CHAPTER VI MOSQUITOES dropm

Previous

osquitoes are no more abundant now than they have been in the past, but when LinnÆus in 1758 made his list of all the animals known to exist at that time he catalogued only six species of mosquitoes. Only a few years ago, 1901, Dr. Theobald of the British Museum published a book on the mosquitoes of the world in which he listed three hundred and forty-three kinds. Soon other volumes appeared, adding more species, and systematists everywhere have been describing new ones until now the total number of described species is probably over five hundred, more than sixty of which occur in the United States.

This shows only one phase of the great interest that has been taken in the mosquitoes since the discovery of their importance as carriers of disease. Not only have they been studied from a systematic standpoint but an endless amount of work has been done and is being done in studying their development, habits, and structure until now, if one could gather together all that has been written about mosquitoes in the last ten or twelve years he would have a considerable library.

Fig. 50
Fig. 50
Fig. 51
Fig. 51
Fig. 52
Fig. 52

Fig. 50—Pupa of house-fly with the end broken to allow the fly to issue.

Fig. 51—Head of stable-fly showing sharp piercing beak.

Fig. 52—Mass of mosquito eggs (Theobaldia incidens).

Fig. 53 Fig. 53—Mosquito eggs and larvÆ (Theobaldia incidens); two larvÆ feeding on bottom, others at surface to breathe.
Fig. 54 Fig. 54—Mosquito larvÆ (T. incidens), dorsal view.

Those who are particularly interested in the group will find some of these books and papers easily accessible, so there may be given here only a brief summary of the more important facts in regard to the structure and habits of the mosquitoes in order that we may more readily understand the part that they play in the transmission of diseases and see the reasonableness of the recommendations in regard to fighting them.

THE EGGS

Mosquito eggs are laid in water or in places where water is apt to accumulate, otherwise they will not hatch. Some species lay their eggs in little masses (Fig. 52) that float on the surface of the water, looking like small particles of soot. Others lay their eggs singly, some floating about on the surface, others sinking to the bottom where they remain until the young issue. Some of the eggs may remain over winter, but usually those laid in the summer hatch in thirty-six to forty-eight hours or longer according to the temperature.

THE LARVÆ

When the larvÆ are ready to issue they burst open the lower end of the eggs and the young wrigglers escape into the water. The larvÆ are fitted for aquatic life only, so mosquitoes cannot breed in moist or damp places unless there is at least a small amount of standing water there. A very little will do, but there must be enough to cover the larvÆ or they perish.

The head of the larvÆ of most species is wide and flattened. The eyes are situated at the sides, and just in front of them is a pair of short antennÆ which vary with the different species.

The mouth-parts too vary greatly according to the feeding habits. Some mosquito larvÆ are predaceous, feeding on the young of other species or on other insects. These of course have their mouth-parts fitted for seizing and holding their prey. Most of the wrigglers, however, feed on algÆ, diatoms, Protozoa and other minute plant or animal forms which are swept into the mouth by curious little brush-like organs whose movements keep a stream of water flowing toward the mouth.

Another group containing the Anopheles are intermediate between these two and have mouth-parts fitted for feeding on minute organisms as well as for attacking and holding other larger things.

Fig. 55 Fig. 55—Eggs, larvÆ and pupÆ of mosquitoes (T. incidens).
Fig. 56 Fig. 56—Larva of mosquito (T. incidens).
Fig. 57 Fig. 57—Mosquito larvÆ and pupÆ (T. incidens) with their breathing-tubes at the surface of the water.
Fig. 58 Fig. 58—Anopheles larvÆ (A. maculipennis) resting at the surface of the water.

A few kinds feed habitually some distance below the surface, others on the bottom, while still others feed always at the surface. With one or two exceptions, the larvÆ must all come to the surface to breathe (Figs. 5357). Most species have on the eighth abdominal segment a rather long breathing-tube the tip of which is thrust just above the surface of the water when they come up for air. In this tube are two large vessels or tracheÆ which open just below the tip of the tube and extend forward through the whole length of the body, giving off branches here and there that divide into still smaller branches until every part of the body is reached by some of the small divisions of this tracheal system that carries the oxygen to all the tissues. The length of the breathing-tube is correlated with the feeding-habits of the larvÆ. Anopheles larvÆ which feed at the surface have very short tubes (Fig. 58), others that feed just below the surface have breathing-tubes as long or very much longer than the ninth abdominal segment. The last segment has at its tip four thin flat plates, the tracheal gills. These too are larger or smaller according to the habits of the larvÆ. Those species that feed close to the surface and have the tip of the breathing-tube above the surface most of the time have very small tracheal gills, while those that feed mostly on the bottom have them well developed.

