PART I. ON LIGHT. INTRODUCTION.

Previous

Light is that invisible etherial matter which renders objects perceptible by the visual organs. It appears to be distributed throughout the immensity of the universe, and is essentially requisite to the enjoyment of every rank of perceptive existence. It is by the agency of this mysterious substance, that we become acquainted with the beauties and sublimities of the universe, and the wonderful operations of the Almighty Creator. Without its universal influence, an impenetrable veil would be thrown over the distant scenes of creation; the sun, the moon, the planets, and the starry orbs, would be shrouded in the deepest darkness, and the variegated surface of the globe on which we dwell, would be almost unnoticed and unknown. Creation would disappear, a mysterious gloom would surround the mind of every intelligence, all around would appear a dismal waste, and an undistinguished chaos. To whatever quarter we might turn, no form nor comeliness would be seen, and scarcely a trace of the perfections and agency of an All Wise and Almighty Being could be perceived throughout the universal gloom. In short, without the influence of light, no world could be inhabited, no animated being could subsist in the manner it now does, no knowledge could be acquired of the works of God, and happiness, even in the lowest degree, could scarcely be enjoyed by any organized intelligence.

We have never yet known what it is to live in a world deprived of this delightful visitant; for in the darkest night we enjoy a share of its beneficial agency, and even in the deepest dungeon its influence is not altogether unfelt.1 The blind, indeed, do not directly enjoy the advantages of light, but its influence is reflected upon them, and their knowledge is promoted through the medium of those who enjoy the use of their visual organs. Were all the inhabitants of the world deprived of their eye-sight, neither knowledge nor happiness, such as we now possess, could possibly be enjoyed.

There is nothing which so strikingly displays the beneficial and enlivening effects of light, as the dawn of a mild morning after a night of darkness and tempest. All appears gloom and desolation, in our terrestrial abode, till a faint light begins to whiten the eastern horizon. Every succeeding moment brings along with it something new and enlivening. The crescent of light towards the east, now expands its dimensions and rises upwards towards the cope of heaven; and objects, which a little before were immersed in the deepest gloom, begin to be clearly distinguished. At length the sun arises, and all nature is animated by his appearance; the magnificent scene of creation, which a little before was involved in obscurity, opens gradually to view, and every object around excites sentiments of wonder, delight, and adoration. The radiance which emanates from this luminary, displays before us a world strewed with blessings and embellished with the most beautiful attire. It unveils the lofty mountains and the forests with which they are crowned—the fruitful fields with the crops that cover them—the meadows, with the rivers which water and refresh them—the plains adorned with verdure, the placid lake and the expansive ocean. It removes the curtain of darkness from the abodes of men, and shows us the cities, towns and villages, the lofty domes, the glittering spires, and the palaces and temples with which the landscape is adorned. The flowers expand their buds and put forth their colours, the birds awake to melody, man goes forth to his labour, the sounds of human voices are heard, and all appears life and activity, as if a new world had emerged from the darkness of Chaos.

The whole of this splendid scene, which light produces, may be considered as a new creation, no less grand and beneficent than the first creation, when the command was issued, “Let there be light, and light was.” The aurora and the rising sun cause the earth and all the objects which adorn its surface, to arise out of that profound darkness and apparent desolation which deprived us of the view of them, as if they had been no more. It may be affirmed, in full accordance with truth, that the efflux of light in the dawn of the morning, after a dark and cloudy night, is even more magnificent and exhilarating than at the first moment of its creation. At that period, there were no spectators on earth to admire its glorious effects; and no objects, such as we now behold, to be embellished with its radiance. The earth was a shapeless chaos, where no beauty or order could be perceived; the mountains had not reared their heads; the seas were not collected into their channels; no rivers rolled through the valleys, no verdure adorned the plains; the atmosphere was not raised on high to reflect the radiance, and no animated beings existed to diversify and enliven the scene. But now, when the dawning of the morning scatters the darkness of the night, it opens to view a scene of beauty and magnificence. The heavens are adorned with azure, the clouds are tinged with the most lively colours, the mountains and plains are clothed with verdure, and the whole of this lower creation stands forth arrayed with diversified scenes of beneficence and grandeur, while the contemplative eye looks round and wonders.

Such, then, are the important and beneficent effects of that light which every moment diffuses its blessings around us. It may justly be considered as one of the most essential substances connected with the system of the material universe, and which gives efficiency to all the other principles and arrangements of nature. Hence we are informed, in the sacred history, that light was the first production of the Almighty Creator, and the first born of created beings; for without it the universe would have presented nothing but an immense blank to all sentient existences. Hence, likewise, the Divine Being is metaphorically represented under the idea of light, as being the source of knowledge and felicity to all subordinate intelligences: “God is light, and in Him is no darkness at all;” and he is exhibited as “dwelling in light unapproachable and full of glory, whom no man hath seen or can see.” In allusion to these circumstances, Milton, in his Paradise Lost, introduces the following beautiful apostrophe:—

As light is an element of so much importance and utility in the system of nature, so we find that arrangements have been made for its universal diffusion throughout all the worlds in the universe. The sun is one of the principal sources of light to this earth on which we dwell, and to all the other planetary bodies. And, in order that it may be equally distributed over every portion of the surfaces of these globes, to suit the exigencies of their inhabitants, they are endowed with a motion of rotation, by which every part of their surfaces is alternately turned towards the source of light; and when one hemisphere is deprived of the direct influence of the solar rays, its inhabitants derive a portion of light from luminaries in more distant regions, and have their views directed to other suns and systems dispersed, in countless numbers, throughout the remote spaces of the universe. Around several of the planets, satellites, or moons, have been arranged for the purpose of throwing light on their surfaces in the absence of the sun, while at the same time the primary planets themselves reflect an effulgence of light upon their satellites. All the stars which our unassisted vision can discern in the midnight sky, and the millions more which the telescope alone enables us to descry, must be considered as so many fountains of light, not merely to illuminate the voids of immensity, but to irradiate with their beams surrounding worlds with which they are more immediately connected, and to diffuse a general lustre throughout the amplitudes of infinite space. And, therefore, we have every reason to believe, that, could we fly, for thousands of years, with the swiftness of a seraph, through the spaces of immensity, we should never approach a region of absolute darkness, but should find ourselves, every moment encompassed with the emanations of light, and cheered with its benign influences. That Almighty Being who inhabiteth immensity and “dwells in light inaccessible,” evidently appears to have diffused light over the remotest spaces of his creation, and to have thrown a radiance upon all the provinces of his wide and eternal empire, so that every intellectual being, wherever existing, may feel its beneficent effects, and be enabled, through its agency, to trace his wonderful operations, and the glorious attributes with which he is invested.

As the science of astronomy depends solely on the influence of light upon the organ of vision, which is the most noble and extensive of all our senses; and as the construction of telescopes and other astronomical instruments is founded upon our knowledge of the nature of light and the laws by which it operates—it is essentially requisite, before proceeding to a description of such instruments, to take a cursory view of its nature and properties, in so far as they have been ascertained, and the effects it produces when obstructed by certain bodies, or when passing through different mediums.

CHAPTER I.

GENERAL PROPERTIES OF LIGHT.

It is not my intention to discuss the subject of light in minute detail—a subject which is of considerable extent, and which would require a separate treatise to illustrate it in all its aspects and bearings. All that I propose is to offer a few illustrations of its general properties, and the laws by which it is refracted and reflected, so as to prepare the way for explaining the nature and construction of telescopes, and other optical instruments.

