APPENDIX

Previous

Testing Textile Fabrics. This is an age of adulteration, and next to food there is probably no commodity that is adulterated as much as the clothing we wear. Large purchasers of textile fabrics and various administrative bodies, such as army clothing departments, railway companies, etc., have adopted definite specifications to ensure having good material and workmanship. Before the fabrics are accepted they are examined carefully by certain tests to see if they meet the requirements. Wholesale and retail merchants insist on various conditions when purchasing fabrics in order to conform to the increasing needs of the public. Hence every manufacturer, buyer, or dealer in fabrics should be familiar with the tests used to determine the quality of goods he is about to buy.

The tests used are as follows:

1. Identification of the style of weaving.

2. Testing the breaking strength and the elasticity by the dynamometer.

3. Determining the “count” of warp and filling.

4. Determining the shrinkage.

5. Testing the constituents of warp and of filling.

6. Testing the finish and dressing materials.

7. Testing the fastness of the dye. Directions for Determining the Style of Weave. In examining a fabric for the weave it is first necessary to determine the direction of the warp and filling threads. This is a very simple matter in a great many fabrics that have a selvedge—the warp must be parallel to the selvedge.

In fabrics that have been fulled, raised, and cropped, as buckskin, flannel, etc., the direction of the nap will indicate the direction of the warp, since the nap runs in this direction.

In the case of fabrics with doubled and single threads, the doubled threads are always found in the warp.

In fabrics composed of cotton and woolen threads running in different directions, the cotton yarn usually forms the warp and the woolen yarn the filling. Then again the warp threads of all fabrics are more tightly twisted than the filling threads, and are separated at more regular intervals.

Sometimes in stiffened or starched goods threads running in only one direction can be seen. In this case they are the warp threads.

If one set of threads appears stiffer and straighter than the other, the former may be regarded as warp, while the rough and crooked threads are the filling. The yarn also gives one a hint, since the better, longer, and higher number material constitutes the warp, while the thicker yarn the filling.

The direction of the twist of the thread is conclusive; if one set has a strong right twist and the other a left twist the first is the warp. After determining the direction of the warp and filling, the next point is to determine the interlacing of the warp and filling threads—the weave. This may be done by inspection or by means of a pick-glass and needle. The weave may be plotted on design paper (plotting paper), the projecting warp threads being indicated by filling up the corresponding square, and leaving those referring to the filling threads blank. In this way the weaving pattern of the sample is obtained, and serves as a guide to the weaver in making the fabric, as well as for the preparation of the pattern cards for the Jacquard loom.

Testing the Strength and Elasticity of a Fabric. The old-fashioned plan of testing cloth by tearing it by the hand is unreliable, because tearing frequently requires only a certain skilled knack whereby the best material can be pulled in two. In this way an experienced man may tell good from bad cloth, but he cannot determine slight differences in quality, because he has exerted his strength so often that his capacity to distinguish the actual force has disappeared.

The best means of determining the strength of a fabric is by means of a mechanical dynamometer,[19] which expresses the tensile strength of the fabric in terms of weight. The machine is very useful to the manufacturer because it enables him to compare accurately his various products with those of his competitors. The value of these tests is sufficiently proved by the fact that all army clothing departments, etc., require their supplies of cloth, etc., to pass a definite test for strength.

Breaking tests also afford the most certain proof to bleachers of cotton and linen goods as to whether the bleaching has burned or weakened the goods. The same test will quickly determine whether a fabric has been improperly treated in the laundry.

Determining the Count of Warp and Filling Threads. Every fabric must contain a certain count of warp and filling threads—a definite number within a certain space for each strength of yarn employed. A fabric is not up to the standard of density when less than the requisite number of warp or filling threads per inch is found. For example, if a buyer was told that a fabric is 80 square, that is, eighty warp threads and eighty filling threads to the inch, and on examination found only 72 square, he would immediately reject the goods.

The count of warp and filling is determined by means of a pick-glass—a small mounted magnifying glass—the base of which contains an opening of one-half inch by one quarter inch, or one quarter inch by one quarter inch. If the pick-glass is placed on the fabric the number of warp and filling threads may be counted, and the result multiplied by either two or four, so as to give the number of threads to the inch. For example, if I count twenty picks and twenty threads on a one quarter-inch edge, there are eighty picks and eighty threads to the inch. A more accurate result can be obtained by using a pick-glass with a one-inch opening. Determination of Shrinkage. A very important factor in the value of a fabric is the shrinkage. The extent of this may be determined by pouring hot water over a sample of about twelve by twenty inches, and leaving the fabric immersed over night, then drying it at a moderate temperature without stretching. The difference in length gives the shrinkage, which is usually expressed in percentage.