When first hatched the larvÆ are of course very small. If the weather is warm and the food is abundant they grow very rapidly. In a few days the outer skin becomes rather firm and inelastic so it will not allow further growth. Then a new skin forms underneath and the old skin is cast off. This process of casting off the old skin is called molting, and is repeated four times during the one, two, three or more weeks of larval life.

PUPA

With the fourth molt the active feeding larva changes to the still active but non-feeding pupa (Fig. 59). The head and thorax are closely united and a close inspection will reveal the head, antennÆ, wings and legs of the adult mosquito folded away beneath the pupal skin. Instead of the breathing-tube on the eighth segment of the abdomen as in the larva, the pupa has two trumpet-shaped tubes on the back of the thorax through which it now gets its air from above the surface. The pupal stage lasts from two to five or six days or more. When the adult is ready to issue the pupal skin splits along the back and the mosquito gradually and slowly issues. It usually takes several minutes for the adult to issue and for its wings to become hard enough so it can fly. In the meantime, it is resting on the old pupal skin or on the surface of the water, where it is entirely at the mercy of any of its enemies that might happen along and is in constant danger of being tumbled over should the water not be perfectly smooth.

Fig. 59 Fig. 59—Mosquito pupÆ (T. incidens) resting at the surface of the water.
Fig. 60 Fig. 60—Mosquito pupa (T. incidens) with its breathing-tubes in an air bubble below the surface of the water.
Fig. 61 Fig. 61—Mosquito larvÆ and pupÆ (T. incidens) resting at the surface of the water.
Fig. 62 Fig. 62—A female mosquito (T. incidens); note the thread-like antennÆ.
Fig. 63 Fig. 63—A male mosquito (T. incidens); note the feathery antennÆ.

THE ADULT

The adult mosquito is altogether too familiar an object to need description, but it is necessary that we keep in mind certain particular points in regard to its structure, in order that we may better understand how it is that it is capable of transmitting disease.

If we examine closely the antennÆ of a number of mosquitoes that are bothering us with their too constant attentions we shall see that they all look very much alike (Fig. 62), small cylindrical joints bearing whorls of short fine hairs. But if we examine a number of mosquitoes that have been bred from a jar or aquarium we will find two types of antennÆ, the one described above belonging to the female. The antennÆ of the male (Fig. 63) are much more conspicuous on account of the whorl of dense, fine, long hairs on each segment. Another interesting difference in the antennÆ is to be noted in the size of the first joint. In both sexes it is short and cup-shaped, but in the male it is somewhat larger. This basal segment contains a highly complex auditory organ which responds to the vibrations of the whorls of hairs on the other segments. Interesting experiments have shown that these hairs vibrate best to the pitch corresponding to middle C on the piano, the same pitch in which the female "sings." Of course mosquitoes and other insects have no voice as we ordinarily understand the word, but produce sound by the rapid vibration of the wings or by the passage of air through the openings of the tracheÆ. The males and females are thus easily distinguished and, as we shall see later, this is of some importance for only the females can bite. The males and females differ in another way. Just below the antennÆ and at the sides of the proboscis or beak is a pair of three-to five-jointed appendages, the maxillary palpi or mouth-feelers which in the females of most species are very short (Fig. 64) while in the males they are usually as long as the proboscis (Fig. 65). The females of Anopheles and related forms have palpi quite as long as the males, but they are slender throughout while the male palpi are usually somewhat enlarged toward the tip and bear more or less conspicuous patches of rather long hairs or scales.

