VOICING AND TUNING. The time has now come when we may bring our little organ into musical order, and reap some of the fruits of our toil. If the processes described in previous chapters have been steadily carried out, the instrument is now complete (so far as the manual only is concerned) with the exception of the draw-stop action, which we intentionally reserve, and the external case. We shall insert here, therefore, a few pages on voicing, the important and delicate operation by which the correct speech and distinctive tone of organ-pipes is imparted to them. Let us warn the reader at once, and with emphasis, that the process of voicing metal pipes is so complex that a complete mastery of its practical details is by no means uniformly attained, even after years of steady practice under skilled guidance. A very sensitive and educated ear, a delicate sense of touch in the handling of fine tools, and a thorough familiarity with the tonal quality, or timbre, of the best examples of We shall not be deterred, however, by these considerations from describing, to the best of our ability, the business of voicing and regulating an ordinary metal pipe, pointing out specially, as we go on, all that may be necessary for the removal of defects and faults in pipes already voiced by other hands. But we must acknowledge our own obligations to the little treatise on voicing and tuning mentioned in the preface to this work. Those who obtain and peruse this thoroughly practical little tract will find all the information which they can require. Figs. 40, 41 show the well-known forms of metal organ-pipes as seen in the Open Diapason, Principal, &c. Figs. 42, 43 give details. The languid, Fig. 42, is a little enlarged. It will be seen that the essential features of wooden pipes have their counterpart in those of metal—the language, or languid, answering to the wooden block, the conical termination to the wooden pipe-foot, the cylindrical body to the rectangular wooden tube. We have never made any metal pipes ourselves, and we doubt if our readers will do well to embark upon an undertaking requiring special "plant" and appliances in a separate workshop, and calling for great dexterity and neatness in a class of operations familiar only to trained artisans. For the information, however, of those who choose to make the experiment, we may explain that the metal sheets from which the pipes are made are thus produced:— "The ingredients (viz. tin and lead in various proportions) are melted together in a copper and then cast into sheets, a process effected by pouring it in a molten state into a wooden trough, and running the trough rapidly along a bench faced with tick. The metal escapes from the trough through a narrow horizontal opening at the back, leaving a layer of metal behind it as it proceeds; and the wider the cutting is, of course the thicker will be the sheet of metal produced. After being cast to an approximate thickness, the metal is planed down to the precise thickness required. It is then cut into portions of the shape necessary to give to The three parts which compose the pipe are first separately prepared. The sheet of metal is rolled round a wooden cylinder or cone, called a mandrel, and the edges are soldered together. The extreme neatness of this soldered joint is secured by smearing the metal with composition, which is scraped off at that part only which is to retain the solder; but a steady hand, and long familiarity with the manipulation of the heated copper tool and with the properties of soft solder, are absolutely essential to success. At the lower part of the body thus soldered, the mouth is formed by flattening a portion of the cylinder and by cutting away a horizontal slip of the metal. The width of the mouth is to be in all cases a quarter of the circumference of the pipe. In the case of large pipes the mouth is formed by cutting away a piece of metal of considerable size, and replacing it by a sheet called the "leaf," having the mouth cut on its lower edge. The foot is formed in a similar manner, and has a flattened portion corresponding to that of the body. The language, or languid, is a circular disc of much thicker stuff, bevelled off round its periphery, which is altered into a straight line at that portion which will lie beneath the mouth when the pipe is complete. The three component parts are thus worked together. The languid is placed on the wide opening of the foot, and the windway formed by leaving a narrow slit between the straight edge of the languid and the flattened lip of the foot. The two are then neatly soldered together. The body is then soldered to the foot, care being taken to adjust the mouth exactly opposite to the windway. The larger pipes have ears, namely, rectangular pieces of metal soldered on each side of the mouth. Thus completed and cleaned over, the pipes are handed to the voicer. It will be remembered that we left a wooden pipe, similarly put together but unvoiced, in an earlier portion of this book. We have now to explain that both classes of pipes pass through a similar or analogous course of treatment at the hands of the voicer. With small metal tools, called notchers, of which he has four or five, he cuts a row of nicks in the straight edge of the languid, causing it to resemble somewhat the edge of a saw. These nicks or notches, coarse or fine, close together or at rarer intervals, as the case may be, conduct the sheet of wind from the foot-hole against the upper lip of the mouth, and influence to a most important extent the character of the tone. In a similar way, and using a file ground to a saw-like edge, the operator on a wooden pipe cuts The art of the voicer, however, is by no means expended upon this notching of the languids and blocks. It extends to the accurate and nice adjustment of the height of the mouth, the aperture of the foot-hole, and the width of the windway. All these will bear strict proportion to the scale or size of the body of the pipe, and to the weight or pressure of the wind. It will be seen, therefore, that the tone, quality, or timbre of an organ-pipe, and therefore of a "stop" or set of organ-pipes, depends upon skilled attention to at least six distinct considerations, viz.:—
