threads. It is used for warp. CrÊpe yarn is used in making crÊpe, chiffon, and for other purposes. It is very hard twisted thread, generally tram, from forty to eighty turns per inch. Embroidery silk is made by winding the raw silk, putting a large number of ends together, giving them a slack twist, then doubling and twisting in the reverse direction with a slack twist. Sewing silk is made by winding and doubling the raw product, then twisting into tram, giving it a slack twist, doubling and twisting in the reverse direction under tension. Machine twist is similar, but three ply. The principal fabrics made of silk are: silk, satin, plush, chenille, crÊpe, crepon, gauze, damask, brocade, pongee, and ribbons. Silk thread and cord are also extensively used. The United States is among the leaders in the manufacture of silk fabrics. Silk Waste. When the cocoons are softened for reeling a certain portion of the silk is found to consist of Spun Silk. There is another class of threads made from waste silk by spinning and known as spun silk. Waste silks include the pierced cocoons, that is, those from which the moth has come out by making the hole and breaking the fibers in one end of the cocoon; the waste made in the filatures in producing raw or reeled silk, chiefly the outside fiber of the cocoon and the inside next the chrysalis; and also the waste made in manufacture. The waste silk is ungummed; that is, the gum is removed from the fibers by boiling with soap, by macerating or retting, or by chemical reagents. After the gum is removed from the cocoons, they are opened and combed, most of the chrysalis shell being removed. The remainder, with other foreign matter, is picked out by hand from the combed silk. The silk is put through a number of drawing frames to get the fibers even on the roving frames, where it first takes the form of thread, then on the spinning frames, where it is twisted. If it is to be used as singles, the manufacture ends here. In two-or three-ply yarns, the singles are doubled, twisted again, singed by running through a gas flame, cleaned by friction, controlled, that is, the knots and lumps taken out, and then reeled into skeins for dyeing or put on spools. No. 100 singles has 100,000 meters per kilogram. The other system which is more generally used in this country, is the English system. The hank is 840 yards, and the number of hanks in one pound avoirdupois is the count of the yarn. It is based on the finished yarn, and singles, two or three cord yarns of the same number all have the same yards per pound. Thus— No. 50 singles has 42,000 yards per pound. Dyeing Yarns. Generally speaking there are two large classes into which silk goods may be divided, those in which the threads are colored before weaving and called yarn-dyed goods, and those dyed or printed after weaving and called piece-dyed or printed goods. In dyeing yarns, the silk is first ungummed and cleaned by boiling in soap and water, then washed in cold water. If the thread is to be weighted, as is frequently done, tin salts, iron, or other heavy material is deposited on the fiber. If carried far, this is injurious, making the silk tender and weak. Sometimes there is more weighting than silk. Yarns are usually dyed in hot Silk Dyeing. Silk occupies in several respects an intermediate position between the animal and vegetable fibers. Like wool, it is a highly nitrogenous body, but contains no sulphur. It readily takes up many of the colors which can be worked upon vegetable fiber by the aid of the mordants. This is particularly the case with reference to a large number of aniline colors, which require merely to be dissolved and mixed with perfectly clear water in the dye vessel. The great attraction of silk for these colors simplifies silk dyeing exceedingly. The sad colors, on the other hand, and especially black, are in many cases exceedingly complex, the main object of the dyer being not so much to color the silk as to increase its weight. Dyeing black on silk is unquestionably the most important branch of silk dyeing, and it has probably received more attention than any other branch, in consequence of which it has been brought to a high degree of perfection. Blacks on silks are produced both from natural and artificial coloring matters, the former having, so far, retained their pre-eminence despite the recent discoveries of chemists. For various reasons coal-tar colors have never proved successful in dyeing black on silk. Since the discovery of America, logwood blacks have formed the staple of the black-silk dyer, Logwood black-silk dyeing consists essentially of alternate dippings in separate baths with the mordant and dyestuffs suitable for producing the required color and weight. The number of dippings and the length 1. The Boiling Off. This is the removal of the gum and natural coloring matter in the silk. It is accomplished by boiling the skeins of silk in water and good olive oil soap for about one hour. This dissolves the gum and leaves the fiber clean and glossy. 