Fig. 64 Fig. 64—Head and thorax of female mosquito (Ochlerotatus lativittatus); the short maxillary palpi are just above the proboscis and below the thread-like antennÆ.
Fig. 65 Fig. 65—Head and thorax of male mosquito (O. lativittatus); the maxillary palpi are as long as the proboscis.
Fig. 66 Fig. 66—Head of female mosquito (Anopheles), with mouth-parts separated to show the needle-like parts: a, a antennÆ; b, b, palpi; c, labrum; d, d, mandibles; e, hypopharynx; f, f, maxillÆ; g, labium; h, labella. (After Manson.)
Fig. 67 Fig. 67—Cross-section of proboscis of female (a) and male (b) mosquito. lxe, labrum-epipharynx; mn, mandibles; mx, maxillÆ; hp, hypopharynx; sal, salivary duct; li, labium; tr, trachea; mus, muscles. (After Nuttall and Shipley.)

THE MOUTH-PARTS

The mouth-parts of the mosquito are of course of particular interest to us. At first they appear to consist of a long slender beak or proboscis, but by dissecting and examining with a microscope we find this beak to be made up of several parts (Fig. 66). The labium, which is the largest and most conspicuous, is apparently cylindrical but is grooved above throughout its length. At the tip of the labium are the labellÆ, two little lobes which serve to guide the piercing organs. Lying in this groove along the upper side of the labium are six very fine, sharp-pointed needles. The uppermost of these, the labrum-epipharynx, or labrum as we will call it, is the largest and is really a hollow tube very slightly open on its under side. Just below this is the hypopharynx, the lateral margins of which are very thin. Down through the median line of the hypopharynx runs a minute duct (Fig. 67, sal) which, though exceedingly small, is of very great importance, for through it is poured the saliva which may carry the malaria germs into the wound made when the mosquito bites. The other four needles consist of a pair of mandibles which are lance-shaped at the tip and a heavier pair of maxillÆ, the tips of which are serrate on one edge.

HOW THE MOSQUITO BITES

When the female mosquito is feeding on man or any other animal the tip of the labium is placed against the surface and the six needles are thrust into the skin, the labellÆ serving as guides. As they are thrust deeper and deeper the labium is bowed back to allow them to enter. As soon as the wound is made the insect pours out through the tube of the hypopharynx some of the secretion from the salivary glands and then begins to suck up the blood through the hollow labrum into the pharynx and on into the stomach.

The mouth-parts of the male differ in some important respects from those of the female. The hypopharynx is united to the labium, the mandibles are wanting and the maxillÆ are very much reduced so that the insect is unable to pierce the tough skin of animals. The male feeds on the juices of plants as do the females when they cannot get blood. It is not at all necessary for mosquitoes to have the warm blood of man or other animals. Comparatively few of them ever taste blood. They have been seen feeding on blossoms, ripe fruit, watermelons, plant juices, etc. They are very fond of ripe bananas and are fed on them in the laboratory when we wish to keep mosquitoes for experimental purposes.

THE THORAX

The middle part of the body, called the thorax, is really a strong box with heavy walls for the attachment of the powerful wing and leg muscles. The three pairs of legs are covered with hairs and scales, and their tips are provided with a pair of claws which vary somewhat in the different species. The wings (Fig. 68) are long and narrow with a characteristic venation. Along the veins and the margin of the wings are the scales which readily enable one to distinguish mosquitoes from other insects that may look much like them. In some species these scales are long and narrow, almost hair-like, in others they are quite broad and flat (Fig. 69). Just back of the wings is a pair of balancers, short thread-like processes knobbed at the end. These probably represent the second pair of wings with which most insects are provided, and seem to serve as balancers or orienting organs when the insect is flying. On the sides of the thorax are two small slit-like openings, the breathing-pores. These are the openings into the tracheal or respiratory system.

THE ABDOMEN

The long cylindrical abdomen is composed of eight segments. These are rather strongly chitinized above and below, but a narrow strip along the side is unchitinized. In this strip are situated the abdominal breathing-pores. The tip of the abdomen is furnished with a pair of movable organs, which in the male are variously modified and serve as clasping organs at mating time.

THE DIGESTIVE SYSTEM

The mouth-parts of the mosquito have just been described. It will be remembered that the labrum is provided with a groove. Through this the blood or other food is sucked up by means of a strong-walled pumping organ, the pharynx, situated in the head (Fig. 70). Just back of the pharynx is the esophagus which leads to the beginning of the stomach. Close to its posterior end the esophagus gives off three food reservoirs, two above and a single larger one below. In dissections these will often be seen to be filled with minute bubbles. The stomach reaches from the middle of the thorax to beyond the middle of the abdomen. At its posterior end are given off five long slender processes, the Malpighian tubules which are organs of excretion, acting like the kidneys of higher animals. The hindgut is that portion of the intestine from the stomach to the end of the body.