Determination of Weight. Buyers and sellers of dry goods, when traveling, are anxious to determine the weight of fabrics they examine. This may be done by means of small pocket balances so constructed as to give the number of ounces to the yard of a fabric.

Testing the Constituents of the Warp and Filling. Take a sample piece of the cloth to be examined—the piece must be large enough to contain specimens of all the different kinds of yarn present in the material—and separate all the filling and warp threads. Be sure that all double threads are untwisted.

Combustion Test; Test for Vegetable and Animal Fibers. Burn separately a sample of the untwisted warp and filling threads. If one or both burn quickly without a greasy odor, they are vegetable fibers, cotton or linen. If one or both burn slowly and give off a greasy odor, they are animal fibers, wool or silk. This test is not conclusive, and further chemical examination—acid test—must be made to ascertain whether wool is pure or mixed with cotton.

Acid Test. The vegetable fibers, cotton and linen, are distinguished from those of animal origin by their behavior in the presence of acids and alkalies. The vegetable are insoluble when boiled with a 4 per cent sodium hydrate solution, but readily clear or carbonize when saturated with a 3 per cent sulphuric acid solution and allowed to dry at a high temperature in a hot closet. Wool on the other hand is not affected by the action of weak sulphuric acid.

Cotton Distinguished from Linen. If the fibers are vegetable, cotton may be distinguished from linen by staining the fibers with fuchsine. If the fibers turn red, and this coloration disappears on the addition of ammonia, they are cotton, if the red color remains the fibers are linen. Whenever cotton yarn is used to adulterate other fabrics, it wears shabby and loses its brightness. When it is used to adulterate linen, it becomes fuzzy through wear. One may detect it in linen by rolling the goods between thumb and finger. Linen is a heavier fabric, and wrinkles much more readily than cotton. It wears better, and has an exquisite freshness that is not noticed in cotton fabrics.

Silk Distinguished from Wool. Place the fabric or threads containing animal fibers in cold, concentrated hydrochloric acid. If silk is present it will dissolve, while wool merely swells.

Artificial Silk from Silk. On account of the low value of the artificial and the high value of genuine silk, there is a tendency to offer the artificial instead of the pure article. Test: When artificial silk is boiled in 4 per cent potassium hydrate solution it produces a yellow solution, while pure silk gives a colorless solution. A common test is to put the artificial silk in water, where it will pull apart as though rotten; or to take out one strand of the silk, hold it between the finger and thumb of each hand and wet the middle of the strand with the tongue, when it will pull apart as though rotten.

Artificial silk is inferior in strength and elasticity to pure silk. Then again it is lacking in the crackling feeling noticed in handling the genuine article.

Test for Shoddy. It is no easy matter to detect shoddy in woolen fabrics; the color of the shoddy threads is the best evidence. Many parcels of rags are of one single color, but for the most part they are made of various colored wools; therefore, if on examination of a fabric with a magnifying glass a yarn of any particular color is found to contain a number of individual fibers of glaring colors, the presence of shoddy can be assumed with certainty.

Woolen goods containing cotton are seldom made from natural wool. Shoddy yarns, especially in winter goods, are found in the under-filling at the reverse side of the cloth, as thick, tightly twisted yarns, curlier than those from the pure wool.

Determination of the Dressing. During the various operations of washing, bleaching, etc., the goods lose in weight, and to make up this deficit a moderate amount of dressing or loading is employed. Dressing is not regarded as an adulteration, but as an embellishment.

Various dressing materials are used, such as starch, flour, mineral matters, to give the goods stiffness and feel on one hand, and on the other to conceal defects in the cloth, and to give a solid appearance to goods of open texture. The mineral substances used serve chiefly for filling and weighting, and necessitate the employment of a certain quantity of starch, etc. In order that the latter may not render the cloth too stiff and hard, further additions of some emollient, such as glycerine, oils, etc., are necessary.

When a fabric filled in this manner is placed in water and rubbed between the hands, the dressing is removed, and the quantity employed can be easily determined.

By holding fabrics before the light dressing will be recognized, and such goods, if rubbed between the fingers, will lose their stiffness. Loading is revealed by the production of dust on rubbing, and by the aid of the magnifying glass it can be easily ascertained whether the covering or dressing is merely superficial or penetrates into the substance of the fabric.

