CORRELATION.

Previous

Having treated at some length of the three factors involved in telephony,—namely, electricity, magnetism, and sound,—it remains to follow up the various steps that have led to the actual transmission of musical sounds and speech over an ordinary electric circuit.

It is stated upon p. 31, that, when a current of electricity is passed through a coil of wire that surrounds a rod of soft iron, the latter is made a temporary magnet: it loses its magnetic property the instant that the current ceases. If the rod be of considerable size, say a foot or more in length, and half an inch or more in diameter, and the current be strong enough to make a powerful magnet of it, whenever the current from the battery is broken, the bar may be heard to give out a single click. This will happen as often as the current is broken. This is occasioned by a molecular movement which results in a change of length of the bar. When it is made a magnet, it elongates about 1/25000 of its length; and, when it loses its magnetism, it suddenly regains its original length; and this change is accompanied with the sound. This sound was first noticed by Prof. C. G. Page of Salem, Mass., in 1837. If some means be devised for breaking such a circuit more than fifteen or sixteen times a second, we shall have a continuous sound with a pitch depending upon the number of clicks per second. Such a device was first invented by the same man, and was accomplished by fixing the armature of an electro-magnet to a spring which was in the circuit when the spring was pressing against a metallic knob, at which time the current made the circuit in the coil of the electro-magnet. The magnet attracting the armature away from the button broke the circuit, which of course destroyed the magnetism of the magnet, and allowed the spring to fly back against the button, to complete the circuit and reproduce the same series of changes. The rapidity with which the current may be broken in this way is only limited by the strength of both spring and current. The greater the tension of the spring with a given current, the greater number of vibrations will it make.

FIG. 11. FIG. 11.

Suppose such an intermittent current to pass through the coil surrounding the soft iron rod, 256 times per second; then the rod would evidently give 256 clicks per second, which would have the pitch of C. When these clicks are produced in the rod hold in the hand, the sound is hardly perceptible, being like that of a sounding tuning-fork when held thus. In order to strengthen it, it is necessary to place it on some resonant surface. It is customary to mount it upon an oblong box with one or two holes in its upper surface, inasmuch as such a form is found to give a louder response than any other, and is the shape usually given to Æolian harps. The accompanying cut shows the combination of battery B, the circuit-breaker, and the rod mounted upon the box. The wire W may evidently be of any length, the magnetized rod and box responding to the number of vibrations of the spring S, how long soever the circuit may be.

HELMHOLTZ' ELECTRIC INTERRUPTOR.

In some of Helmholtz' experiments, it was essential to maintain the vibrations of a tuning-fork for a considerable time. He effected this by placing a short electro-magnet between the prongs of the fork, and affixing a platinum point at the end of one prong in such a manner, that, as the prong descended in its vibration, the platinum point dipped into a small cup of mercury that completed the circuit. When the prong receded, it was of course withdrawn from the mercury, and the current was broken. As it is not possible for a tuning-fork to vibrate in more than one period, such an arrangement would evidently make and break the current as many times per second as the fork vibrated. When, therefore, such an interruptor is inserted in the circuit with the click-rod on its resonant box, the latter must give out just such a sound as the fork is giving. With such a device, it is possible to reproduce at almost any distance in a telegraphic circuit, a sound of a given pitch. It is therefore a true telephone.

REISS' TELEPHONE.

The ease with which membranes are thrown into vibrations corresponding in period to that of the sounding body has already been alluded to on p. 80; and several attempts have been made, at different times, to make membranes available in telephony. The first of these attempts was made by Philip Reiss of Friedrichsdorf, Germany, in 1861.

His apparatus consisted of a hollow box, with two apertures: one in front, in which was inserted a short tube for producing the sound in, and indicated by the arrow in the cut, Fig. 12; the other on the top. This was covered with the membrane m,—a piece of bladder stretched tight over it. Upon the middle of the membrane, a thin piece of platinum was glued; and this piece of platinum was connected by a wire to a screw-cup from which another wire went to a battery.

FIG. 12. FIG. 12.