2. Mordanting. This is done in a bath of nitrate of iron, in which the skeins of silk are allowed to remain one hour. The silk gains some in weight in this operation by absorbing a quantity of the iron in the bath. After having been dipped in the first bath three or four times, it is ready for the soap and iron bath, in which it is repeatedly immersed, the operation causing a deposit of iron-soap on the fiber which adds to its weight, but at the same time does not lessen its flexibility and softness. Eight dippings in the iron and soap bath increase the weight of the silk about 100 per cent. 3. Blue Bottoming. The next operation is to dye the silk blue, which is done by immersing it in a solution of potash. In this it is worked for half an hour, when it acquires a deep blue color. It is then taken 4. “Weighting” Bath. A catechu bath is now prepared, in which the silk is entered and worked for an hour, and then allowed to steep over night. The result is that the blue on the silk is decomposed, and the goods by absorbing the tannin in the catechu increase in weight from 35 to 40 per cent. This bath is the most important one in the dyeing of “weighted” black silks, as the dyer can regulate the strength of the bath by the addition of tin crystals so as to increase the weight of the silk to an astonishing degree. The proportion of tin crystals used is regulated by the number of iron baths that have previously been given the silk; if two baths of iron have been given, 5 per cent of tin crystals are used; if four baths, 10 per cent, and so on. The action of these chemicals is somewhat complex. All that is known is that by reason of some peculiar quality possessed by silk it is enabled to combine with iron and tin, and that exposure to the air after the baths fixes these chemicals permanently upon the fibers, thus increasing their weight to almost any desired extent. Silk, according to its quality and weight, will take up of these substances from 50 to 200 per cent without creating much suspicion. Instances have been known in which silk has been increased nine times its own weight. All the operations thus far have had for their object the weighting of the silk, although the blueing and the catechu baths have some influence on the finished result. After these come the dyeing 5. Mordanting. A bath of iron liquor heated to 130 degrees F. is provided. The silk is entered, worked well for one hour, then wrung out and hung up to “age” for two hours, after which it is ready for the logwood dye. 6. Dyeing. A bath of logwood liquor is prepared to which is added 10 per cent of fustic, and the solution is brought to a temperature of 150 degrees F. In this the silk is entered and worked for an hour, then taken out and wrung dry. Sometimes the black does not come up full enough, and in such cases the bath is repeated. 7. The final operation has for its object the restoration of the luster and suppleness of the silk, which has to some extent deteriorated from the many operations through which it has passed. The brightening and softening of the fiber are effected by immersing the silk in a bath of olive oil in the form of an emulsion. In this the silk is worked until it is thoroughly impregnated with the oil, when it is taken out and wrung dry, after which it is ready for the loom. Practically the same process is followed in piece dyeing, though only inferior grades of silk are dyed in the web. Colored Silks. This class of silks is generally purer than black and sad-colored silks. It is not nearly so easy to weight the former as the latter, for the reason that there are but few substances capable of giving weight which do not interfere with the effect of light colored dyes. The weighting agents most generally Mixed Silk Fabrics. Until lately silk was invariably dyed in the state of yarn. When the silk was to be woven into mixed fabrics, such as satin, gloria, etc., it was impossible to dye both fibers exactly the same shade. Formerly such fabrics were woven with the cotton and silk yarns dyed separately, care being taken to match them as closely as possible. The weaving of dyed yarns of different fibers is open to the objection that when the fabric comes to be finished there is a wide difference in the color, no matter how closely they may have matched in the beginning. Ribbons. Ribbons are woven several pieces in one loom, with a separate shuttle for each piece. The shuttle is carried through the shed or warp by a rack and pinion, instead of being thrown through as in broad goods; otherwise the weaving is the same. Piece Dyeing. If the goods are woven with the gum still in the silk, it must be taken out afterward, and the goods either dyed in the piece or prepared for printing. Printing. The most primitive method of printing is by the use of stencils. It is the method employed by the Japanese and Chinese. Next came block printing, which is still extensively used in Europe. The pattern is raised in felt on wooden blocks, the color taken up from pads, one block for each color. The results are good, but the work is very slow. Most silk goods are to-day machine printed. The design is engraved or etched on copper cylinders, one cylinder for each color; the color thickened with gum is supplied by rolls running against the cylinders, and the surplus is scraped off by a knife blade, leaving only that in the engraving which is taken up by the cloth. After printing, the cloth is steamed to set the colors, and then washed in order to remove the gum used to thicken the colors for printing. Waterproofing. One of the worst difficulties with which the manufacturer of piece-dyed and printed silk goods has to contend is the ease with which they become spotted with water, and for a number of years many people have tried to prevent this by various processes. There are no less than two hundred such processes patented. None of them have met with much success, as they injured the feel or strength of the goods. After goods are finished they are carefully inspected for imperfections, measured, and wrapped in paper and packed in cases for shipment. The complexity and number of processes for treating silk goods may be realized when we know that a piece-dyed or printed fabric is handled its entire length between fifty and one hundred times after it comes from the loom, sometimes even more. |