THE SOUND-BOARD.—(Continued.) The time has come when we must decide what our five stops are to be, since the sizes and places of the holes must be in accordance with the quality and character of the pipes supplied by them. The Stopped Diapason we have already made; and in our organ it will be the chief or foundation stop of 8-feet tone. We shall assume that the second stop in the 8-feet pitch will be a metal Dulciana, or small open Diapason. The 4-feet stops will doubtless be a Principal (or some equivalent) and a Flute. The 2-feet stop we will call simply Fifteenth for the moment. For convenience of reference we will number the stops thus:—
The pipes of No. 1, being the tallest in the organ, will be planted nearest to the back; all the others, occupying the successive sliders, will present a gradation of heights agreeable to the eye and convenient for the tuner. No. 1, we say, is the tallest in the organ; but be it carefully observed that in our small instrument it will not be carried down to its lowest note CC, which would be 8 feet in speaking length; it will not descend lower than tenor C, 4 feet, and the last or lowest twelve notes or sounds will be obtained by using the corresponding pipes of the Stopped Diapason as a bass for both stops. This will be done by "grooving;" and it will now be seen why, in cutting out the upper boards, we were careful to have a single board for the pipes of 8-feet pitch, and another single board for those of 4-feet pitch. For it is plain that by boring holes through the upper board, sliders, and table into any groove of the sound-board, and by connecting these holes together by means of another deep groove or score cut in the wood of the upper board, and then covered in with an air-tight covering, we obtain a secondary channel, supplied with air by either or both of the sliders at pleasure; and by boring one hole through the air-tight covering, and planting a pipe on that hole, that pipe will speak whenever a connection is made between the secondary channel on which it stands and the main channel or groove below, which is receiving air at the moment from the bellows. Clearly, therefore, if we bore holes through the upper boards and sliders of Nos. 1 and 2 into the twelve grooves of the bass octave, and then connect these twelve pairs of holes by cutting upper grooves in the surface of the boards, covering them in by It will now be seen why we did not at once bore the holes, or rather mark their places, on the rack-board. Plainly, we must make these twelve grooves first, and cover them in. Then, replacing the rack-board as before, carefully mark on the latter the exact place of each bass pipe, as it will stand on any part of its secondary groove. Afterwards, with a bradawl or other sharp-pointed borer, prick quite through the rack-board at every one of the points which you have marked throughout its whole extent. At these points there will hereafter be circular holes of various sizes for the reception of the pipe-feet, but in the upper boards, sliders, and tables there will be smaller holes, adapted for conveying its stream of air to each pipe. Before removing the rack-board, decide upon the places where the rack-pins, or pillars The rack-board now being put aside for the present, all the holes may be bored through the upper boards, sliders, and table with bits of various sizes. From what has been said above it will be seen that it is not the sizes of these holes, but of the apertures in the pipe-feet, which regulate the volumes of wind supplied to the pipes; but you will, of course, use bits proportioned to the pipes you have in view. The upper, or treble, holes must not let the little pipes slip into them, nor must the larger holes throttle or check the flow of the wind. In the bass the holes may be as large as the grooves will allow; and if these are narrow, or if there is secondary grooving or conducting, it will be well to cut the round hole at its interior aperture with a sharp chisel into a square or rectangular opening; or to bore two round holes and connect them by taking out the intervening wood. Afterwards, with iron rods of various sizes, heated to redness, scorch all the holes through the three thicknesses of wood, leaving a clear and smooth charred passage for the wind. We have not yet done with grooving. This seems Our bass pipes, we have said above, may be planted on holes cut in any part of the covering or roof of their respective secondary channels. It follows readily from this that the secondary groove or channel may be extended or prolonged for the express purpose of locating the pipes in situations convenient for them. Quite apart from any necessity which may exist for supplying a common bass to two or more sliders, we may evidently plant our larger pipes almost where and how we please by cutting grooves in the substance of the upper board, extending from the table beneath to the point where we wish the pipe to be. So long as the holes are of sufficient diameter and the grooves of ample dimensions, the wind will reach a pipe located at a distance even of 2 or 3 feet from its source of supply without any appreciable interval between the impact of the finger on the key and the production of the sound; and the grooves may be curved almost as we please, though sharp angles should be