There is no branch of natural science more deserving of our study and investigation than that which relates to light—whether we consider its beautiful and extensive effects—the magnificence and grandeur of the objects it unfolds to view—the numerous and diversified phenomena it exhibits—the optical instruments which a knowledge of its properties has enabled us to construct—or the daily advantages we derive, as social beings, from its universal diffusion. If air, which serves as the medium of sound, and the vehicle of speech, enables us to carry on an interchange of thought and affection with our fellow-men; how much more extensively is that intercourse increased by light, which presents the images of our friends and other objects as it were immediately before us, in all their interesting forms and aspects—the speaking eye—the rosy cheeks—the benevolent smile, and the intellectual forehead! The eye, more susceptible of multifarious impressions than the other senses, ‘takes in at once the landscape of the world,’ and enables us to distinguish, in a moment, the shapes and forms of all its objects, their relative positions, the colours that adorn them, their diversified aspect, and the motions by which they are transported from one portion of space to another. Light, through the medium of the eye, not only unfolds to us the persons of others, in all their minute modifications and peculiarities, but exhibits us to ourselves. It presents to our own vision a faithful portrait of our peculiar features behind reflecting substances, without which property we should remain entirely ignorant of those traits of countenance which characterize us in the eyes of others.

But, what is the nature of this substance we call light, which thus unfolds to us the scenes of creation? On this subject two leading opinions have prevailed in the philosophical world. One of those opinions is, that the whole sphere of the universe is filled with a subtle matter, which receives from luminous bodies an agitation which is incessantly continued, and which, by its vibratory motion, enables us to perceive luminous bodies. According to this opinion, light may be considered as analogous to sound, which is conveyed to the ear by the vibratory motions of the air. This was the hypothesis of Descartes, which was adopted, with some modifications, by the celebrated Euler, Huygens, Franklin, and other philosophers, and has been admitted by several scientific gentlemen of the present day. The other opinion is, that light consists of the emission or emanation of the particles of luminous bodies, thrown out incessantly on all sides, in consequence of the continued agitation it experiences. This is the hypothesis of the illustrious Newton, and has been most generally adopted by British philosophers.

To the first hypothesis, it is objected that, if true, ‘light would not only spread itself in a direct line, but its motion would be transmitted in every direction like that of sound, and would convey the impression of luminous bodies in the regions of space beyond the obstacles that intervene to stop its progress.’ No wall or other opaque body could obstruct its course, if it undulated in every direction like sound; and it would be a necessary consequence, that we should have no night, nor any such phenomena as eclipses of the sun or moon, or of the satellites of Jupiter and Saturn. This objection has never been very satisfactorily answered. On the other hand, Euler brings forward the following objections against the Newtonian doctrine of emanation. 1. That, were the sun emitting continually, and in all directions, such floods of luminous matter with a velocity so prodigious, he must speedily be exhausted, or at least, some alteration must, after the lapse of so many ages, be perceptible. 2. That the sun is not the only body that emits rays, but that all the stars have the same quality; and as every where the rays of the sun must be crossing the rays of the stars, their collision must be violent in the extreme, and that their direction must be changed by such a collision.2

To the first of these objections it is answered—that so vast is the tenuity of light, that it utterly exceeds the power of conception: the most delicate instrument having never been certainly put in motion by the impulse of the accumulated sun-beams. It has been calculated that in the space of 385,130,000 Egyptian years, (of 360 days,) the sun would lose only the 1/1,217,420th of his bulk from the continual efflux of his light. And, therefore, if in 385 millions of years the sun’s diminution would be so extremely small, it would be altogether insensible during the comparatively short period of five or six thousand years. To the second objection it is replied—that the particles of light are so extremely rare that their distance from one another is incomparably greater than their diameters—that all objections of this kind vanish when we attend to the continuation of the impression upon the retina, and to the small number of luminous particles which are on that account necessary for producing constant vision. For it appears, from the accurate experiments of M. D’Arcy, that the impression of light upon the retina continues eight thirds, and as a particle of light would move through 26,000 miles in that time, constant vision would be maintained by a succession of luminous particles twenty-six thousand miles distant from each other.

Without attempting to decide on the merits of these two hypotheses, I shall leave the reader to adopt that opinion which he may judge to be attended with the fewest difficulties, and proceed to illustrate some of the properties of light:—and in the discussion of this subject, I shall generally adhere to the terms employed by those who have adopted the hypothesis of the emanation of light.

1. Light emanates or radiates from luminous bodies in a straight line. This property is proved by the impossibility of seeing light through bent tubes, or small holes pierced in metallic plates placed one behind another, except the holes be placed in a straight line. If we endeavour to look at the sun or a candle through the bore of a bended pipe, we cannot perceive the object, nor any light proceeding from it, but through a straight pipe the object may be perceived. This is likewise evident from the form of the rays of light that penetrate a dark room, which proceed straight forward in lines proceeding from the luminous body; and from the form of the shadows which bodies project, which are bounded by right lines passing from the luminous body, and meeting the lines which terminate the interposing body. This property may be demonstrated to the eye, by causing light to pass through small holes into a dark room filled with smoke or dust. It is to be understood, however, that in this case, the rays of light are considered as passing through the same medium; for when they pass from air into water, glass, or other media, they are bent at the point where they enter a different medium, as we shall afterwards have occasion to explain.

2. Light moves with amazing velocity. The ancients believed that it was propagated from the sun and other luminous bodies instantaneously; but the observations of modern astronomers have demonstrated that this is an erroneous hypothesis, and that light, like other projectiles, occupies a certain time in passing from one part of space to another. Its velocity, however, is prodigious, and exceeds that of any other body with which we are acquainted. It flies across the earth’s orbit—a space 190 millions of miles in extent, in the course of sixteen and a half minutes, which is at the rate of 192,000 miles every second, and more than a million of times swifter than a cannon ball flying with its greatest velocity. It appears from the discoveries of Dr. Bradley, respecting the aberration of the stars, that light flies from those bodies, with a velocity similar, if not exactly the same; so that the light of the sun, the planets, the stars, and every luminous body in the universe is propagated with uniform velocity.3 But, if the velocity of light be so very great, it may be asked, how does it not strike against all objects with a force equal to its velocity? If the finest sand were thrown against our bodies with the hundredth part of this velocity, each grain would pierce us as certainly as the sharpest and swiftest arrows from a bow. It is a principle in mechanics that the force with which all bodies strike, is in proportion to the size of these bodies, or the quantity of matter they contain, multiplied by the velocity with which they move. Therefore if the particles of light were not almost infinitely small, they would, of necessity prove destructive in the highest degree. If a particle of light were equal in size to the twelve hundred thousandth part of a small grain of sand,—supposing light to be material—we should be no more able to withstand its force than we should that of sand shot point blank from the mouth of a cannon. Every object would be battered and perforated by such celestial artillery, till our world were laid in ruins, and every living being destroyed. And herein are the wisdom and benevolence of the Creator displayed in making the particles of light so extremely small as to render them in some degree proportionate to the greatness of the force with which they are impelled; otherwise, all nature would have been thrown into ruin and confusion, and the great globes of the universe shattered to atoms.

