Antecedents of Electricity—Nature of what is transformed—Series of transformations for the production of light—Positive and negative Electricity—Positive and negative twists—Rotations about a wire—Rotation of an arc—Ether a non-conductor—Electro-magnetic waves—Induction and inductive action—Ether stress and atomic position—Nature of an electric current—Electricity a condition, not an entity. So far as we have knowledge to-day, the only factors we have to consider in explaining physical phenomena are: (1) Ordinary matter, such as constitutes the substance of the earth, and the heavenly bodies; (2) the ether, which is omnipresent; and (3) the various forms of motion, which are mutually transformable in matter, and some of which, but not all, are transformable into ether forms. For instance, the translatory motion of a mass of matter can be imparted to another mass by simple impact, but translatory motion cannot be imparted to the ether, and, for that reason, a body moving in it is It is conceded that it is not proper to speak of the wave-motion in the ether as heat; it is also admitted that the ether is not heated by the presence of the wave—or, in other words, the temperature of the ether is absolute zero. Matter only can be heated. But the ether waves can heat other matter they may fall on; so there are three steps in the process and two transformations—(1) vibrating matter; (2) waves in the ether; (3) vibration in other matter. Energy has been transferred indirectly. What is important to bear in mind is, that when a form of energy in matter is transformed in any manner so as to lose its characteristics, it is not proper to call When we would give a complete explanation of the phenomena exhibited by, say, a heated body, we need to inquire as to the antecedents of the manifestation, and also its consequents. Where and how did it get its heat? Where and how did it lose it? When we know every step of those processes, we know all there is to learn about them. Let us undertake the same thing for some electrical phenomena. First, under what circumstances do electrical phenomena arise? (1) Mechanical, as when two different kinds of matter are subject to friction. (2) Thermal, as when two substances in molecular contact are heated at the junction. (3) Magnetic, as when any conductor is in a changing magnetic field. (4) Chemical, as when a metal is being dissolved in any solution. (5) Physiological, as when a muscle contracts. Each of these has several varieties, and changes may be rung on combinations of them, as when mechanical and magnetic conditions interact. (1) In the first case, ordinary mechanical or translational energy is spent as friction, an amount measurable in foot-pounds, and the factors we (2) When heat is the antecedent of electricity, as in the thermo-pile, that which is turned into the pile we know to be molecular motion of a definite kind. That which comes out of it must be some equivalent (3) When a conductor is moved in a magnetic field, the energy spent is measurable in foot-pounds, as before, a pressure into a distance. The energy appears in a new form, but the quantity of matter being unchanged, the only changeable factor is the kind of motion, and that the motion is molecular is evident, for the molecules are heated. Mechanical or mass motion is the antecedent, molecular heat motion is the consequent, and the way we know there has been some intermediate form is, that heat is not conducted at the rate which is observed in such a case. Call it by what name one will, some form of motion has been intermediate between the antecedent and the consequent, else we have some other factor of energy to reckon with than ether, matter and motion. (4) In a galvanic battery, the source of electricity is chemical action; but what is chemical action? Simply an exchange of the constituents of molecules—a change which involves exchange of energy. Molecules capable of doing chemical work are loaded with energy. The chemical products of battery action are molecules of different constitution, with smaller amounts of energy as (5) Physiological antecedents of electricity are exemplified by the structure and mode of operation of certain muscles (Fig. 9, a) in the torpedo and other electrical animals. The mechanical contraction of them results in an electrical excitation, and, if a proper circuit be provided, in an electric current. The energy of a muscle is derived from food, which is itself but a molecular compound loaded with energy of a kind available for muscular transformation. Bread-and-butter has more available energy, pound for pound, than has coal, and can be substituted for coal for running an engine. It is not used, because it costs so much more. There is nothing different, so far as the factors of energy go, between the food of an animal and the food of an engine. What becomes of the energy depends upon the kind of structure it acts on. It may be changed into translatory, and the whole body moves in one direction; or into molecular, and then appears as heat or electrical energy. If one confines his attention to the only variable factor in the energy in all these cases, and traces out in each just what happens, he will have only motions of one sort or another, at one rate or another, and there is nothing mysterious which enters into the processes. We will turn now to the mode in which electricity manifests itself, and what it can do. It may Let us suppose ourselves to be in a building in which a steam-engine is at work. There is fuel, the furnace, the boiler, the pipes, the engine with its fly-wheel turning. The fuel burns in the furnace, the water is superheated in the boiler, the steam is directed by the pipes, the piston is moved by the steam pressure, and the fly-wheel rotates Suppose once more that, across the road from an engine-house, there was another building, where all sorts of machines—lathes, planers, drills, etc.