A platinum finger, S, rested upon the strip of platinum, but was made fast at one end to the screw-cup that connected with the other wire from the battery. Now, when a sound is made in the box, the membrane is made to vibrate powerfully: this makes the platinum strip to strike as often upon the platinum finger, and as often to bound away from it, thus making and breaking the current the same number of times per second. If, then, a person sings into this box while it is in circuit with the afore-mentioned click-rod and box, the latter will evidently change its pitch as often as it is changed by the voice. In this apparatus we have a telephone with which a melody may be reproduced at a distance with distinctness. But the sounds are not loud, and they have a tin-trumpet quality. If one reflects upon the possibilities of such a mechanism, and upon the conditions necessary to produce a sound of any given quality, as that of the voice or of a musical instrument as described in preceding pages, he will understand that it can reproduce only pitch. It might here be inferred that something more than a single pitch is transmitted if the sound is like that of a tin trumpet as stated: but the reason of this is that, whenever a current is passing between two surfaces that can move only slightly on each other, there is always an irregularity in the conduction, so as to produce a kind of scratching sound; and it is this, combined with the other, the true pitch, that gives the character to the sound of this instrument.

Dr. Wright found that a sound of considerable intensity could be obtained by passing the interrupted current through the primary wire of a small induction coil, and placing a conductor made of two sheets of silvered paper placed back to back in the secondary circuit. The silvered paper becomes rapidly charged and discharged, making a sound that can be heard over a large hall, and having the same pitch as the sending instrument.

GRAY'S TELEPHONES.

In 1873 Mr. Elisha Gray of Chicago discovered that if an induction coil be made to operate by the current from any automatic circuit-breaker, and one of the wires from the secondary circuit be held in the hand while the dry finger of the same hand is rubbed upon a sonorous metallic plate, the other wire being in connection with the plate, a musical sound would be given outby the plate, appearing to come from the point of contact of the finger with the plate. He therefore contrived a musical instrument with a range of two octaves, in which the reeds were made to vibrate by electro magnets, the current entering any one by depressing the appropriate key. This circuit is sent through the primary wire of an induction coil while one of the terminals of the secondary coil is connected with the thin sheet metal that forms one head of a shallow wooden drum about eight inches in diameter, which is so fixed as to be rotated like a pulley. The other terminal is held in the hand while one finger of the same hand rests upon the metallic surface. While the drum is turned with the other hand, the sounds given out have considerable intensity. The faster the drum is turned, the louder do the sounds become, though the pitch remains the same.

In this case, as in the case mentioned on p. 105, we have an electric current passing between two surfaces that are moving upon each other; the contact not being uniform, the current is varying as well as intermittent.

Mr. Gray has also invented a musical telephone by means of which many musical sounds may be simultaneously transmitted and reproduced. The actual mechanism used is quite complex, and requires considerable familiarity with electrical science in order to understand it; but the fundamental principle involved is not difficult to one who has comprehended the preceding descriptions.

Suppose that we have a series of four steel reeds, each one fixed at one end to one pole of a short electro-magnet, while the other end is left free to vibrate over the other pole of the magnet and not quite touching it. Each of the reeds is to be tuned to a different pitch, say the 1, 3, 5, and 8 of the scale. These electro-magnets with their attached vibrators are to be attached each to a resonant box (see p. 93), which can respond to that particular number of vibrations per second. This is the receiving instrument. The sender consists of a like set of reeds tuned to the same pitch, which can be made to vibrate at will by pressing a key which sends the current of electricity through its electro-magnet, which makes and breaks the current. Imagine one of these keys to be pressed down so as to make the circuit complete: the sending instrument then has one of its reeds, let it be the 1 of the scale, set in vibration; the intermittent current traverses the whole line, going through all four of the receiving instruments. Now, we know from the study of the action of sounding bodies, that only one of the four receivers is competent to vibrate in consonance with this tone, and this one will respond; that is, the vibrations are truly sympathetic vibrations. If, instead of making the 1 of the scale in the sending-instrument, the 3 had been made, the current would have gone through all of the receiving instruments just the same as before, but only one of them could take up that vibratory movement: three of them would remain at rest, the 3 responding loudly. In like manner, any number of vibrating reeds in the sending instrument can make a corresponding number of reeds in the receiving instrument to vibrate, provided the latter be exactly tuned with the former. Each transmitter is connected with but a part of the battery, so that several tones may be transmitted at the same time. If the performer plays a piece of music in its various parts, every part will be reproduced: thus we have a compound or multiple telephone. This instrument has been used during the past winter to give concerts in cities when the performer was in a distant place.

It has also been used as a multiple telegraph; as many as eight operators sending messages simultaneously over the same wire,—four in each direction,—without the slightest interference.

BELL'S TELEPHONE.

Prof. A. Graham Bell of Boston independently discovered the same means for producing multiple effects over the same wire; but it appears he did not practically work it out as completely as did Mr. Gray. But while the latter was chiefly employed in perfecting the method as a telegraphic system, Prof. Bell had set before himself the more difficult problem of transmitting speech. This he has actually accomplished, as we have so often been reminded during the past year.