We have many proofs, besides the above, that the particles of light are next to infinitely small. We find that they penetrate with facility the hardest substances, such as crystal, glass, various kinds of precious stones, and even the diamond itself, though among the hardest of stones; for such bodies could not be transparent, unless light found an easy passage through their pores. When a candle is lighted in an elevated situation, in the space of a second or two, it will fill a cubical space (if there be no interruption) of two miles around it, in every direction, with luminous particles, before the least sensible part of its substance is lost by the candle:—that is, it will in a short instant, fill a sphere four miles in diameter, twelve and a half miles in circumference, and containing thirty-three and a half cubical miles with particles of light; for an eye placed in any part of this cubical space would perceive the light emitted by the candle. It has been calculated that the number of particles of light contained in such a space cannot be less than four hundred septillions—a number which is six billions of times greater than the number of grains of sand which could be contained in the whole earth considered as a solid globe, and supposing each cubic inch of it to contain ten hundred thousand grains. Such is the inconceivable tenuity of that substance which emanates from all luminous bodies, and which gives beauty and splendour to the universe! This may also be evinced by the following experiment. Make a small pin-hole in a piece of black paper, and hold the paper upright facing a row of candles placed near each other, and at a little distance behind the black paper, place a piece of white pasteboard. On this pasteboard the rays which flow from all the candles through the small hole in the black paper, will form as many specks of light as there are candles, each speck being as clear and distinct as if there were only one speck from a single candle. This experiment shows that the streams of light from the different candles pass through the small hole without confusion, and consequently, that the particles of light are exceedingly small. For the same reason we can easily see through a small hole not more than 1/100th of an inch in diameter, the sky, the trees, houses, and nearly all the objects in an extensive landscape, occupying nearly an entire hemisphere, the light of all which may pass through this small aperture.

3. Light is sent forth in all directions from every visible point of luminous bodies. If we hold a sheet of paper before a candle, or the sun, or any other source of light, we shall find that the paper is illuminated in whatever position we hold it, provided the light is not obstructed by its edge or by any other body. Hence, wherever a spectator is placed with regard to a luminous body, every point of that part of its surface which is toward him will be visible, when no intervening object intercepts the passage of the light. Hence, likewise, it follows, that the sun illuminates, not only an immense plane extending along the paths of the planets, from the one side of the orbit of Uranus to the other, but the whole of that sphere, or solid space, of which the distance of Uranus is the radius. The diameter of this sphere is three thousand six hundred millions of miles, and it, consequently, contains about 24,000,000,000,000,000,000,000,000,000, or twenty-four thousand quartillions of cubical miles,—every point of which immense space is filled with the solar beams. Not only so, but the whole cubical space which intervenes between the sun and the nearest fixed stars is more or less illuminated by his rays. For, at the distance of Sirius, or any other of the nearest stars, the sun would be visible, though only as a small twinkling orb; and consequently, his rays must be diffused, however faint, throughout the most distant spaces whence he is visible. The diameter of this immense sphere of light cannot be less than forty billions of miles, and its solid contents 33,500,000,000,000,000,000,000,000,000,000,000,000,000 or, thirty-three thousand, five hundred sextillions of cubical miles. All this immense, and incomprehensible space is filled with the radiations of the solar orb; for were an eye placed in any one point of it, where no extraneous body interposed, the sun would be visible either as a large luminous orb, or as a small twinkling star. But he can be visible only by the rays he emits, and which enter the organs of vision. How inconceivably immense, then, must be the quantity of rays which are thrown off in all directions from that luminary which is the source of our day! Every star must likewise be considered as emitting innumerable streams of radiance over a space equally extensive, so that no point in the universe can be conceived where absolute darkness prevails, unless in the interior regions of planetary bodies.

4. The effect of light upon the eye is not instantaneous, but continues for a short space of time. This may be proved and illustrated by the following examples:—If a stick—or a ball connected with a string—be whirled round in a circle, and a certain degree of velocity given it, the object will appear to fill the whole circle it describes. If a lighted firebrand be whirled round in the same rapid manner, a complete circle of light will be exhibited. This experiment obviously shows that the impression made on the eye by the light from the ball or the firebrand—when in any given point of the circle—is sufficiently lasting to remain till it has described the whole circle, and again renews its effect, as often as the circular motion is continued. The same is proved by the following considerations:—We are continually shutting our eyes, or winking; and, during the time our eyes are shut, on such occasions, we should lose the view of surrounding objects, if the impression of light did not continue a certain time while the eye-lid covers the pupil; but experience proves that during such vibrations of the eye-lids, the light from surrounding objects is not sensibly intercepted. If we look for some time steadily at the light of a candle, and particularly, if we look directly at the sun, without any interposing medium, or if we look for any considerable time at this luminary, through a telescope with a coloured glass interposed—in all these cases, if we shut our eyes immediately after viewing such objects, we shall still perceive a faint image of the object, by the impression which its light has made upon our eyes.

‘With respect to the duration of the impression of light, it has been observed that the teeth of a cog-wheel in a clock were still visible in succession, when the velocity of rotation brought 246 teeth through a given fixed point in a second. In this case it is clear that if the impression made on the eye by the light reflected from any tooth, had lasted without sensible diminution for the 246th part of a second, the teeth would have formed one unbroken line, because a new tooth would have continually arrived in the place of the interior one before its image could have disappeared. If a live coal be whirled round, it is observed that the luminous circle is complete, when the rotation is performed in the (8½)/60th of a second. In this instance we see that the impression was much more durable than the former. Lastly, if an observer sitting in a room direct his sight through a window, to any particular object out of doors, for about half a minute, and then shut his eyes and cover them with his hands, he will still continue to see the window, together with the outline of the terrestrial objects bordering on the sky. This appearance will remain for near a minute, though occasionally vanishing and changing colour in a manner that brevity forbids our minutely describing. From these facts we are authorized to conclude, that all impressions of light on the eye, last a considerable time, that the brightest objects make the most lasting impressions; and that, if the object be very bright, or the eye weak, the impression may remain for a time so strong, as to mix with and confuse the subsequent impressions made by other objects. In the last case the eye is said to be dazzled by the light.’4

The following experiment has likewise been suggested as a proof of the impression which light makes upon the eye. If a card, on both sides of which a figure is drawn, for example, a bird and a cage, be made to revolve rapidly on the straight line which divides it symmetrically, the eye will perceive both figures at the same time, provided they return successively to the same place. M. D’Arcy found by various experiments, that, in general, the impression which light produces on the eye, lasts about the eighth of a second. M. Plateau, of Brussels, found that the impression of different colours lasted the following periods; the numbers here stated being the decimal parts of a second. Flame, 0.242. or nearly one fourth of a second; Burning coal, 0.229; White, 0.182, or, a little more than one sixth of a second; Blue, 0.186; Yellow, 0.173; Red, 0.184.

5. Light, though extremely minute, is supposed to have a certain degree of force or momentum. In order to prove this, the late ingenious Mr. Mitchell contrived the following experiment. He constructed a small vane in the form of a common weather-cock, of a very thin plate of copper, about an inch square, and attached to one of the finest harpsicord wires, about ten inches long, and nicely balanced at the other end of the wire, by a grain of very small shot. The instrument had also fixed to it in the middle, at right angles to the length of the wire, and in an horizontal direction, a small bit of a very slender sewing needle, about half an inch long, which was made magnetical. In this state the whole instrument might weigh about ten grains. The vane was supported in the manner of the needle in the mariner’s compass, so that it could turn with the greatest ease; and to prevent its being affected by the vibrations of the air, it was enclosed in a glass case or box. The rays of the sun were then thrown upon the broad part of the vane or copper plate, from a concave mirror of about two feet diameter, which, passing through the front glass of the box, were collected into the focus of the mirror upon the copper plate. In consequence of this the plate began to move with a slow motion of about an inch in a second of time, till it had moved through a space of about two inches and a half, when it struck against the back of the box. The mirror being removed, the instrument returned to its former situation, and the rays of the sun being again thrown upon it, it again began to move, and struck against the back of the box as before. This was repeated three or four times with the same success.