The tests of permanence of dyes on fabrics are as follows:

Washing Fastness. Fabrics should stand mechanical friction as well as the action of soap liquor and the temperature of the washing operation. In order to test the fabric for fastness a piece should be placed in a soap solution similar to that used in the ordinary household, and heated to 131 degrees F. The treatment should be repeated several times. If the color fails to run it is fast to washing.

Fastness Under Friction. Stockings, hosiery yarns, corset stuffs, and all fabrics intended to be worn next to the skin must be permanent under friction, and must not rub off, stain, or run, that is, the dyed materials must not give off their color when worn next to the human epidermis (skin), or in close contact with colored articles of clothing, as in the case of underwear.

The simplest test is to rub the fabric or yarn on white unstarched cotton fabric. In comparing the fastness of two fabrics it is necessary to have the rubbing equal in all cases.

Resistance to Perspiration. With fabrics coming in contact with the human skin it is necessary in addition to fastness under friction that they should withstand the excretions of the body. The acids of perspiration (acetic, formic, and butyric) often become so concentrated that they act on the fiber of the fabric.

In order to test the fabric for resistance, place the sample in a bath of 30 per cent dilute acetic acid (one teaspoonful to a quart of water) warmed to the temperature of the body, 98.6 degrees F. The sample should be dipped a number of times, and then dried without rinsing between parchment paper.

Fastness against Rain. Silk and woolen materials for umbrella making, raincoats, etc., are expected to be rainproof. These fabrics are tested by plaiting with undyed yarns and left to stand all night in cold water.

Resistance to Street Mud and Dust. Ladies’ dress goods are expected to withstand the action of mud and dust. In order to test a fabric for this resistance the sample should be moistened with lime and water (10 per cent solution), dried, and brushed. Or sprinkle with a 10 per cent solution of soda, drying, brushing, and noting any changes in color.

Fastness to Weather, Light, and Air. Various people have attempted to set up standard degrees of fastness—for every shade of color is affected by the action of sun, light, and air—and as a result fabrics that remain without appreciable alteration for a month of exposure to direct summer sunlight are classified as “fast,” and those undergoing slight appreciable change under the same conditions as “fairly fast.” “Moderately fast” colors are those altering considerably in fourteen days; and those more or less completely faded in the same time (fourteen days) are designated as “fleeting.”

Directions for testing fastness of Color in Sunlight. Cover one end of the sample of cloth with a piece of cardboard. Expose the fabric to the sunlight for a number of days and examine the cloth each day in the dark and notice whether the part exposed has changed in color when compared with the part covered. Count the number of days it has taken the sunlight to change the color.

Brown in woolen materials is likely to fade. Brown holds its color in all gingham materials.

Dark blue is an excellent color for woolens and ginghams. Light blues on the other hand usually change.

Black, gray, and black with white. These colors are very satisfactory for woolen materials.

Black is not a color which wears very well with cotton fabrics, as it shows the starch (sizing) and often fades.

Red is an excellent color for all woolen materials. It looks attractive and wears well. Red is a very poor color for cotton. It loses its brilliancy and frequent washing spoils it.

A deep pink is an excellent color for all ginghams for it fades evenly and leaves a pretty shade.

Green is a poor color for both cotton and woolen materials unless it is high priced.

Lavender fades more than any other color in textiles.

History of Textiles

The three fundamental industries that have developed from necessity are the feeding, sheltering, and clothing of the human race. These primary wants were first gratified before such conveniences as transportation and various lines of manufacture were even considered. Next to furnishing our food supply, the industry of supplying clothing is the oldest and the most widely diffused. It is in the manufacture of textiles—including all materials used in the manufacturing of clothing—that human ingenuity is best illustrated.

The magnitude of the textile industry in the United States is evident when we consider that it gives employment to a round million of people, paying them nearly five hundred million dollars annually in wages and salaries, producing nearly one and three-quarters billion dollars in gross value each year, and giving a livelihood to at least three millions of our population.

Wool, cotton, flax, and silk have been used since early times. Even in the earlier days these fibers were woven with great skill. It is not known which fiber was the first to be used in weaving. It is probable, however, that the possession of flocks and herds led to the spinning and weaving of wool before cotton, flax, or silk fibers were thus used.