Thoroughly conversant with the acoustic researches of Helmholtz, and keeping in mind the complex form of the air vibrations produced by the human voice, he attempted to make these vibrations produce corresponding pulsations in an electric current in the manner analogous to the electric interrupter.

Observing that membranes when properly stretched can vibrate to any kind of a sound, he sought to utilize them for this purpose. So did Reiss; but Reiss inserted the vibrating membrane into the circuit, and it was quite evident that such a plan would not answer, therefore the current must not be broken; but could an electric current be interfered with without breaking the connections?

The well-known re-actions of magnets upon electrical currents, first noted by Oersted, and fully developed by Faraday, gave the clew to the solution. A piece of iron should be made to vibrate by means of sound vibrations, so as to affect an electro-magnet and induce corresponding electrical pulsations.

FIRST FORM OF SPEAKING-TELEPHONE.

A membrane of gold-beater's skin was tightly stretched over the end of a speaking-tube or funnel; on the middle of this membrane a piece of iron, N S, Fig. 13, was glued. In front of this piece of iron an electro-magnet M is so situated that its poles are opposite to it, but not quite touching it. One of the terminal wires of the electro-magnet goes to the battery B; the other goes to the receiving instrument R, which consists of a tubular electro-magnet, the coil being enclosed in a short tube of soft iron; the wire thence goes to the plate E´, which is sunk in the earth. On the top of R, at P, is a rather loose, thin disk of iron, which acts as an armature to the electro-magnet below it.

FIG. 13. FIG. 13.

Supposing that all the parts are thus properly connected, the current of electricity from the battery makes both M and R magnetic; the electro-magnet M will inductively make the piece of iron N S, a magnet, with its poles unlike those of the inducing electro-magnet; and the two will mutually attract each other. If now this piece of iron N S be made to move toward M, a current of electricity will be induced in the coils, which will traverse the whole circuit. This induced electricity will consist of a single wave or pulse, and its force will depend upon the velocity of the approach of N S to M. A like pulse of electricity will be induced in the coils when N S is made to move away from M; but this current will move through the circuit in the opposite direction, so that whether the pulsation goes from M to R, or from R to M, depends simply upon the direction of the motion of N S.

The electricity thus generated in the wire by such vibratory movements varies in strength proportional to the movement of the armature; therefore the line wire between two places will be filled with electrical pulsation exactly like the aËrial pulsations in structure. Fig. 10, p. 98, may be used to illustrate the condition of the wire through which the currents pass. The dark part may represent the strongest part of the wave, while the lighter part would show the weaker part of the wave. The chief difference would be, that electricity travels so fast, that what is there represented as one wave in air with a length of two feet would, in an electric wave, be more than fifty miles long.

These induced electric currents are but very transient (see p. 31); and their effect upon the receiver R is to either increase or decrease the power of the magnet there, as they are in one direction or the other, and consequently to vary the attractive power exercised upon the iron plate armature.

Let a simple sound be now made in the tube, consisting of 256 vibrations per second: the membrane carrying the iron will vibrate as many times, and so many pulses of induced electricity will be imposed upon the constant current, which will each act upon the receiver, and cause so many vibrations of the armature upon it; and an ear held at P will hear the sound with the same pitch as that at the sending instrument. If two or more sound-waves act simultaneously upon the membrane, its motions must correspond with such combined motions; that is, its motions will be the resultant of all the sound-waves, and the corresponding pulsations in the current must reproduce at R the same effect. Now, when a person speaks in the tube, the membrane is thrown into vibrations more complex in structure than those just mentioned, differing only in number and intensity. The magnet will cause responses from even the minutest motion; and therefore an ear at R will hear what is said at the tube. This was the instrument exhibited at the Centennial Exposition at Philadelphia, and concerning which Sir William Thompson said on his return to England, "This is the greatest by far of all the marvels of the electric telegraph."

The popular impression has been, concerning the telephone, that the sound was in some way conveyed over the wire. It will be obvious to every one who may read this, that such is very far from being the case. The fact is, it is a beautiful example of the convertibility of forces from one form to another. There is first the initial vibratory mechanical motion of the air, which is imparted to the membrane carrying the iron. This motion is converted into electricity in the coil of wire surrounding the electro-magnet, and at the receiving-end is first effective as magnetism, which is again converted into vibratory motion of the iron armature, which motion is imparted to the air, and so becomes again a sound-wave in air like the original one.