On the above experiment, the following calculation has been founded: If we impute the motion produced in this experiment to the impulse of the rays of light, and suppose that the instrument weighed ten grains, and acquired a velocity of one inch in a second, we shall find that the quantity of matter contained in the rays falling upon the instrument in that time amounted to no more than one twelve hundred-millionth part of a grain, the velocity of light exceeding the velocity of one inch in a second in the proportion of about 12,000,000,000 to 1. The light in this experiment was collected from a surface of about three square feet, which reflecting only about half what falls upon it, the quantity of matter contained in the rays of the sun incident upon a foot and a half of surface in one second of time, ought to be no more than the twelve hundred-millionth part of a grain. But the density of the rays of light at the surface of the sun is greater than that at the earth in the proportion of 45,000 to 1; there ought therefore to issue from one square foot of the sun’s surface in one second of time, in order to supply the waste by light 1/45,000th part of a grain of matter, that is, a little more than two grains a day, or about 4,752,000 grains, or 670 pounds avoirdupoise, nearly, in 6,000 years, a quantity which would have shortened the sun’s diameter no more than about ten feet, if it were formed of the density of water only.

If the above experiment be considered as having been accurately performed, and if the calculations founded upon it be correct, it appears that there can be no grounds for apprehension that the sun can ever be sensibly diminished by the immense and incessant radiations proceeding from his body on the supposition that light is a material emanation. For the diameter of the sun is no less than 880,000 miles; and, before this diameter could be shortened, by the emission of light, one English mile, it would require three millions, one hundred and sixty-eight thousand years, at the rate now stated; and, before it could be shortened ten miles, it would require a period of above thirty-one millions of years. And although the sun were thus actually diminished, it would produce no sensible effect or derangement throughout the planetary system. We have no reason to believe that the system, in its present state and arrangements, was intended to endure for ever, and before that luminary could be so far reduced, during the revolutions of eternity, as to produce any irregularities in the system, new arrangements and modifications might be introduced by the hand of the All Wise and Omnipotent Creator. Besides, it is not improbable that a system of means is established by which the sun and all the luminaries in the universe receive back again a portion of the light which they are continually emitting, either from the planets from whose surfaces it is reflected, or from the millions of stars whose rays are continually traversing the immense spaces of creation, or from some other sources to us unknown.

6. The intensity of light is diminished in proportion to the square of the distance from the luminous body. Thus, a person at two feet distance from a candle, has only the fourth part of the light he would have at one foot, at three feet distance the ninth part, at four feet the sixteenth part, at five feet the twenty fifth part, and so on for other distances. Hence the light received by the planets of the Solar system decreases in proportion to the squares of the distances of these bodies from the sun. This may be illustrated by the following figure,

Figure 1.

Suppose the light which flows from a point A, and passes through a square hole B, is received upon a plane C, parallel to the plane of the hole—or, let the figure C be considered as the shadow of the plane B. When the distance of C is double of B, the length and breadth of the shadow C will be each double of the length and breadth of the plane B, and treble when AD is treble of AB, and so on, which may be easily examined by the light of a candle placed at A. Therefore the surface of the shadow C, at the distance AC—double of AB, is divisible into four squares, and at a treble distance, into nine squares, severally equal to the square B, as represented in the figure. The light, then, which falls upon the plane B being suffered to pass to double that distance, will be uniformly spread over four times the space, and consequently will be four times thinner in every part of that space. And at a treble distance it will be nine times thinner, and at a quadruple distance sixteen times thinner than it was at first. Consequently the quantities of this rarified light received upon a surface of any given size and shape when removed successively to these several distances, will be but one-fourth, one-ninth, one-sixteenth, of the whole quantity received by it at the first distance AB.

In conformity with this law, the relative quantities of light on the surfaces of the planets may be easily determined, when their distances from the sun are known. Thus, the distance of Uranus from the sun is 1,800,000,000 miles, which is about nineteen times greater than the distance of the earth from the same luminary. The square of 19 is 361; consequently the earth enjoys 361 times the intensity of light when compared with that of Uranus; in other words, this distant planet enjoys only the 1/361 part of the quantity of light which falls upon the earth. This quantity, however, is equivalent to the light we should enjoy from the combined effulgence of 348 full moons; and if the pupils of the eyes of the inhabitants of this planet be much larger than ours, and the retina of the eye be endued with a much greater degree of nervous sensibility, they may perceive objects with as great a degree of splendour as we perceive on the objects which surround us in this world. Following out the same principle, we find that the quantity of light enjoyed by the planet Mercury is nearly seven times greater than that of the Earth, and that of Venus nearly double of what we enjoy—that Mars has less than the one half—Jupiter the one twenty-seventh part—and Saturn only the one ninetieth part of the light which falls upon the Earth. That the light of these distant planets, however, is not so weak as we might at first imagine appears from the brilliancy they exhibit, when viewed in our nocturnal sky, either with the telescope or with the unassisted eye—and likewise from the circumstance that a very small portion of the Sun—such as the one fortieth or one fiftieth part diffuses a quantity of light sufficient for most of the purposes of life, as is found in the case of total eclipses of the Sun, when his western limb begins to be visible, only like a fine luminous thread, for his light is then sufficient to render distinctly visible all the parts of the surrounding landscape.

7. It is by light reflected from opake bodies that most of the objects around us are rendered visible. When a lighted candle is brought into a dark room, not only the candle but all other bodies in the room become visible. Rays of the sun passing into a dark room render luminous a sheet of paper on which they fall, and this sheet in its turn enlightens, to a certain extent, the whole apartment, and renders objects in it visible, so long as it receives the rays of the sun. In like manner, the moon and the planets are opake bodies, but the light of the sun falling upon them, and being reflected from their surfaces, renders them visible. Were no light to fall on them from the sun, or were they not endued with a power of reflecting it, they would be altogether invisible to our sight. When the moon comes between us and the sun, as in a total eclipse of that luminary, as no solar light is reflected from the surface next the earth, she is invisible—only the curve or outline of her figure being distinguished by her shadow. In this case, however, there is a certain portion of reflected light on the lunar hemisphere next the earth, though not distinguishable during a solar eclipse. The earth is enlightened by the sun, and a portion of the rays which fall upon it is reflected upon the dark hemisphere of the moon which is then towards the earth. This reflected light from the earth is distinctly perceptible, when the moon appears as a slender crescent, two or three days after new moon—when the earth reflects its light back on the moon, in the same manner as the full moon reflects her light on the earth. Hence, even at this period of the moon, her whole face becomes visible to us, but its light is not uniform or of equal intensity. The thin crescent on which the full blaze of the solar light falls, is very brilliant and distinctly seen, while the other part, on which falls only a comparatively feeble light from the earth, appears very faint, and is little more than visible to the naked eye, but with a telescope of moderate power,—if the atmosphere be very clear—it appears beautifully distinct, so that the relative positions of many of the lunar spots may be distinguished.

The intensity of reflected light is very small, when compared with that which proceeds directly from luminous bodies. M. Bouguer, a French philosopher, who made a variety of experiments to ascertain the proportion of light emitted by the heavenly bodies, concluded from these experiments, that the light transmitted from the sun to the earth is at least 300,000 times as great as that which descends to us from the full moon—and that, of 300,000 rays which the moon receives, from 170,000 to 200,000 are absorbed. Hence we find that, however brilliant the moon may appear at night—in the day time she appears as obscure as a small portion of dusky cloud to which she happens to be adjacent, and reflects no more light than a portion of whitish cloud of the same size. And as the full moon fills only the ninety thousandth part of the sky, it would require at least ninety thousand moons to produce as much light as we enjoy in the day-time under a cloudy sky.