Fig. 68 Fig. 68—Wing of Mosquito (O. lativittatus).
Fig. 69 Fig. 69—End of mosquito wing highly magnified to show the scales on the veins.
Fig. 70 Fig. 70—Diagram to show the alimentary canal and salivary glands of a mosquito.
Fig. 71 Fig. 71—Salivary glands of Culex at right. Anopheles at left. (After Christophers.)

THE SALIVARY GLANDS

Lying under the alimentary canal in the forward part of the thorax are the salivary glands. There are two sets of these, each having three lobes with a common duct which joins the duct from the other set a short distance before they enter the base of the hypopharynx. Each of these lobes is made up of a layer of secreting cells (Fig. 71) which produces the saliva that is poured into the wound as soon as the insect pierces the skin of the victim, and we shall see, too, that the malarial germs also collect in these glands to be carried by the saliva to the new host.

EFFECTS OF THE BITE

After a mosquito has bitten a person and withdrawn the stylets, a small area about the puncture whitens, then soon becomes pink and begins to swell, then to itch and burn. Some people suffer much more from the bites of mosquitoes than do others. For some such bites mean little or no inconvenience, indeed may pass wholly unnoticed, to others a single bite may mean much annoyance, and several bites may cause much suffering.

After an hour or so the itching usually ceases, but in some cases it continues longer. In some instances little or no irritation is felt until some hours, sometimes as much as a day, after the bite. In such cases the effect of the bite is apt to be severe and to last for several days. Sometimes a more or less serious sore will follow a bite, probably due to infection of the wound by scratching. It is doubtless the saliva that is poured into the wound that causes the irritation. It is frequently asserted that if the mosquito is allowed to drink its fill and withdraw its beak without being disturbed no evil results will follow. Those who hold this theory say that the saliva that is poured into the wound is all withdrawn again with the blood if the mosquito is allowed to feed long enough. There may be some truth in this, but for most of us a bite means a hurt anyway and few will be content to sit perfectly still and watch the little pest gradually fill up on blood.

It is not known just what the action of the saliva is, its composition or reaction on the tissues. It is generally supposed to prevent coagulation of the blood that is to be drawn through the narrow tube of the labrum. Others think that its presence causes a greater flow of blood to the wound. But the sad part of it is, for us at least, that it hurts and may cause malaria and possibly other diseases.

HOW MOSQUITOES BREATHE

Mosquitoes and other insects do not have any nostrils nor do they breathe through any openings on the head. Along the sides of the thorax and abdomen is a series of very minute openings known as the spiracles. Through these the air passes into a system of air-tubes, the tracheÆ. There are two main trunks or divisions of the tracheÆ just inside the body-wall and a number of shorter connecting trunks. From these larger vessels arise a great number of smaller ones which branch and subdivide again and again until all the tissues are supplied by these minute little air-tubes that carry the oxygen to all parts of the body and carry off the waste carbon dioxid. These air-tubes are emptied and filled by the contractions of the walls of the abdomen. When the body-wall contracts the air is forced out of the thin-walled trachea through the spiracles; when the pressure is removed they are refilled by the fresh air rushing in.

THE BLOOD

After a mosquito has been feeding on a man or some other animal it is often so distended that the blood shows rich and red through the thin sides of the walls of the abdomen. This, however, is the blood of the victim and not of the mosquito. The blood of insects is not red but pale yellowish or greenish. It is not confined in definite vessels, but fills all the space inside the body cavity that is not occupied by some of the tissues or organs. It bathes the walls of the alimentary canal and gathers there the nourishment which it carries to all parts of the body. It does not carry oxygen or collect the carbon dioxid as does the blood of higher animals. That work, as we have just seen, is done by the air-tubes. Above the alimentary canal, extending almost the whole length of the abdomen and thorax, is a thin-walled pulsating vessel, the heart. This consists of a series of chambers each communicating with the one in front of it by an opening which is guarded by a valve. When one of these chambers contracts it forces the blood that is in it forward into the next chamber which, in its turn, sends it on. As the walls relax the valves at the sides are opened and the blood that is in the body-cavity rushes in to fill the empty chamber. As these regular rythmical pulsations recur the blood is forced forward through the heart into the head where it bathes the organs there. We shall see in another chapter that the malarial parasite escapes from the walls of the stomach of the mosquito into the blood in the body-cavity and finally reaches the salivary glands. As the heart is constantly driving blood to this part of the body the parasites readily reach the glands from which they finally escape into the new host.