Wool. The date at which prehistoric man discarded the pelt of skins for the woven fabric of wool marks the origin of the textile industry. Primitive sheep were covered with hair and the wool which now characterizes them was then a downy under-coat. As time went on and the art of spinning and weaving developed, the food value of sheep decreased, while the wool value increased. The hairy flocks were bred out, and the sheep with true wool, like the merino, survived. Sheep were bred principally for the wool and not for the mutton. Woolen fabrics were worn by the early inhabitants of Persia and Palestine. The Persians were noted for the excellent fabrics they wove from wool. Even the Hebrews of an early date were very skilful in weaving woolens.

The early Romans were a race of shepherds and the women of the higher classes wove the cloth in their own homes. When Caesar invaded England, he found in the southern part of the island people acquainted with the spinning and weaving of wool and linen. With the downfall of Rome, the art of weaving cloth in Europe was almost lost, and people again wore furs and skins.

By the end of the eleventh century English cloth manufacturing had begun to revive. In the northern part of Italy certain Italians had flocks of sheep and obtained very fine wool, and the people of Flanders continued to develop skill in weaving during the Dark Ages.

In the twelfth century the woolen manufacturers of Flanders had grown to be of great importance, and some of the finest goods were shipped from there to many countries.

In England, up to the time of Edward III, in the fourteenth century, the wool produced was exported to the Netherlands, there to be woven into cloth. Edward III invited many of the Flemish weavers to come to England to teach the English people how to make their own clothes. Edward was called the “Royal Wool Merchant” and also the “Father of English Commerce.” During Elizabeth’s reign in the sixteenth century the chief article of export was woolen cloth. In 1685 the Huguenots, who were driven from France, went to England to settle. These people were noted for their skill in weaving.

Patient effort in care and breeding of sheep showed a steady increase in the quantity and quality of wool until 1810, and the proportion of sheep to the population was then greater than at the present time.

Our own climate is highly favorable for sheep breeding, and it is certain that the American sheep has no superior in any wool growing country, in constitutional vigor and strength of wool-fiber, and no wools make more durable or more valuable clothing.

The obstacles to sheep husbandry in certain parts of the United States, like New England, are mainly climatic. The natural home of the only races of sheep which can be herded in large flocks is an elevated tableland, like the steppes of Russia and the great plains of Asia, Argentina, Montana, Wyoming, and others of our western states where an open air range is possible for nearly twelve months in the year. In these elevated lands there are grasses which are more nutritious in winter than in summer. The climate of New England does not permit the growth of such grasses. Every grass which will grow in New England becomes in the cold months frozen wood fiber. Then again there is the frigid and penetrating atmosphere which necessitates housing the sheep in winter, and these animals cannot be closely housed without engendering a variety of parasitic diseases.

Cotton. Long before history was written, cotton was used in making fabrics in India and China. Cotton has been for thousands of years the leading fabric of the East. The Hindoos have for centuries maintained almost unapproachable perfection in their cotton fabrics. It was the Arabian caravans that brought Indian calicoes and muslins into Europe.

Cotton was first cultivated in Europe by the Moors in Spain in the ninth century. In 1430 it was imported into England in large quantities. The section of England about Manchester became in time the seat of the great cotton industry; this was due to the settlement of spinners and weavers from Flanders.

During the reign of Elizabeth, the East Indies Trading Company was established. Not only was cotton imported, but also India muslins. This caused trouble because of the decrease in the demand for woolen goods manufactured in England. A law was passed prohibiting the importing of cotton goods and later the manufacturing of them, but this law was repealed on account of the great demand for cotton materials.

Columbus found cotton garments worn by the natives of the West Indies. Later Cortez found that cotton was used in Mexico; hence, cotton is indigenous to America. In 1519 Cortez made the first recorded export of cotton from America to Europe.

In 1734 cotton was planted in Georgia. Bales of cotton were sent to England, and the manufacturing of cloth was soon under way. While the colonies were trying to gain independence, England imposed a fine on anyone sending cotton machinery to America, and restrictions were put on manufacturing and imports of any kind. After the War of Independence many of the southern states began to raise cotton in larger quantities.

The invention of the cotton-gin by Eli Whitney was one of the great inventions of the age. While only two pounds of cotton could be seeded by hand by one person in a day, the gin made it possible to do several hundred pounds. At the time of the Civil War the greater part of the cotton used by English manufacturers was imported from the southern states. The closing of the southern ports during the war affected the cotton industry throughout the world. Large mills in England were closed, and thousands of people were out of employment. Steps were then taken to encourage people of India, Egypt, Central and South America to increase their production of cotton, and from that time on, cotton from these countries has been found in the general market. Cotton is now cultivated in nearly all countries within the limits 45° north and 35° south of the equator.