As the moon and the planets are rendered visible to us only by light reflected from their surfaces, so it is in the same way that the images of most of the objects around us are conveyed to our organs of vision. We behold all the objects which compose an extensive landscape,—the hills and vales, the woods and lawns, the lakes and rivers, and the habitations of man—in consequence of the capacity with which they are endued of sending forth reflected rays to the eye, from every point of their surfaces and in all directions. In connection with the reflection of light, the following curious observation may be stated. Baron Funk, visiting some silver mines in Sweden, observed, that, ‘in a clear day, it was as dark as pitch underground in the eye of a pit, at sixty or seventy fathoms deep; whereas, in a cloudy or rainy day, he could see to read even at 106 fathoms deep. Enquiring of the miners, he was informed that this is always the case; and reflecting upon it, he imagined it arose from this circumstance, that when the atmosphere is full of clouds, light is reflected from them into the pit in all directions, and that thereby a considerable proportion of the rays are reflected perpendicularly upon the earth: whereas when the atmosphere is clear, there are no opaque bodies to reflect the light in this manner, at least in a sufficient quantity; and rays from the sun himself can never fall perpendicularly in that country.’—The reason here assigned is, in all probability, the true cause of the phenomenon now described.

8. It is supposed by some philosophers that light is subject to the same laws of attraction that govern all other material substances—and that it is imbibed and forms a constituent part of certain bodies. This has been inferred from the phenomena of the Bolognian stone, and what are generally called the solar phosphori. The Bolognian stone was first discovered about the year 1680, by Leascariolo, a shoe-maker of Bologna. Having collected together some stones of a shining appearance at the bottom of Monte Paterno, and being in quest of some alchemical secret, he put them into a crucible to calcine them—that is, to reduce them to the state of cinders. Having taken them out of the crucible, and exposed them to the light of the sun, he afterwards happened to carry them into a dark place, when to his surprise, he observed that they possessed a self-illuminating power, and continued to emit faint rays of light for some hours afterwards. In consequence of this discovery, the Bolognian spar came into considerable demand among natural philosophers and the curious in general; and the best way of preparing it seems to have been hit upon by the family of Zagoni, who supplied all Europe with Bolognian phosphorus, till the discovery of more powerful phosphoric substances put an end to their monopoly.—In the year 1677, Baldwin, a native of Misnia, observed that chalk dissolved in aqua-fortis exactly resembled the Bolognian stone in its property of imbibing light, and emitting it after it was brought into the dark ; and hence it has obtained the name of Baldwin’s phosphorus.

In 1730 M. du Fay directed his attention to this subject, and observed that all earthy substances susceptible of calcination, either by mere fire, or when assisted by the previous action of nitrous acid, possessed the property of becoming more or less luminous, when calcined and exposed for a short time in the light—that the most perfect of these phosphori were limestones, and other kinds of carbonated lime, gypsum, and particularly the topaz, and that some diamonds were also observed to be luminous by simple exposure to the sun’s rays. Sometime afterwards, Beccaria discovered that a great variety of other bodies were convertible into phosphori by exposure to the mere light of the sun, such as, organic animal remains, most compound salts, nitre and borax—all the farinaceous and oily seeds of vegetable substances, all the gums and several of the resins—the white woods and vegetable fibre, either in the form of paper or linen; also starch and loaf-sugar proved to be good phosphori, after being made thoroughly dry, and exposed to the direct rays of the sun. Certain animal substances by a similar treatment were also converted into phosphori; particularly bone, sinew, glue, hair, horn, hoof, feathers, and fish-shells. The same property was communicated to rock crystal and some other of the gems, by rubbing them against each other so as to roughen their surfaces, and then placing them for some minutes in the focus of a lens, by which the rays of light were concentrated upon them, at the same time that they were also moderately heated.

In the year 1768 Mr. Canton contributed some important facts in relation to solar phosphori, and communicated a method of preparing a very powerful one, which, after the inventor, is usually called Canton’s phosphorus. He affirms that his phosphorus, enclosed in a glass flask, and hermetically sealed, retains its property of becoming luminous for at least four years, without any apparent decrease of activity. It has also been found that, if a common box smoothing-iron, heated in the usual manner, be placed for half a minute on a sheet of dry, white paper, and the paper be then exposed to the light, and afterwards examined in a dark closet, it will be found that the whole paper will be luminous, that part, however, on which the iron had stood being much more shining than the rest.

From the above facts it would seem that certain bodies have the power of imbibing light and again emitting it, in certain circumstances, and that this power may remain for a considerable length of time. It is observed that the light which such bodies emit bears an analogy to that which they have imbibed. In general, the illuminated phosphorus is reddish; but when a weak light only has been admitted to it, or when it has been received through pieces of white paper, the emitted light is pale or whitish.—Mr. Morgan, in the seventy-fifth volume of the Philosophical Transactions, treats the subject of light at considerable length; and as a foundation for his reasoning, he assumes the following data:—1. That light is a body, and like all others, subject to the laws of attraction. 2. That light is a heterogeneous body; and that the same attractive power operates with different degrees of force on its different parts. To the principle of attraction, likewise, Sir Isaac Newton has referred the most extraordinary phenomena of light, Refraction and Inflection. He has also endeavoured to show that light is not only subject to the law of attraction but of repulsion also, since it is repelled or reflected from certain bodies. If such principles be admitted, then, it is highly probable that the phosphorescent bodies to which we have adverted have a power of attracting or imbibing the substance of light, and of retaining or giving it out under certain circumstances, and that the matter of light is incorporated at least with the surface of such bodies. But on this subject, as on many others, there is a difference of opinion among philosophers.5

9. Light is found to produce a remarkable effect on Plants and Flowers, and other vegetable productions. Of all the phenomena which living vegetables exhibit there are few that appear more extraordinary than the energy and constancy with which their stems incline toward the light. Most of the discous flowers follow the sun in his course. They attend him to his evening retreat, and meet his rising lustre in the morning with the same unerring law. They unfold their flowers on the approach of this luminary; they follow his course by turning on their stems, and close them as soon as he disappears. If a plant, also, is shut up in a dark room, and a small hole afterwards opened by which the light of the sun may enter, the plant will turn towards that hole, and even alter its own shape in order to get near it; so that though it was straight before, it will in time become crooked, that it may get near the light. Vegetables placed in rooms where they receive light only in one direction, always extend themselves in that direction. If they receive light in two directions, they direct their course towards that which is strongest. It is not the heat but the light of the sun which the plant thus covets; for, though a fire be kept in the room, capable of giving a much stronger heat than the sun, the plant will turn away from the fire in order to enjoy the solar light. Trees growing in thick forests, where they only receive light from above, direct their shoots almost invariably upwards, and therefore become much taller and less spreading than such as stand single.