This was the first speaking-telephone that was ever constructed, so far as the writer is aware, but it was not a practicable instrument. Many sounds were not reproduced at all, and, according to the report of the judges at the Philadelphia Exposition, one needed to shout himself hoarse in order that he might be heard at all.

THE AUTHOR'S TELEPHONE.

For several years past my regularly recurring duties have taken me over the various subjects treated of in this book, and each one has been extensively illustrated in an experimental way, and a considerable number of new pieces of apparatus and new experiments to exhibit their phenomena have been devised by me.

Among these, I would mention the following:

1. Measurement of the elongation of a magnetized bar.

2. A magneto-electric telegraph.

3. An electro-magnetic instrument for demonstrating the rotation of the earth.

4. The permanent magnetism of the magnetic phantom.

5. The convertibility of sound into electricity.

6. The induction of a vibrating magnet upon an electric circuit.

7. The origination of electric waves in a circuit by a sounding magnet.

8. The discovery of the action of the air in a sounding organ-pipe.

9. Two or three methods for studying the vibrations of membranes.

10. Lissajous forks for enlarged projections of sound vibrations.

As soon, therefore, as I gave attention to the subject of telephony, I was able, with a few preliminary experiments, to determine the proper conditions for the transmission of speech in an electric circuit; and, without the slightest knowledge of the mechanism which Prof. Bell had used, I devised the following arrangement for a speaking-telephone.

FIG. 14.—MY FIRST SPEAKING TELEPHONE. FIG. 14.—MY FIRST SPEAKING TELEPHONE.
FIG. 14.—END VIEW. FIG. 14.—END VIEW.

My first speaking-telephone, Fig. 14, consisted of a magnet made out of half-inch round steel bent into a U form, having the poles about two inches apart. Over these were slipped two bobbins taken from an old telegraph register, and were already fitted to a half-inch core. These bobbins, two inches and a half long, were wound with cotton-covered copper wire, No. 23, each bobbin containing about 150 feet. This magnet, with the bobbins slipped upon its poles, was made fast to a post two or three inches high. The steel was made as strongly magnetic as was possible, and would hold up three or four times its own weight. In front of the poles, a sheet of thin steel, one-fiftieth of an inch thick, was made fast to an upright board having a hole cut through it three and a half inches in diameter (Fig. 14, end view); the plate was screwed tightly to this board, so as to cover the hole; and the middle of the hole was at the same height as the two poles of the magnet. The wires from the two bobbins were connected, as if to make an electro-magnet; while the two free terminals were to be connected with the line-wires. Of course there were two of these instruments, both alike; and talking and singing were reproduced with these.

A very great number of experiments have been made to determine the best conditions for each of the essential parts,—the size and strength of the magnet, the size of the bobbins, as to length and fineness of wire, the best thickness for the plate for absorbing the vibrations, &c.; and it is really surprising, how little is the difference between very wide limits. The following directions will enable any one to construct a speaking-telephone with which good results may be obtained. The specifications will be for only one instrument; though of course two instruments made alike will be necessary for any purposes of speaking or other signals.

FIG. 15. FIG. 15.
FIG. 16. FIG. 16.

Procure three common horse-shoe magnets about six inches long, all of the same size; these retail in the market at about a dollar apiece. They should be strong enough to hold up several times their own weight each. Next, have turned out of good hard wood,—such as maple or boxwood,—two spools not over half an inch long and an inch and a half broad, the sides cut square both inside and out, as shown at S, Fig. 15; a hole the third of an inch in diameter is to be made through the spool. Into this hole is to be fitted a short rod of soft iron, I, about an inch long, which should be a little rounded at the outer end. The bobbins may be wound with as much insulated copper wire as they will hold. The wire may be from the one-fortieth to the one-fiftieth of an inch in diameter, as is most convenient to obtain, the latter size being preferable. The resistance of such bobbins will probably be from two to three ohms each. The soft-iron core I must project backwards far enough to be clamped between the two outer magnets 1 and 3, while the inner one, 2, is drawn back. When the bobbins are in their places, and are clamped between the upper and lower magnets, they will stand as shown in Fig. 16, where the view is from above; the magnets being buttoned down to the block they rest on (see Fig. 17), which at the same time holds the soft-iron rods with the bobbins upon them. The wires on these coils must be connected in the same way they would be in order to make opposite poles of their outer ends, if a current of electricity were to be sent through the coils. An upright board B (Fig. 17) six or seven inches square, having a round hole four inches in diameter cut out from the middle of it, must be fixed near the end of the base-board; and over this hole is to be screwed tightly a piece of thin sheet iron or steel; it may be from the one-twentieth to the one-fiftieth of an inch in thickness. It does not seem to make much difference about the thickness of this plate. I have generally got the best results from a plate one-fiftieth of an inch thick. The upright board carrying this plate must be very rigid, otherwise the plate will be kept tight to the magnets all the time; and one of the conditions of success in working is, that this plate shall be as close as possible to the magnet-ends, but not to touch: therefore fix the board tight, and adjust the magnets by means of the button shown on top of them in the perspective figure.