—were running, but that the source of the power for all this was out of sight, and that one could see no connection between this and the engine on the other side of the street. Would one need to suppose there was anything mysterious between the two—a force, a fluid, an immaterial something? This question is put on the supposition that one should Substitute for the furnace and boiler a galvanic battery or a dynamo; for the machines of the shop, one or more motors with suitable wire connections. When the dynamo goes the motors go; when the dynamo stops the motors stop; nothing can be seen to be turning or moving in any way between them. Is there any necessity for assuming a mysterious agency, or a force of a nature different from the visible ones at the two ends of the line? Is it not certain that the question is, How does the motion get from one to the other, whether there be a wire or not? If there be a wire, it is plain that there is motion in it, for it is heated its whole length, and heat is known to be a mode of motion, and every molecule which is thus heated must have had some Once more: suppose we have a series of active machines. (Fig. 11.) An arc lamp, radiating light-waves, gets its energy from the wire which is heated, which in turn gets its energy from the electric current; that from a dynamo, the dynamo from a steam-engine; that from a furnace and the chemical actions going on in it. Let us call the chemical actions a, the furnace b, the engine c, the dynamo d, the electric lamp e, the ether waves f. (Fig. 12.) The product of the chemical action of the coal is molecular motion, called heat in the furnace. The product of the heat is mechanical motion in the engine. The product of the mechanical motion is electricity in the dynamo. The product of the electric current in the lamp is light-waves in the ether. No one hesitates for an instant to speak of the heat as being molecular motion, nor of the A puzzling electrical phenomenon has been what has been called its duality-states, which are spoken of as positive and negative. Thus, we speak of the positive plate of a battery and the negative pole of a dynamo; and another troublesome condition to idealize has been, how it could be that, in an electric circuit, there could be as much energy at Are there any phenomena which imply that rotation is going on in an electric conductor? There are. An electric arc, which is a current in the air, and is, therefore, less constrained than it is in a conductor, rotates. Especially marked is this when in front of the pole of a magnet; but the rotation may be noticed in an ordinary arc by looking at it with a stroboscope disk, rotated so as to make the light to the eye intermittent at the rate of four or five hundred per second. A ray of plane polarized light, parallel with a wire conveying a current, has its plane of vibration twisted to the right or left, as the current goes How can this be explained mechanically? Recall the kind of action that constitutes heat, that it is not translatory action in any degree, but vibratory, in the sense of a change of form of an elastic body, and this, too, of the atoms that make up the molecule of whatever sort. Each atom is so far independent of every other atom in the molecule that it can vibrate in this way, else it could not be heated. The greater the amplitude of vibration, the more free space to move in, and continuous contact of atoms is incompatible with the mechanics of heat. There must, therefore, be impact and freedom alternating with each other in all degrees in a heated body. If, in any way, the atoms themselves were made to rotate, their heat impacts not only would restrain the rotations, but the energy also of the rotation motion would increase the vibrations; So far, mechanical conceptions are in accordance with electrical phenomena, but there are several others yet to be noted. Electrical phenomena has been explained as molecular or atomic phenomena, and there is one more in that category which is well enough known, and which is so important and suggestive, that the wonder is its significance has not been seen by those who have sought to interpret electrical phenomena. The reference is to the fact that electricity cannot be transmitted through a vacuum. An electric arc begins to spread out as the density of the air decreases, and presently it is extinguished. An induction spark that will jump two or three feet in air cannot be made to bridge the tenth of an inch in an ordinary vacuum. A vacuum is a perfect non-conductor of electricity. Is there more than one possible interpretation to this, When heat has been transformed into ether waves, it is