The green colour of plants is likewise found to depend on the sun’s light being allowed to shine on them; for without the influence of the solar light, they are always of a white colour. It is found by experiment that, if a plant which has been reared in darkness be exposed to the light of day, in two or three days it will acquire a green colour perceptibly similar to that of plants which have grown in open day-light. If we expose to the light one part of the plant, whether leaf or branch, this part alone will become green. If we cover any part of a leaf with an opake substance, this place will remain white, while the rest becomes green. The whiteness of the inner leaves of cabbages is a partial effect of the same cause, and many other examples of the same kind might easily be produced. M. Decandolle, who seems to have paid particular attention to this subject, has the following remarks: ‘It is certain, that between the white state of plants vegetating in darkness, and complete verdure, every possible intermediate degree exists, determined by the intensity of the light. Of this any one may easily satisfy himself by attending to the colour of a plant exposed to the full day-light; it exhibits in succession all the degrees of verdure. I had already seen the same phenomenon, in a particular manner, by exposing plants reared in darkness to the light of lamps. In these experiments, I not only saw the colour come on gradually, according to the continuance of the exposure to light; but I satisfied myself, that a certain intensity of permanent light never gives to a plant more than a certain degree of colour. The same fact readily shows itself in nature, when we examine the plants that grow under shelter or in forests, or when we examine in succession the state of the leaves that form the heads of cabbages.’6

It is likewise found that the perspiration of vegetables is increased or diminished, in a certain measure by the degree of light which falls upon them. The experiments of Mr. P. Miller and others, prove that plants uniformly perspire most in the forenoon, though the temperature of the air in which they are placed should be unvaried. M. Guettard likewise informs us that a plant exposed to the rays of the sun, has its perspiration increased to a much greater degree than if it had been exposed to the same heat under the shade. Vegetables are likewise found to be indebted to light for their smell, taste, combustibility, maturity, and the resinous principle, which equally depend upon this fluid. The aromatic substances, resins, and volatile oil are the productions of southern climates, where the light is more pure, constant, and intense. In fine, another remarkable property of light on the vegetable kingdom is that, when vegetables are exposed to open day-light, or to the sun’s rays, they emit oxygen gas or vital air. It has been proved that, in the production of this effect, the sun does not act as a body that heats. The emission of the gas is determined by the light: pure air is therefore separated by the action of light, and the operation is stronger as the light is more vivid. By this continual emission of vital air, the Almighty incessantly purifies the atmosphere, and repairs the loss of pure air occasioned by respiration, combustion, fermentation, putrefaction, and numerous other processes which have a tendency to contaminate this fluid so essential to the vigor and comfort of animal life; so that, in this way, by the agency of light, a due equilibrium is always maintained between the constituent parts of the atmosphere.

In connection with this subject the following curious phenomenon may be stated, as related by M. Haggern, a Lecturer on Natural History in Sweden. One evening he perceived a faint flash of light repeatedly dart from a marigold. Surprised at such an uncommon appearance, he resolved to examine it with attention; and, to be assured it was no deception of the eye, he placed a man near him, with orders to make a signal at the moment when he observed the light. They both saw it constantly at the same moment. The light was most brilliant on marigolds of an orange or flame colour, but scarcely visible on pale ones. The flash was frequently seen on the same flower two or three times in quick succession; but more commonly at intervals of several minutes; and when several flowers in the same place emitted their light together, it could be observed at a considerable distance. The phenomenon was remarked in the months of July and August at sun-set, and for half an hour when the atmosphere was clear; but after a rainy day, or when the air was loaded with vapours, nothing of it was seen. The following flowers emitted flashes more or less vivid, in this order:—1. The Marigold, 2. Monk’s hood, 3. The Orange Lily, 4. The Indian Pink. As to the cause of this phenomenon, different opinions may be entertained. From the rapidity of the flash and other circumstances, it may be conjectured that electricity is concerned in producing this appearance. M. Haggern, after having observed the flash from the orange lily, the antherÆ of which are at considerable distance from the petals, found that the light proceeded from the petals only; whence he concludes, that this electrical light is caused by the pollen which, in flying off, is scattered on the petals. But, perhaps, the true cause of it still remains to be ascertained.

10. Light has been supposed to produce a certain degree of influence on the PROPAGATION OF SOUND?—M. Parolette, in a long paper in the ‘Journal de Physique,’ vol. 68, which is copied into ‘Nicholson’s Philosophical Journal,’ vol. 25, pp. 28-39,—has offered a variety of remarks, and detailed a number of experiments on this subject. The author states the following circumstances as having suggested the connection between light and sound. ‘In 1803, I lived in Paris, and being accustomed to rise before day to finish a work on which I had long been employed, I found myself frequently disturbed by the sound of carriages, as my windows looked into one of the most frequented streets in that city. This circumstance which disturbed me in my studies every morning, led me to remark, that the appearance of day-break peculiarly affected the propagation of the sound: from dull and deep, which it was before day, it seemed to me to acquire a more sonorous sharpness in the period that succeeded the dissipation of darkness. The rolling of the wheels seemed to announce the friction of some substances grown more elastic; and my ear on attending to it perceived this difference diminish, in proportion as the sound of wheels was confounded with those excited by the tumult of objects quitting their nocturnal silence. Struck with this observation, I attempted to discover whether any particular causes had deceived my ears. I rose several times before day for this purpose alone, and was every time confirmed in my suspicion, that light must have a peculiar influence on the propagation of sound. This variation, however, in the manner in which the air gave sounds might be the effect of the agitation of the atmosphere produced by the rarefaction the presence of the sun occasioned; but the situation of my windows, and the usual direction of the morning breeze, militated against this argument.’

The author then proceeds to give a description of a very delicate instrument, and various apparatus for measuring the propagation and intensity of sound, and the various experiments both in the dark, and in day-light, and likewise under different changes of the atmosphere, which were made with his apparatus—all of which tended to prove that light had a sensible influence in the propagation of sound. But the detail of these experiments and their several results would be too tedious to be here transcribed.—The night has generally been considered as more favourable than the day for the transmission of sound. ‘That this is the case (says Parolette) with respect to our ears cannot be doubted; but this argues nothing against my opinion. We hear further by night on account of the silence, and this always contributes to it, while the noise of a wind favourable to the propagation of a sound, may prevent the sound from being heard.’ In reference to the cause which produces the effect now stated, he proposes the following queries. ‘Is the atmospheric air more dense on the appearance of light than in darkness? Is this greater density of the air or of the elastic fluid that is subservient to the propagation of sound, the effect of aeriform substances kept in this state through the medium of light?’ He is disposed, on the whole, to conclude, that the effect in question is owing to the action of light upon the oxygen of the atmosphere, since oxygen gas is found by experiment to be best adapted to the transmission of sound.

Our author concludes his communication with the following remarks:—‘Light has a velocity 900,000 times as rapid as that of sound. Whether it emanate from the sun and reach to our earth, or act by means of vibrations agitating the particles of a fluid of a peculiar nature—the particles of this fluid must be extremely light, elastic and active. Nor does it appear to me unreasonable, to ascribe to the mechanical action of these particles set in motion by the sun, the effects its presence occasions in the vibrations that proceed from sonorous bodies. The more deeply we investigate the theory of light, the more we must perceive, that the powers by which the universe is moved reside in the imperceptible particles of bodies; and that the grand results of nature are but an assemblage of an order of actions that take place in its infinitely small parts; consequently, we cannot institute a series of experiments more interesting than those which tend to develope the properties of light. Our organs of sense are so immediately connected with the fluid that enlightens us, that the notion of having acquired an idea of the mode of action of this fluid presents itself to our minds, as the hope of a striking advance in the knowledge of what composes the organic mechanism of our life, and of that of beings which closely follow the rank assigned to the human species.’