FIG. 17. FIG. 17.

The sounds to be transmitted, of whatever sort they may be, are to be made on the side P, Fig. 16; and likewise, when the instrument is used as a receiver, the ear is to be applied at the same place. A tube about two inches in diameter may be made fast to the front of the board, in a line with the centre of the plate; this will aid somewhat in hearing. When two or three persons are to sing, it will be best to have each one supplied with a tube to sing through; one end of the tube to be placed close to the front of the plate. The sound of musical instruments, such as the flute and the cornet, will be reproduced much louder, if the front of such instrument be allowed to rest upon the rim of the hole in the board, just in front of the plate.

It is noticeable that low talking can be heard more distinctly than when a great effort is made; but the sounds though distinct are not strong at any time, and other sounds seriously interfere with hearing. It is probable that some way will hereafter be devised for increasing the usefulness of the invention by increasing the volume of sound. On account of the weakness of the sound it becomes necessary to provide a call to attract the attention of one in the room. This may be accomplished by having a small electric bell worked by a one or two cell battery. Another way which I have found to be quite as efficient is to have a rod of iron or steel about a foot long, and half an inch in diameter, bent into a U form. When this is held by the bend, and struck upon the floor or with a stick, it vibrates powerfully; and if one of its prongs be permitted to strike against the plate P, Fig. 16, the sound will be reproduced loud enough to hear over a large room. I have never failed to call with this when any one was in the same room with the telephone.

Wherever a telephone circuit has been made upon telegraph poles having other wires upon them, the inductive actions of the currents upon the other wires has been found to seriously interfere with the action of the telephones, inasmuch as the latter reproduce every other message. One skilled in reading by sound in the ordinary way can read through the telephone what message is travelling in a neighboring wire. Messages may be thus read upon wires as far distant as ten feet from the telephone circuit. It there fore seems to be essential that each telephone circuit should be isolated from every other one, else there can be no secrecy in messages.

A very interesting effect was noticed one night when there was a bright aurora display. There was a continuous current through the wires, accompanied with sounds which increased in intensity as the bright streamers passed by. This will probably lead to some important results in science.

In all probability the telephone is as much in its infancy as was ordinary telegraphy in 1840. Since that time the sciences of electricity and magnetism have had the most of their growth, and telegraphy has kept pace with the advancing knowledge until its commercial importance is second to no other agency. Very many important principles that are invaluable in telegraphy to-day were wholly unknown in 1840; but it may here be noted that in the telephone, as it now is, there is not a single principle that was not well enough known in 1840. This will be apparent to one who follows out the phenomena from the sender to the receiver. First, the sound in air causing a corresponding movement in a solid body, iron. This iron, acting inductively upon a magnet, originates magneto-electric currents in a wire helix about it; and these travel to another helix, and, re-acting upon the magnet in it, have electro-magnetic effects, and increase and decrease the strength of the magnet; and this variable magnetism affects the plate of iron in front of that magnet, and makes it to vibrate in a corresponding manner, and thus to restore to the air in one place the vibrations absorbed from the air in another place. To some it may seem strange that a simple thing as the telephone is, involving nothing but principles familiar enough to every one interested in physical science, should have waited nearly forty years to be invented. The reason is probably this: Men of science, as a rule, do not feel called upon to apply the principles which they may discover. They are content to be discovering, not inventing. Now, the schools of the country ought to make the youth quite familiar with the general principles of physical science, that the inventive ones—and there are many such—may apply them intelligently. Mechanism is all that stands between us and aËrial navigation; all that is necessary to reproduce human speech in writing; and all that is needed to realize completely the prophetic picture of the "Graphic," of the orator who shall at the same instant address an audience in every city in the world.


Transcriber's Notes:

Obvious punctuation errors repaired.

The remaining corrections made are indicated by dotted lines under the corrections. Scroll the mouse over the word and the original text will appear.





<
                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page