At the present time the United States ranks first in the production and export of cotton. Of all the states, Texas and Georgia produce the largest amount. About one-third of the entire crop is used in our own mills; $250,000,000 worth of cotton is annually exported, principally through New Orleans, New York, Savannah, and Galveston. Three-fifths of this quantity goes to mills in England; Germany, France, and Switzerland take a large part of the remainder.

The value of cotton is shown by the fact that about one-half the people of the earth wear clothing made entirely of cotton, and the other half (with the exception of some savage tribes) use it in part of the dress.

Linen. Linen has always been held in great esteem. The garments of the Egyptian, Hebrew, Greek, and Roman priests were made of the finest linen.

During the Middle Ages, Italy, Spain, and France were celebrated for their linen fabrics. Religious intolerance in France drove 300,000 of her best textile workers into England, Ireland, and Scotland. Irish linen weaving began as early as the eleventh century.

Linen has never been largely woven in America except in the coarser forms of crash and toweling, although linen weaving was one of the Puritan domestic industries. The reason America has not been able to equal Europe in its production of fine linens is because the process for separating the fiber from the stalk requires the cheapest form of labor to make it profitable, hence most of the American-grown flax is raised only for seed.

Silk. Silk was used in the East as a fabric for the nobility. It was first used in China and later in India. It was brought into Europe about the sixth century. Up to that time the Chinese had a monopoly of the industry. By the tenth and eleventh centuries silk fabrics were made in Spain and Italy. At the close of the sixteenth century silk was being produced at Lyons, France. It was afterwards introduced into England, and the English silk for a long time replaced the French in the European market.

History of the Organization of Textile Industries

The development of the textile industry may be divided into four stages or periods: first, the family system; second, the guild system; third, the domestic system; and fourth, the factory system.

The Family System. Under the family system the work of spinning and weaving was carried on by members of a household for the purpose of supplying the family with clothing. There were no sales of the product. Each class in society, from the peasant class to that of the nobleman, had its own devices for making clothing. This was the system that existed up to about the tenth century.

The Guild System. As communities became larger and cities sprang up, the textile industry became more than a family concern. There was a demand for better fabrics, and to meet this demand it became necessary to have a large supply of different parts of looms. The small weaver who owned and constructed his own loom was not able to have all these parts, so he began to work for a more prosperous weaver. The same conditions applied to spinning, and as early as 1740 spinning was carried on by a class distinct from the weavers. As a result the small weaver was driven out by the growth of organized capital, and a more perfect organization, called the guild system, arose. By this system the textile industry was carried on by a small group of men called masters, employing two, three or more men (distinguished later as journeymen and apprentices). The masters organized associations called guilds and dominated all the conditions of the manufacture to a far greater extent than is possible under present conditions.

It was the family system that existed in the American colonies at the beginning of the settlement, and for many years after. The guild system was not adopted in America because it was going out of existence on the Continent.

The Domestic Period. By the middle of the eighteenth century the textile industry began to break away from the guilds and spread from cities to the rural districts. The work was still carried on in the master’s house, although he had lost the economic independence that he had under the old guild system where he acted both as merchant and manufacturer. He now received his raw material from the merchant and disposed of the finished goods to a middleman, who looked after the demands of the market.

The Factory System. The domestic period was in turn crowded out of existence by the factory system. A factory is a place where goods are produced by power for commercial use. The factory system first came into prominence after the invention of the steam engine. No record has been found showing its existence prior to this invention.

English weavers and spinners became very skilful and invented different mechanical aids for the production of yarn and cloth. These mechanical aids not only enabled one man to do twenty men’s work, but further utilization was made of water and steam power in place of manual labor. Then began the organization of the industry on a truly gigantic scale, combining capital and machinery and resulting in what is known as the factory system.

Previous to the development of the factory system there was no reason why any industry should be centered in one particular district. Upon the utilization of steam power the textile industry became subdivided into a number of industries, each one becoming to a great extent localized in convenient and suitable portions of the country. Thus in Bradford the wool of Yorkshire (England) meets the coal of Yorkshire and makes Bradford the great woolen and worsted center of the world. The same thing took place in Manchester, where the cotton of America meets the coal of England under satisfactory climatic conditions, and around Manchester is the greatest cotton manufacturing of the world.

The same is true in America. Lawrence became a large worsted center on account of the great fall of water and the use of the river to deposit wool washings. Lowell, Fall River, and New Bedford became large cotton centers for similar reasons.