Fig. 72
Fig. 72
Fig. 73
Fig. 73

Fig. 72—Heads of CulicinÆ mosquitoes; a, male; b, female. (After Manson.)

Fig. 73—Heads of AnophelinÆ mosquitoes; c, male; d, female. (After Manson.)

Fig. 76—A non-malarial mosquito (T. incidens), male, standing on the wall.

Fig. 77—Female of same.

Fig. 78—A malarial mosquito (A. maculipennis), male, standing on the wall.

Fig. 79—Female of same.

CLASSIFICATION

For our purpose it will not be necessary to try to give a system of classification of all the mosquitoes. Those interested in this phase of the subject will find several books and papers devoted wholly to it. It is quite important, however, that we know something about a few of the more familiar groups and kinds, especially those concerned in the transmission of diseases.

THE ANOPHELES

In pointing out the differences between male and female mosquitoes we noted that in one group, the genus Anopheles, both sexes have long maxillary palpi (Figs. 72, 73). This is the most important character separating this genus from the other common forms and as the Anopheles are the malaria carriers it is important that this difference be remembered. Most of the members of this group have spotted wings (Fig. 74), but as some other common kinds also have spotted wings (Fig. 75) this character will not always be reliable. When an Anopheles mosquito is at rest the head and proboscis are held in one line with the body and the body rests at a considerable angle to the surface on which it is standing. Other kinds rest with the body almost or quite parallel to the surface on which they are standing. So if you find a female mosquito with long mouth-palpi and spotted wings resting at an angle to the surface on which it stands you may be reasonably sure that it is an Anopheles and therefore may be dangerous (Figs. 76, 77, 78, 79).

In the United States there are three species of Anophelesmaculipennis, punctipennis and crucians—which are common in various localities, and one or two other species that so far as known are local or rare.

The Anopheles eggs are not laid in masses as are the eggs of many other mosquitoes, but are deposited singly on the surface of the water where they may be found often floating close together.

Fig. 80 Fig. 80—Egg of Anopheles, side view. (After Nuttall and Shipley.)
Fig. 81 Fig. 81—Egg of Anopheles, dorsal view. (After Nuttall and Shipley.)
Fig. 82 Fig. 82—Anopheles larvÆ, the one to the right feeding.
Fig. 83 Fig. 83—Anopheles larvÆ, the one to the right feeding, the other just coming to the surface.
Fig. 84 Fig. 84—Anopheles larva, dorsal view.
Fig. 85 Fig. 85—Anopheles pupÆ resting at surface of water.

The eggs (Figs. 80, 81) are elliptical in outline and are provided with a characteristic membranous expansion near the middle.

The larvÆ may be found at the proper season and in the localities where they are abundant in almost any kind of standing water, in clear little pools beside running streams, in the overflow from springs, in swamps and marshy lands, in rain-barrels or any other places or vessels where the water is quiet. They do not breed in brackish water. As they feed largely on the algÆ or green scum on the surface of the water they are especially apt to be found where this is present. We have already noted that their positions in the water differ from that assumed by other species (Fig. 82).

As the breathing-tube is very short the larvÆ must come close to the surface to breathe, and when they are feeding we find them lying just under and parallel to the surface of the water with their curious round heads turned entirely upside down as they feed on the particles that are floating on the surface (Figs. 83, 84).

The pupÆ do not differ very much from the pupÆ of other species although the breathing-tubes on the thorax are usually shorter and the creature usually rests with its abdomen closer to the surface, that is, it does not hang down from the surface quite as straight as do other forms (Fig. 85).

The adults may be found out of doors or in houses, barns or other outbuildings. They do not seem to like a draft and consequently will be more apt to frequent rooms or places where there is little circulation of air. Although they are usually supposed to fly and bite only in the evening or at night, they may occasionally bite in the daytime. One hungry female took two short meals from my arm while we were trying to get her to pose for a photograph one warm afternoon.