It is the thorough mastery of the art of manipulating pipes, with all these essential points kept in view, which enables the voicer to produce the exquisite contrasts of tone heard in good organs between the tranquil Dulciana and the delicate Salcional; between the Violin Diapason and the We have said enough, perhaps, to justify our advice that metal pipes be procured in a finished condition from competent makers. Our little organ contains two metal stops, viz. a Dulciana (or a small Open Diapason) from Tenor C to f in alt, and a Principal of 4 feet throughout. Each of these, made of good metal, should cost £6 or £7. Cheap pipes mean inferior metal, and this we cannot recommend in any organ, great or small. The nearer the approach made to pure tin the better (other essential points being assumed) will be the quality of the tone. In ordering the pipes, the weight or pressure of wind on which they are to speak must be carefully specified. This may be easily ascertained by using a wind-gauge, a little instrument which we sketch in its simplest form in Fig. 45. It consists of a glass tube, bent as shown in the figure (this can be done at any glass-blower's or optician's), and having its lower end inserted in a wooden pipe-foot. Planting the gauge on any hole of full size We may note here that about 7 lbs. per square foot of surface of top-board will be required to give this pressure. Pieces of old cast iron about an inch thick may be procured at any foundry, and form the most suitable material for weights. The voicer having worked to a 2-inch wind, it is probable that when the new metal pipes are planted in their places they will speak with charming evenness and truth. If some or any of them, however, betray some defects, it will be well not to meddle with them until we have satisfied ourselves that the fault does not belong to our own mechanism. If, for instance, one pipe should be softer or less prompt and clear than the others, let us be sure that the flow of wind to that pipe is not interrupted or throttled by a chip in the wind-hole All that we have said of possible defects in metal pipes applies, mutatis mutandis, to wooden pipes; and as we make these ourselves we may deal more boldly with them. An unvoiced wooden pipe will generally emit a chirp or whistle before its note. The nicking of the block will remove this, but if we overdo this nicking we shall hear a huskiness or buzzing equally or more disagreeable. This husky quality may also be due to a too wide windway; in this case, remove the cap and rub the inside face of it on a sheet of glass-paper pinned down upon a board, or plane off the inside face and file the windway anew. If the mouth has been cut too high, there may be nothing for it but to take off the front board and remake the pipe. If the pipe, in other respects good, is too loud, plug the foot-hole with neat flat plugs. If it is too soft, the pipe-foot may have been imperfectly bored, or may be defective in some way, or chips may have been left in the throat of the pipe. Ill-fitting stoppers are a fruitful source of defects in wooden stopped pipes. Refit them in every case of doubt, and leave no room for misgivings as to the soundness of the joints of the pipe near the top. We must point out to our readers that strength, These remarks apply also to our fifth stop, which we have been content hitherto to call simply "Fifteenth" 2-feet. The Fifteenth proper is a metal stop of strong shrill quality, having its value in large instruments, where it is balanced by other stops in affinity with it. Such a stop would be quite unsuitable to our little organ. If we are to have a 2-feet stop at all, it should be a "Flageolet" or "Flautina," an echo, in fact, of the 4-feet Flute. This may be successfully made by diligent operators in wood, the lower part stopped, the upper part open. The professional voicers produce the fluty quality from ordinary metal Fifteenths by peculiar treatment of the mouth. In foreign organs such stops are generally or often of conical form, the narrow aperture at the top. These stops (which may also be of 4-feet or 8-feet pitch) usually bear the names "Gems-horn" or "Spitz-flute." We may dismiss the subject of Tuning with a very few remarks. The general principles of Temperament—that is to say, of the compromise or You will begin with Regulation, that is, with equalising the power or strength of the pipes composing each stop. Bestow every care on this, especially in the upper ranges of the small wooden pipes. The pleasing effect of the organ will greatly depend upon success in this operation. When satisfied on this point, tune your wooden pipes to the metal Principal, which has been sent from the maker's ready tuned and voiced. After this rough approximation to absolute correctness, go over the whole organ with great deliberation and care, following the rules given in the works which we have cited, or in any one of them. A second or third tuning may be requisite before a sensitive ear is quite satisfied. Cones and cups of boxwood, or made of sheet copper with brazed seams, may be used in the absence of the expensive cast-brass articles. |