no longer heat, call it by what name one will. Formerly, such waves were called heat-waves; no one, properly informed, does so now. In like manner, if electrical motions or conditions in matter be transformed, no matter how, it is no longer proper to speak of such transformed motions or conditions as electricity. Thus, if electrical energy be transformed into heat, no one thinks of speaking of the latter as electrical. If the electrical energy be transformed into mechanical of any sort, no one thinks of calling the latter electrical because of its antecedent. If electrical motions be transformed into ether actions of any kind, why should we continue to speak of the transformed motions or energy as being electrical? Electricity may be the antecedent, Let us consider what is the relation between an electrified body and the ether about it. When a body is electrified, the latter at the same time creates an ether stress about it, which is called an electric field. The ether stress may be considered as a warp in the distribution of the energy about the body (Fig. 15), by the new positions given to the molecules by the process of electrification. It has been already said that the evidence from other sources is that atoms, rather than molecules, in larger masses, are what affect the ether. One is inclined to inquire for the evidence we have as to the constitution of matter or of atoms. There is Assume a straight bar electro-magnet in circuit, so that a current can be made intermittent, say, once a second. When the circuit is closed and the magnet is made, the field at once is formed and travels outwards at the rate of 186,000 miles per second. When the current stops, the field adjacent is destroyed. Another closure develops the field again, which, like the other, travels outwards; and so there may be formed a series of waves in the ether, each 186,000 miles long, with an electro-magnetic antecedent. If the circuit were closed ten times a second, the waves would be 18,600 miles long; if 186,000 times a second, they would be but one mile long. If 400 million of millions times a second, they would be but the forty-thousandth of an inch long, and would then affect the eye, and we should call them light-waves, but the latter would not differ from the first wave in any particular except in length. As it is proved that such electro-magnetic waves have all the characteristics of light, it follows that they must originate with electro-magnetic Assume that the magnet becomes smaller and smaller until it is of the dimensions of an atom, say for an approximation, the fifty-millionth of an inch. It would still have its field; it would still be elastic and capable of vibration, but at an enormously rapid rate; but its vibration would change its field in the same way, and so there would be formed The idea implies that every atom has what may be loosely called an electro-magnetic grip upon the whole of the ether, and any change in the former brings some change in the latter. Lastly, the phenomenon called induction may be mechanically conceived. It is well known that a current in a conductor makes a magnet of the wire, and gives it an electro-magnetic field, so that other magnets in its neighbourhood are twisted in a way tending to set them at right angles to the wire. Also, if another wire be adjacent to the first, an electric current having an opposite direction is induced in it. Thus: Consider a permanent magnet a (Fig. 15), free to turn on an axis in the direction of the arrow. If there be other free magnets, b and c, in line, they will assume such positions that their similar poles all point one way. Let a be twisted to a position at right angles, then b will turn, but in the opposite direction, and c in similar. That is, if a turn in the direction of the hands of a clock, b and c will turn in opposite directions. These are simply the Suppose we have a line of magnetic needles free to turn, hundreds or thousands of them, but disarranged. Let a strong magnetic field be produced at one end of the line. The field would be strongest and best conducted along the magnet line, but every magnet in the line would be compelled to rotate, and if the first were kept rotating, the rotation That which makes the magnets move is inductive magnetic ether stress, but the advancing motion represents mechanical energy of rotation, and it is this motion, with the resulting friction, which causes the heat in a conductor. What is important to note is, that the action in the ether is not electric action, but more properly the result of electro-magnetic action. Whatever name be given to it, and however it comes about, there is no good reason for calling any kind of ether action electrical. Electric action, like magnetic action, begins and ends in matter. It is subject to transformations into thermal and mechanical actions, also into ether stress—right-handed or left-handed—which, in turn, can similarly affect other matter, but with opposite polarities. In his Modern Views of Electricity, Prof. O. J. Lodge warns us, quite rightly, that perhaps, after all, there is no such thing as electricity—that electrification and electric energy may be terms to be kept for convenience; but if electricity as a term be held to imply a force, a fluid, an imponderable, |