The female passes the winter in the adult condition, hibernating in any convenient place about old trees or logs, in cracks or crevices in doors or out of doors. In the house they hide in the closets, behind the bureau, behind the head of the bed, or underneath it, or in any place where they are not apt to be disturbed. During a warm spell in the winter or if the room is kept warm they may come out for a meal almost any time.

THE YELLOW FEVER MOSQUITO

Ranking next in importance to Anopheles as a disseminator of disease and in fact solely responsible for a more dreaded scourge, is the species of mosquito now known as Stegomyia calopus. While this species is usually restricted to tropical or semi-tropical regions it sometimes makes its appearance in places farther north, especially in summer time, where it may thrive for a time. The adult mosquito (Fig. 104) is black, conspicuously marked with white. The legs and abdomen are banded with white and on the thorax is a series of white lines which in well-preserved specimens distinctly resembles a lyre. These mosquitoes are essentially domestic insects, for they are very rarely found except in houses or in their immediate vicinity. Once they enter a room they will scarcely leave it except to lay their eggs in a near-by cistern, water-pot, or some other convenient place.

Their habit of biting in the daytime has gained for them the name of "day mosquitoes" to distinguish them from the night feeders. But they will bite at night as well as by day and many other species are not at all adverse to a daylight meal, if the opportunity offers, so this habit is not distinctive. The recognition of these facts has a distinct bearing in the methods adopted to prevent the spread of yellow fever. There are no striking characters or habits in the larval or pupal stages that would enable us to distinguish without careful examination this species from other similar forms with which it might be associated. For some time it was claimed that this species would breed only in clean water, but it has been found that it is not nearly so particular, some even claiming that it prefers foul water. I have seen them breeding in countless thousands in company with Stegomyia scutellaris and Culex fatigans in the sewer drains in Tahiti in the streets of Papeete. As the larvÆ feed largely on bacteria one would expect to find them in exactly such places where the bacteria are of course abundant.

The fact that they are able to live in any kind of water and in a very small amount of it well adapts them to their habits of living about dwellings.

So far as known the members of these two genera are the only two that are concerned in the transmission of disease in the United States. In other countries other species are suspected or proven disseminators of certain diseases, but these will be discussed in connection with the particular diseases in later chapters.

OTHER SPECIES

The many other species of mosquitoes that we have may be conveniently divided as to their breeding-habits into the fresh-water and the brackish-water forms. Among the fresh-water kinds some are found principally associated with man and his dwelling places, others live in the woods or other places and so are far less troublesome. Most of these do not fly far. Several of the species that breed in brackish water are great travelers and may fly inland for several miles. Thus the towns situated from one to three or four miles inland from the lower reaches of San Francisco Bay are often annoyed more by the mosquitoes that breed only in the brackish water on the salt marshes than they are by any of the fresh-water forms (Figs. 86, 87). The worst mosquito pest along the coast of the eastern United States and for some distance inland is a species that breeds in the salt marshes.

NATURAL ENEMIES OF MOSQUITOES

In combating noxious insects we learned long ago that often the most efficient, the easiest and cheapest way is to depend on their natural enemies to hold them in check. Under normal or rather natural conditions we find that they are usually kept within reasonable bounds by their natural enemies, but under the artificial conditions brought about by the settling and developing of any district great changes come about. It very often happens that these changes are favorable to the development of the noxious insects and unfavorable to the development of their enemies.

A striking example and one to the point is afforded in the introduction of mosquitoes into Hawaii. Up to 1826 there were no mosquitoes on these islands. It is supposed that they were introduced about that time by some ships that were trading at the islands. Indeed it is claimed that the very ship is known that brought them over from Mexico.

Once introduced they found conditions there very favorable to their development, plenty of standing water and few natural enemies to prey on them, so they increased very rapidly and gradually spread over all the islands of the group. This was the so-called night mosquito, Culex pipiens. Much later another species, Stegomyia calopus, just as annoying and much more dangerous was introduced and has also become very troublesome. We have a few species of top-minnows (Fig. 88) occurring in sluggish streams in the southern part of the United States that are important enemies of the mosquitoes of that region. A few years ago some of these were taken over to Hawaii and liberated in suitable places to see if they would not help solve the mosquito problem there. The fishes seem to be doing well. Already they are destroying many mosquito larvÆ, and there are indications that they are going to do an important work, but of course can be depended on only as an aid.