Such is a brief description of some of the leading properties of light. Of all the objects that present themselves to the philosophic and contemplative mind, light is one of the noblest and most interesting. The action it exerts on all the combinations of matter, its extreme divisibility, the rapidity of its propagation, the sublime wonders it reveals, and the office it performs in what constitutes the life of organic beings, lead us to consider it as a substance acting the first part in the economy of nature. The magic power which this emanation from the heavens exerts on our organs of vision, in exhibiting to our view the sublime spectacle of the universe, cannot be sufficiently admired. Nor is its power confined to the organs of sight; all our senses are, in a greater or less degree, subjected to the action of light, and all the objects in this lower creation—whether in the animal, the vegetable, or the mineral kingdoms—are, to a certain extent, susceptible of its influence. Our globe appears to be little more than an accumulation of terrestrial materials introduced into the boundless ocean of the solar light, as a theatre on which it may display its exhaustless power and energy, and give animation, beauty and sublimity to every surrounding scene—and to regulate all the powers of nature, and render them subservient to the purposes for which they were ordained. This elementary substance appears to be universal in its movements, and in its influence. It descends to us from the solar orb. It wings its way through the voids of space, along a course of ninety-five millions of miles, till it arrives at the outskirts of our globe; it passes freely through the surrounding atmosphere, it strikes upon the clouds and is reflected by them; it irradiates the mountains, the vales, the forests, the rivers, the seas, and all the productions of the vegetable kingdom, and adorns them with a countless assemblage of colours. It scatters and disperses its rays from one end of creation to another, diffusing itself throughout every sphere of the universe. It flies without intermission from star to star, and from suns to planets, throughout the boundless sphere of immensity, forming a connecting chain and a medium of communication among all the worlds and beings within the wide empire of Omnipotence.

When the sun is said “to rule over the day,” it is intimated that he acts as the vicegerent of the Almighty, who has invested him with a mechanical power of giving light, life and motion to all the beings susceptible of receiving impressions from his radiance. As the servant of his creator he distributes blessings without number among all the tribes of sentient and intelligent existence. When his rays illumine the eastern sky in the morning, all nature is enlivened with his presence. When he sinks beneath the western horizon, the flowers droop, the birds retire to their nests, and a mantle of darkness is spread over the landscape of the world. When he approaches the equinox in spring, the animal and vegetable tribes revive, and nature puts on a new and a smiling aspect. When he declines towards the winter solstice, dreariness and desolation ensue, and a temporary death takes place among the tribes of the vegetable world.—This splendid luminary, whose light embellishes the whole of this lower creation, forms the most lively representation of Him who is the source and the centre of all beauty and perfection. “God is a sun,” the sun of the moral and spiritual universe, from whom all the emanations of knowledge, love and felicity descend. “He covereth himself with light as with a garment.” and “dwells in light inaccessible and full of glory.” The felicity and enjoyments of the future world are adumbrated under the ideas of light and glory. “The glory of God enlightens the celestial city,” its inhabitants are represented as “the saints in light,” it is declared that “their sun shall no more go down,” and that “the Lord God is their everlasting light.” So that light not only cheers and enlivens all beings throughout the material creation, but is the emblem of the Eternal Mind, and of all that is delightful and transporting in the scenes of a blessed immortality.

In the formation of light, and the beneficent effects it produces, the wisdom and goodness of the Almighty are conspicuously displayed. Without the beams of the sun and the influence of light, what were all the realms of this world, but an undistinguished chaos and so many dungeons of darkness? In vain should we roll our eyes around to behold, amidst the universal gloom, the flowery fields, the verdant plains, the flowing streams, the expansive ocean, the moon walking in brightness, the planets in their courses, or the innumerable host of stars. All would be lost to the eye of man, and the “blackness of darkness” would surround him for ever. And with how much wisdom has every thing been arranged in relation to the motion and minuteness of light? Were it capable of being transformed into a solid substance, and retain its present velocity, it would form the most dreadful and appalling element in nature, and produce universal terror and destruction throughout the universe. That this is not impossible, and could easily be effected by the hand of Omnipotence, appears from such substances as phosphorus, where light is supposed to be concentrated in a solid state. But in all its operations and effects, as it is now directed by unerring wisdom and beneficence, it exhibits itself as the most benign and delightful element connected with the constitution of the material system, diffusing splendour and felicity wherever its influence extends.

CHAPTER II.

ON THE REFRACTION OF LIGHT.

Refraction is the turning or bending of the rays of light out of their natural course.

Light, when proceeding from a luminous body—without being reflected from any opake substance or inflected by passing near one—is invariably found to proceed in straight lines without the least deviation. But if it happens to pass obliquely from one medium to another, it always leaves the direction it had before and assumes a new one. This change of direction, or bending of the rays of light, is what is called Refraction—a term which probably had its origin from the broken appearance which a staff or a long pole exhibits, when a portion of it is immersed in water—the word, derived from the Latin frango, literally signifying breaking or bending.

When light is thus refracted, or has taken a new direction, it then proceeds invariably in a straight line till it meets with a different medium,7 when it is again turned out of its course. It must be observed, however, that though we may by this means cause the rays of light to make any number of angles in their course, it is impossible for us to make them describe a curve, except in one single case, namely, where they pass through a medium, the density of which either uniformly increases or diminishes. This is the case with the light of the celestial bodies, which passes downwards through our atmosphere, and likewise with that which is reflected upwards through it by terrestrial objects. In both these cases it describes a curve of the hyperbolic kind; but at all other times, it proceeds in straight lines, or in what may be taken for straight lines without any sensible error.

There are two circumstances essential to refraction. 1. That the rays of light shall pass out of one medium into another of a different density, or of a greater or less degree of resistance. 2. That they pass in an oblique direction. The denser the refracting medium, or that into which the ray enters, the greater will be its refracting power; and of two refracting mediums of the same density, that which is of an oily or inflammable nature will have a greater refracting power than the other. The nature of refraction may be more particularly explained and illustrated by the following figure and description.

Let ADHI fig. 2, be a body of water, AD its surface, C a point in which a ray of light BC enters from the air into the water. This ray, by the greater density of the water, instead of passing straight forward in its first direction to K, will be bent at the point C, and pass along in the direction CE, which is called the refracted ray. Let the line FG be drawn perpendicular to the surface of the water in C, then it is evident that the ray BC, in passing out of air, a rare medium, into a dense medium, as water, is refracted into a ray CE which is nearer to the perpendicular CG than the incident ray BC, and on the contrary, the ray EC passing out of a denser medium into a rarer will be refracted into CB, which is farther from the perpendicular.

figure 2.

The same thing may be otherwise illustrated as follows:—suppose a hole made in one of the sides of the vessel as at a, and a lighted candle placed within two or three feet of it, when empty, so that its flame may be at L, a ray of light proceeding from it will pass through the hole a in a straight line LBCK till it reach the bottom of the vessel at K, where it will form a small circle of light. Having put a mark at the point K, pour water into the vessel till it rise to the height AD, and the round spot that was formerly at K, will appear at E; that is, the ray which went straight forward, when the vessel was empty, to K, has been bent at the point C, where it falls into the the water, into the line CE. In this experiment it is necessary that the front of the vessel should be of glass, in order that the course of the ray may be seen; and if a little soap be mixed with the water so as to give it a little mistiness, the ray CE will be distinctly perceived. If, in place of fresh water we pour in salt water, it will be found that the ray BC is more bent at C. In like manner alcohol will refract the ray BC more than salt water, and oil more than alcohol, and a piece of solid glass, of the shape of the water, would refract the light still more than the oil.