History of Manufacturing

SPINNING WHORL
One of the earliest devices used for spinning

Spinning. Spinning and weaving are two of the earliest arts practised by man. Yarn for the making of cloth was spun in the earliest times by the use of the distaff and spindle. The spindle was a round stick of wood a foot or less in length, tapering at each end. A ring of stone or clay was placed on the spindle to give it steadiness and momentum when it revolved. At the top of the spindle was a slit or notch in which the yarn was caught. The distaff was a larger, stouter stick, around one end of which the material to be spun was wound in a loose ball. The spinner fixed the end of the distaff under her left arm so that the coil of material was in a convenient position for drawing out to form the yarn. The end of the yarn, after being prepared, was inserted in the notch, and the spindle was set in motion by rolling it with the right hand against the leg. Then the spinner drew from the distaff an additional amount of fiber, which was formed by the right hand into uniform strands. After the yarn was twisted, it was released from the notch and wound around the lower part of the spindle.

In order to spin yarn by the primitive spinner, it was necessary for the fiber to have sufficient length to enable it to be manipulated, drawn over, and twisted by the fingers. It is noted that the yarns for the gossamer-like Dacca muslins of India were so fine that one pound of cotton was spun into a thread 253 miles long. This was accomplished with the aid of a bamboo spindle not much bigger than a darning needle, which was lightly weighted with a pellet of clay. Since such a slender thread could not support even the weight of so slight a spindle, the apparatus was rotated upon a piece of hollow shell. It thus appears that the primitive spinners with distaff and spindle had nothing to learn in point of fineness from even the most advanced methods of spinning by machinery.

HAND SPINNING
From a Fourteenth Century MS. in the British Museum

Certain rude forms of the spinning wheel seem to have been known from time immemorial. The use of the wheel in Europe cannot, however, be dated back earlier than the fifteenth century. In the primitive wheel the spindle, having a groove worked in its whorl, was mounted horizontally in a framework fixed to the end of a bench. A band passed around the whorl and was carried around a large wheel fixed farther back on the bench, and this wheel, being turned by the hand of the spinner, gave a rapid rotation to the spindle.

AN ANCIENT LOOM
From an Egyptian Monument

The fibers to be spun were first combed out by means of carding boards—an implement of unknown antiquity, consisting of two boards with wire teeth set in them at a uniform angle. The fiber to be carded was thinly spread upon one of the boards, and then the other was pushed backward and forward across it, the teeth of the two overlapping at opposite angles, until the fibers were combed out and laid straight in parallel lines. The fibers were then scraped off the boards in rollers or “cardings” about twelve inches long and three-quarters of an inch in diameter. An end of the carding was then attached to the spindle and the wheel set in motion. The carding itself was held in the hand of the spinner and gradually drawn out and twisted by the rotation of the spindle. As soon as a sufficient length had been attenuated and twisted to the required fineness, the thread so produced was held at right angles to the spindle and allowed to wind up on it. But for fine spinning two operations of the wheel were generally necessary. By the first spinning the fibers were drawn out and slightly attenuated into what was called a roving, and by the second spinning the roving itself passed through a similar cycle of operations to bring it to the required degree of attenuation and twist.

Many improvements in the primitive wheel were introduced from time to time. In its later developments two spindles were employed, the spinner being thus enabled to manipulate two threads at once, one in each hand. This was the latest form of the spinning-wheel, and it survived until it was superseded in the eighteenth century by the great series of inventions which inaugurated the industrial revolution and led in the nineteenth century to the introduction of the factory system.

EARLIER SPINNING AND WEAVING
From a Fifteenth Century MS. in the British Museum

Weaving. When or where man first began to weave cloth is not known, nor is it known whether this art sprang from one common center or was invented by many who dwelt in different parts of the world. There is such a sameness in the early devices for spinning and weaving that among some men of science it is thought that the art must have come from a common center. Fabrics were made on the farms two or three hundred years ago in the following manner: the men of the household raised the flocks, while the women spun the yarn and wove the fabrics. In this way the industry prospered, giving occupation and income to thousands of the agricultural class. You might say that in England fabrics were a by-product of agriculture. As time went on, farmers of certain sections of England became more expert in the art, and the weaving became separated from the spinning. The weavers became clustered in certain towns on account of the higher skill required for the finer fabrics. The rough work of farming made the hands of the weaver less skilful. This, coupled with the fact that the looms became more complicated with improvements, called for a more experienced man. Great inventions brought about a more rapid development of the factory.