Fig. 86 Fig. 86—Salt-marsh mosquito (Ochlerotatus lativittatus); male.
Fig. 87 Fig. 87—Salt-marsh mosquito (O. lativittatus); female.
Fig. 88 Fig. 88—Top-minnow (Mollienisia latipinna). (From Bull., 47 U.S. Fish Com.)
Fig. 89 Fig. 89—Dragon-flies. (From Kellogg's Amer. Insects.)

On account of the various habits of both the larvÆ and adults it will never be possible for any natural enemy or group of natural enemies effectively to control the mosquitoes of any region, but as certain of them are important as helpers they deserve to be mentioned.

ENEMIES OF THE ADULTS

Birds devour a few mosquitoes, the night-flying forms being particularly serviceable, but the number thus destroyed is probably so small as to be of little practical importance.

The dragon-flies (Figs. 89, 90, 91) or mosquito hawks have long been known as great enemies of mosquitoes, and they certainly do destroy many of them as they are hawking about places where mosquitoes abound. Dr. J.B. Smith of New Jersey very much doubts their efficiency, but observations made by other scientific men would seem to indicate that they often devour large numbers of mosquitoes during the course of the day and evening.

Spiders and toads destroy a few mosquitoes each night. Certain external and internal parasites destroy a few more, but the sum total of all of these agencies is probably not very considerable, for while the adults may have several natural enemies they are not of sufficient importance to have any appreciable effect on the number of mosquitoes in a badly infested region.

ENEMIES OF THE LARVÆ AND PUPÆ

The larvÆ and pupÆ on the other hand have many important enemies. Indeed under favorable conditions these may keep small ponds or lakes quite free from the pests. The predaceous aquatic larvÆ of many insects feed freely on wrigglers. The larvÆ of the diving beetles which are known as water-tigers are particularly ferocious and will soon destroy all the wrigglers in ponds where they are present (Fig. 92). Dragon-fly larvÆ also feed freely on mosquito larvÆ. Whirligig beetles are said to be particularly destructive to Anopheles larvÆ and many other insects such as water-boatmen, back-swimmers, etc., feed on the larvÆ of various species. A few of these introduced into a breeding-jar with Anopheles larvÆ will soon destroy all of them, even the very young bugs attacking larvÆ much larger than themselves.

It is interesting to note that the larvÆ of some mosquitoes are themselves predaceous and feed freely on the other wrigglers that may chance to be in the same locality.

Fig. 90 Fig. 90—The young (nymph) of a dragon-fly. (From Kellogg's Amer. Insects.)
Fig. 91 Fig. 91—The cast skin (exuvÆ) of a dragon-fly nymph.
Fig. 92 Fig. 92—Diving-beetles and back-swimmers. (From Kellogg's Amer. Insects.)

Various species of fish are, however, the most important enemies of the mosquitoes. Great schools of tide-water minnows (Fig. 93) are often carried over the low salt-marshes by the extreme high-tides and left in the hundreds of tide pools as the tide recedes. No mosquitoes can breed in a pool thus stocked with these fish. In the fresh-water streams and lakes there are several species of the top-minnows, sticklebacks (Fig. 94), etc., that feed voraciously on mosquito larvÆ and unless the grass or reeds prevent the fish from getting to all parts of the ponds or lakes very few mosquitoes can breed in places where they are present.

Minute red mites such as attack the house-flies and other insects sometimes attack adult mosquitoes, but they are rarely very abundant. Parasitic roundworms attack certain species. Others suffer more or less from the attacks of various Sporozoan parasites.

FIGHTING MOSQUITOES

When mosquitoes are bothering us we usually begin by trying to kill the individual pests that are nearest to us. We try to crush them if they bite us; we screen the doors and windows to keep them from the house. In warmer countries the people are a little more hospitable and do not screen the mosquitoes out of the house entirely, but screen the beds for protection at night, and if the mosquitoes get too insistent during the day the bed makes a safe and comfortable retreat. All the mosquitoes in a room may be killed by fumigating with sulphur at the rate of two pounds to the thousand cubic feet of air-space. Pyrethrum is also used largely, but it only stupefies the mosquitoes temporarily instead of killing them. While in that condition they may be swept up and destroyed.