avoided. Even if, in consequence of alterations of original plans or other circumstances, the upper boards should not be of sufficient thickness or size to admit of grooving, we may still avail ourselves of this convenient system by using an additional or supplementary upper board, which we will here call a conducting board, screwed down upon the main Note further, that the grooving may be, if necessary, on both sides of the upper boards. All that is needful in such case is, that after the grooves on the under sides, next the sliders, are cut, the whole of the board, and not merely the grooved part of it, shall be covered or veneered with thin stuff. This must be dressed perfectly true, as in the case of the solid or ungrooved board, and all the holes will be bored through it. The upper sides will also have a neater appearance if the roofing of thin mahogany or cedar is carried over its entire surface. Upper Short grooves may be made by boring holes with a centre-bit in the edges of the upper boards, and making the wind-hole beneath and the pipe-hole above communicate with this concealed tunnel. On plugging up the external aperture in the edge of the board, or on stopping a whole row of such apertures by gluing a band of leather, parchment, or thick paper over them, it is clear that the wind will pass to the pipes at pleasure. All such holes and channels must be scorched with hot irons. To the true joiner this may seem an unworkmanlike expedient, but it is necessary to prevent the weakening of the currents of air which would ensue from friction against rough surfaces, and to preclude the risk of carrying tiny chips and particles of wood into the pipes. If conducting boards are used, they should be faced with soft white leather on their under surfaces before they are screwed down in their places, unless, indeed, they are glued down immovably. The places for the screws, as well as for those which secure the whole upper board to the table, must be carefully determined with reference to the grooves. Fig. 12 is intended to show, in a rough way, how in an upper board BB grooves may conduct the wind from the holes in a slider AA to a row of pipe-holes near the margin of the board, resulting in an arrangement like that shown in Fig. 8. The dotted lines are meant to indicate grooves cut in the under side of the board. It is clear that these might be made to cross the others, so that different plantations of pipes might be obtained, as in Fig. 9. Remark.—These figures, however, must be understood rather as illustrations of our meaning than as representations of actual work. Conveyancing tubes are in constant use, not only as substitutes for grooving, but as ancillary to it. They are made of pipe-metal, and from about ? inch in diameter to much larger sizes. To manage them neatly and well you should be adroit in the use of the soldering-iron. They are commonly smeared over with a composition which will not receive the melted solder; this composition is scraped off at the points where a junction is to be made at an angle, and with the usual copper tool, a little resin and tallow, the solder is applied. Much practice is needed to give mastery of this Assuming, however, the use of the usual tubes, we may say that they are thus applied. Let us suppose that the large pipe shown in Fig. 10 is to be conducted off from the sound-board at the higher level to the plank on which it stands. Bore the hole in the upper board a trifle larger than the outside diameter of the tube. Glue a patch of white leather over the hole, and cut out the aperture in this leather somewhat smaller than the hole, leaving an excess of leather all round the hole of about 1/8 inch. Then, making the end of the tube a little conical, thrust it into the hole; it will carry in with it the surplus margin of the leather, which will form around it an air-tight joint or collar. A right angle may be allowed in the tube at this first commencement at the hole itself, but in its subsequent course sharp corners should be avoided. The pipe is planted on a hole bored to a sufficient depth in a plank; a second hole, suited to a conducting tube, is bored at any It is by these means that "speaking fronts" are arranged according to any design. Remark.—If you have all your pipes, metal as well as wood, ready at hand, it might be well to pierce the rack-board and fit them in their places at this stage of the proceedings, because chips and dust are inseparable from the operation, and may be more troublesome and mischievous after the pallets are put in than now. Those readers who resolve on this course may turn, then, to the subsequent pages, in which they will find all the directions which are necessary for their guidance. For our own part, we prefer to continue in the next chapter our account of the mechanism of the sound-board. We may further remark, that while the boring-tools are in use we may perhaps do wisely in piercing holes also for the screws which are to hold the upper boards down upon the sliders. If the planing has been perfectly true, about four pairs of screws should be enough for each upper board, and no extra screws should be required to force the boards into closer contact at any intermediate part. The screws should pass clear and But we shall have to return to this part of our subject. |