Richard Arkwright, who has been called the “father of the factory system,” built the first cotton mill in the world in Nottingham in 1769. The wheels were turned by horses. In 1771 Arkwright erected at Crawford a new mill which was turned by water power and supplied with machinery to accomplish the whole operation of cotton spinning in one mill, the first machine receiving the cotton as it came from the bale and the last winding the cotton yarn upon the bobbins. Children were employed in this mill, as they were found to be more dexterous in tying the broken ends. As the result of this great invention, factories sprang up everywhere in England, changing the country scene into a collection of factories, with tall chimneys, brick buildings, and streets.

From 1730 to the middle of the nineteenth century the development of inventions was rapid:

1730—First cotton yarn spun in England by machinery by Wyatt.

1733—English patent granted John Kay for the invention of the fly shuttle.

1738—Patent granted Lewis Paul for the spinning machinery supposed to have been invented by Wyatt.

1742—First mill for spinning cotton built at Birmingham; moved by asses; but not successful.

1748—Patent on a cylinder card as first used by hand, granted Lewis Paul.

1750—Fly shuttle in general use in England.

1756—Cotton velvets and quiltings first made in England.

1760—Stock cards first used for cotton by J. Hargreave. Drop box invented by Kay.

1762-67—Spinning-jenny invented by Hargreave.

1769—Arkwright obtains his first patent on spinning.

1774—Bill passed in England to prevent the export of cotton machinery.

1775—Second patent of Arkwright on carding, drawing, and spinning.

1779—Mule spinning invented by Crompton. Peele’s patent on carding, roving, and spinning.

1782—Date of Watt’s patent for the steam-engine.

1783—Bounty granted in England for the export of certain cotton goods.

1785—Power loom invented by Cartwright. Cylinder printing invented by Bell. A warp stop-motion described in Cartwright’s patent.

1788—First cotton factory built in the United States, at Beverly. 1789—Sea Island cotton first planted in the United States. Samuel Slater starts cotton machinery in New York.

1790—First cotton factory built in Rhode Island by Slater.

1792—First American loom patent granted to Kirk and Leslie.

1794—Cotton-gin patented by Eli Whitney.

1801—Date given for invention of the Jacquard machine in France.

1803—Dressing machine and warper invented in England by Radcliffe, Ross, and Johnson.

1804—First cotton mill built in New Hampshire, at New Ipswich.

1805—Power loom successfully introduced in England after many failures.

1806—First cotton mill built in Connecticut, at Pomfret.

1809—First cotton mill built in Maine, at Brunswick.

1812—First cotton mill built at Fall River.

1814—Cotton opener with lap attachment invented in England by Creighton.

1815—Power loom introduced into the United States at Waltham.

1816—First loom temple of Ira Draper patented in the United States.

1818—Machinery for preparing sewing cotton invented in England by Holt.

1822—First cotton factory erected at Lowell.

1823—Differential motion for roving frames patented by Arnold. First export of raw cotton from Egypt to England.

1824—Tube frame or speeder patented by Danforth.

1825—Self-acting mule patented in England by Roberts.

1828—Ring spinning patented by John Thorpe. Cap spinning patented by Danforth.

1829—Revolving loom temple improvements patented by Ira Draper.

1832—Stop-motion for drawing frames invented by Bachelder. 1833—Ring spinning frames first built by William Mason.

1834—Weft fork patented in England by Ramsbottom and Hope. Shuttle-changing loom by Reid and Johnson.

1840—Automatic loom led off. Important temple improvement.

1849—First cotton mill erected in Lawrence.

Through this great change from hand to power work, thousands were thrown out of employment in the great textile centers, and much suffering occurred, which led to the smashing of machinery.

Knitting Machinery. Like many other industries, the hosiery trade owes its first and most important impetus to the genius of one who was not connected with the business in a practical way. This event took place when the Rev. William Lee invented the hand frame. He was married early in life, and his wife was obliged, on account of the slender family finances, to knit continuously at home. Struck with the monotony and toil involved in knitting with the hand pins, Mr. Lee evolved a means of knitting by machinery and brought out the hand stocking-frame, which to-day preserves its chief features very much as Lee invented them. When knitting by hand, one must form each loop separately, and loop follows loop laboriously until the width of fabric has been worked. Lee contrived to make the whole row of loops across the width simultaneously by arranging a needle for each loop and placing in connection with each needle a sinker and other apparatus for completing the formation of the loop. First of all, the yarn is laid over the needles, which are arranged horizontally, and the sinkers come down on the yarn and cause it to form partial loops between the needles. The old loops of the previous course are now brought forward and the new yarn is drawn through them in the same way as is done on the hand pins. Thus the new yarn of one course is drawn through the loops of the preceding one, and so the whole fabric is built up. This frame of Lee’s held its own in the great centers until some thirty years ago.