Various substances are sometimes used as repellants by those who must be in regions where the mosquitoes are abundant. With many of these, however, "the cure is worse than the disease." Smudges are often built to the windward of a house or barn-yard and the smoke from a good smoldering fire will keep a considerable area quite free from mosquitoes. The man who can keep himself enveloped in a cloud of tobacco smoke will not be bothered by mosquitoes. Oil of pennyroyal, oil of tar or a mixture of these with olive oil, and various other concoctions are sometimes smeared over the face and hands. These will furnish protection as long as they last. Dr. Smith says that he has found oil of citronella quite effective and of course less objectionable than the other things usually used. Care should be taken not to get it in the eyes. An ointment made of cedar oil, one ounce; oil of citronella, two ounces; spirits of camphor, two ounces, is said to make a good repellant and is effective for a long time.

Fig. 93 Fig. 93—Killifish (Fundulus heteroliatus). (From Bull. 47, U.S. Fish Com.)
Fig. 94 Fig. 94—Stickleback (Apeltes quadracus). (From Bull. 47, U.S. Fish Com.)
Fig. 95 Fig. 95—An old watering trough, an excellent breeding-place for mosquitoes.

FIGHTING THE LARVÆ

All of the efforts directed against the adult mosquitoes are usually of little avail in decreasing the number in any region. It is comparatively easy, however, to fight them successfully in the larval stage. We have seen that standing water is absolutely necessary for mosquitoes to breed in. This makes the problem much simpler than if they could breed in any moist places such as well-sprinkled lawns, a shady part of the garden, etc. The whole problem of successful campaigns against the mosquitoes resolves itself into the problem of finding and destroying or properly treating their breeding-places. We have seen how certain kinds, such as the yellow fever mosquito, are "domestic" species. They never go far from their breeding-places. If a house is infected by one of these species the immediate premises should be searched for the source. Cisterns, rain-barrels, sewer-traps, cesspools, tubs or buckets of water or old tin cans in out-of-the-way corners, are all suitable places for them to breed in. Cisterns and rain-barrels should be thoroughly screened so that no mosquitoes can get in or out, or the surface should be covered with a film of kerosene which will kill all the larvÆ in the water when they come to the surface to breathe, and will also kill the females when they come to deposit their eggs. The vent to open cesspools should be thoroughly screened or the surface of the water kept well covered with oil. Water standing in any vessels in the yards should be emptied every week or ten days and the old tin cans destroyed or hauled away. In fighting these domestic species you need be concerned only with your own yard and that of your near-by neighbors. Other species, while also rather local in their distribution, fly much farther than the really domestic ones. In fighting these the region for a considerable distance around must be taken into consideration. Watering-troughs (Fig. 95) that are left filled from week to week, the overflow from such places, and the tracks made in the mud round about them (Fig. 96), small sluggish streams, irrigating ditches, and small ponds or lakes not supplied with fish are excellent breeding-places for several species of mosquitoes including Anopheles and others. The remedy at once suggests itself. The watering-trough can be emptied and renewed every week during the summer time, the overflow can be taken care of in a ditch that will lead it away from the trough to where it will sink into the ground, the banks of the streams or ponds or lakes can be cleared in such a way that fish can get to all parts of the water; most of the small ponds can be drained or their surface may be covered over with a thin film of kerosene. This is best applied as a spray; one ounce to fifteen square feet will suffice. If the oil is simply poured over the surface more will be required.

The fighting of the species that breed on the extensive salt-marshes in many regions is a larger and more difficult problem, but as it is a matter that usually concerns large communities, sometimes whole states, it can be dealt with on a larger scale. The very excellent results that have been accomplished in New Jersey and on the San Francisco peninsula, and in a smaller way in other places, show what may be done if the community goes about the fight in an intelligent manner. In the fight in New Jersey hundreds of acres of tide-lands have been drained so that they no longer have tide pools standing where the mosquitoes may breed. When it is impracticable to drain them the pools may be sprayed occasionally with kerosene.

The value of the land that is reclaimed by a good system of draining is often enough to pay many times over the cost of draining, thus the mosquitoes are gotten rid of and the land enhanced in value by a single operation.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page