Lee’s hand frame gave way to what is termed the jack and sinker rotary frame, which was like the hand frame in its chief features, but with the advantage that all the motions were brought about by power. The various operations were put under the control of a set of cams[20] and made to perform their movements in exactly the same way as in the case of the hand frame. In the first power machine for knitting, the machine builder used the cam mechanism, and in examining the latest machines we find that he has persisted in this course throughout. The cam movement is characterized by great smoothness of working and absence of vibration, which is very necessary in a machine of the delicate adjustment of the knitting frame. It is usual to connect some of the parts with two of these cams, one of which controls the up-and-down motion and the other the out-and-in movement. When these two cams work in conjunction, we obtain all the possible degrees of harmonic motion. From the jack and sinker frame the next really important step was taken when William Cotton brought out his famous Cotton’s patent frame. In his machine the frame was in a sense turned on its back, for the parts, such as the needles, which had been horizontal, were made vertical and vice versa. He also reduced the number of the moving parts and perfected the cam arrangement. Another very important development of the machine was when it was built in a number of divisions so as to work a number of articles side by side at one time. At present there are knitting frames which can make twelve full-sized garments at one and the same time.

Another important improvement was effected when the fashioning apparatus was supplied to the machine, by means of which the garments could be shaped according to the human form by increasing or decreasing the width as desired.

History of Lace

Lace, like porcelain, stained glass, and other artistic things, has always been an object of interest to all classes. Special patterns of laces date from the sixteenth century. The church and court have always encouraged its production. While the early lace work was similar to weaving, in that the patterns were stiff and geometrical, sometimes the patterns were cut out of linen, but with the development of the renaissance of art, free flowing patterns and figures were introduced and worked in. The lace industry first took root in Flanders and Venice, where it became an important branch of industry. Active intercourse was maintained between the two countries, so that intense rivalry existed. France and England were not behind Venice and Flanders in making lace. The king of France, Henry III, encouraged lace work by appointing a Venetian to be pattern maker for varieties of linen needlework and lace for his court. Later, official aid and patronage were given to this art by Louis V. Through the influence of these two men the demand for lace was increased to such an extent that it became very popular.

Under the impulse of fashion and luxury, lace has received the stamp of the special style of each country. Italy furnishes its Point of Venice; Belgium its Brussels and Mechlin; France its Valenciennes, etc.

Very little is known of the early lace manufacturers of Holland. The laces of Holland were overshadowed by the richer products of their Flemish neighbors. The Dutch, however, had one advantage over other nations in their Haarlem thread, once considered the best thread in the world for lace.

In Switzerland, the center of the lace trade, the work was carried on to such a degree of perfection as to rival the laces of Flanders, not alone in beauty, but also in quality.

Attempts have been made at various times, both during this century and the last, to assist the peasantry of Ireland by instruction in lace-making. The finest patterns of old lace were procured, and the Irish girls showed great skill in copying them. Later a better style of work, needlepoint, was modeled after old Venetian lace—the exquisite productions for which Americans pay fabulous prices at the present day.

The lace manufacturers of Europe experienced a serious set-back in 1818 when bobbinet was first made in France. Fashion, always fleeting, adopted the new material. Manufacturers were forced to lower prices, but happily a new channel for export was opened in the United States.

The machine-made productions of the Nottingham looms, as triumphs of mechanical ingenuity, deserve great praise.

The first idea of the lace-making machine is attributed to a common factory hand, Hammond Lindy, who, when examining the lace on his wife’s cap, conceived a plan by which he could copy it on his loom. Improvements followed, and in 1810 a fairly good net was produced.

Perhaps the most delicate textile machine known, in its sensitiveness to heat and cold, is a lace machine. A machine can be made to run in any climate, provided it is so installed as to be protected from either extreme of temperature.

The various substitutes for hand-made lace are legion; for what the inventor cannot achieve in one way he can in another. There remains however the fact that the productions of machinery can never possess the charm of the real hand-made work. Machine-made lace is stiffer than hand-made lace.

[19] The testing apparatus may be obtained from any textile manufacturing company, such as Alfred Suter, 487 Broadway, New York.

[20] A cam is a device consisting of a special shaped wheel attached to a machine to give a special kind of motion or movement.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page