The angle of refraction depends on the obliquity of the rays falling on the refracting surface being always such, that the sine of the incident angle is to the sine of the refracted angle, in a given proportion. The incident angle is the angle made by a ray of light and a line drawn perpendicular to the refracting surface, at the point where the light enters the surface. The refracted angle is the angle made by the ray in the refracting medium with the same perpendicular produced. The sine of the angle is a line which serves to measure the angle, being drawn from a point in one leg perpendicular to the other. The following figure (fig. 3.) will tend to illustrate these definitions.

figure 3.

In this figure BC is the incident ray, CE the refracted ray, DG the perpendicular, AD the sine of the angle of incidence ACD, and HR the sine of the angle of refraction GCE. Now, it is a proposition in optics that,—the sine AD of the angle of incidence BCD is either accurately or very nearly in a given proportion to the sine HR of the angle of refraction GCE. This ratio of the sines is as four to three, when the refraction is made out of air into water, that is AD is to HR as four to three. When the refraction is out of air into glass, the proportion is about as thirty-one to twenty, or nearly as three to two. If the refraction be out of air into diamond it is as five to two, that is AD : HR :: 5 : 2. The denser the medium is, the less is the angle and sine of refraction. If a ray of light MC, were to pass from air into water, or from empty space into air, in the direction MC perpendicular to the plane NO which separates the two mediums, it would suffer no refraction, because one of the essentials to that effect is wanting, namely, the obliquity of the incidence.

It may be also proper to remark, that a ray of light cannot pass out of a denser medium into a rarer, if the angle of incidence exceed a certain limit. Thus a ray of light will not pass out of glass into air, if the angle of incidence exceed 40° 11´; or out of glass into water, if the angle of incidence exceed 59° 20´. In such cases refraction will be changed into reflection.

The following common experiments, which are easily performed, will illustrate the doctrine of refraction. Put a shilling or any other small object which is easily distinguished, into a bason or any other similar vessel, and then retire to such a distance as that the edge of the vessel shall just hide it from your sight. If then you cause another person to fill the vessel with water, you will then find that the shilling is rendered perfectly visible, although you have not in the slightest degree changed your position. The reason of this is, that the rays of light, by which it is rendered visible, are bent out of their course. Thus, suppose the shilling to have been placed in the bottom of the bason at E, (fig. 2.) the ray of light BC which passes obliquely from the air into water at C, instead of continuing its course to K, takes the direction CE, and consequently an object at E would be rendered visible by rays proceeding in that direction, when they would not have touched it had they proceeded in their direct course.

The same principle is illustrated by the following experiment. Place a bason or square box on a table, and a candle at a small distance from it; lay a small rod or stick across the sides of the bason, and mark the place where the extremity of the shadow falls, by placing a shilling or other object at the point; then let water be poured into the bason, and the shadow will then fall much nearer to the side next the candle than before. This experiment may likewise be performed by simply observing the change produced on the shadow of the side of the bason itself. Again, put a long stick obliquely into deep water, and the stick will seem to be broken at the point where it appears at the surface of the water—the part which is immersed in the water appearing to be bent upwards. Hence every one must have observed that, in rowing a boat, the ends of the oars appear bent or broken every time they are immersed in the water, and their appearance at such times is a representation of the course of the refracted rays. Again, fill a pretty deep jar with water, and you will observe the bottom of the jar considerably elevated, so that it appears much shallower than it did before the water was poured in, in the proportion of nearly a third of its depth, which is owing to the same cause as that which makes the end of a stick immersed in water appear more elevated than it would do if there were no refraction. Another experiment may be just mentioned. Put a sixpence in a wine-glass, and pour upon it a little water. When viewed in a certain position, two sixpences will appear in the glass—one image of the sixpence from below, which comes directly to the eye, and another which appears considerably raised above the other, in consequence of the rays of light rising through the water, and being refracted. In this experiment the wine-glass should not be more than half filled with water.

The refraction of light explains the causes of many curious and interesting phenomena both in the heavens and on the earth. When we stand on the banks of a river, and look obliquely through the waters to its bottom, we are apt to think it is much shallower than it really is. If it be eight feet deep in reality, it will appear from the bank to be only six feet; if it be five feet and a half deep, it will appear only about four feet. This is owing to the effects of refraction, by which the bottom of the river is apparently raised by the refraction of the light passing through the water into air, so as to make the bottom appear higher than it really is, as in the experiment with the jar of water. This is a circumstance of some importance to be known and attended to in order to personal safety. For many school-boys and other young persons have lost their lives by attempting to ford a river, the bottom of which appeared to be within their reach, when they viewed it from its banks: and even adult travellers on horseback have sometimes fallen victims to this optical deception; and this is not the only case in which a knowledge of the laws of nature may be useful in guarding us against dangers and fatal accidents.

It is likewise owing to this refractive power in water, that a skilful marksman who wishes to shoot fish under water, is obliged to take aim considerably below the fish as it appears, because it seems much nearer the top of the water than it really is. An acquaintance with this property of light is particularly useful to divers, for, in any of their movements or operations, should they aim directly at the object, they would arrive at a point considerably beyond it; whereas, by having some idea of the depth of the water, and the angle which a line drawn from the eye to the object makes with its surface, the point at the bottom of the water, between the eye and the object at which the aim is to be taken, may be easily determined. For the same reason, a person below water does not see objects distinctly. For, as the aqueous humour of the eye has the same refractive power as water, the rays of light from any object under water will undergo no refraction in passing through the cornea, and aqueous humour, and will therefore meet in a point far behind the retina. But if any person accustomed to go below water should use a pair of spectacles, consisting of two convex lenses, the radius of whose surface is three tenths of an inch—which is nearly the radius of the convexity of the cornea—he will see objects as distinctly below water as above it.

It is owing to refraction, that we cannot judge so accurately of magnitudes and distances in water as in air. A fish looks considerably larger in water than when taken out of it. An object plunged vertically into water always appears contracted, and the more so as its upper extremity approaches nearer the surface of the water. Every thing remaining in the same situation, if we take the object gradually out of the water, and it be of a slender form, we shall see it become larger and larger, by a rapid developement, as it were, of all its parts. The distortion of objects, seen through a crooked pane of glass in a window, likewise arises from its unequal refraction of the rays that pass through it. It has been calculated that in looking through the common glass of a window, objects appear about the one thirtieth of an inch out of their real place, by means of the refraction.

Refraction likewise produces an effect upon the heavenly bodies, so that their apparent positions are generally different from their real. By the refractive power of the atmosphere, the sun is seen before he comes to the horizon in the morning, and after he sinks beneath it in the evening; and hence this luminary is never seen in the place in which it really is, except when it passes the zenith at noon, to places within the torrid zone. The sun is visible, when actually thirty-two minutes of a degree below the horizon, and when the opake rotundity of the earth is interposed between our eye and that orb, just on the same principle as, in the experiment with the shilling and basin of water, the shilling was seen when the edge of the basin interposed between it and the sight. The refractive power of the atmosphere has been found to be much greater, in certain cases, than what has been now stated. In the year 1595 a company of Dutch sailors having been wrecked on the shores of Nova Zembla, and having been obliged to remain in that desolate region during a night of more than three months—beheld the sun make his appearance in the horizon about sixteen days before the time in which he should have risen according to calculation, and when his body was actually more than four degrees below the horizon; which circumstance has been attributed to the great refractive power of the atmosphere in those intensely cold regions. This refraction of the atmosphere, which renders the apparent rising and setting of the sun both earlier and later than the real, produces at least one important beneficial effect. It procures for us the benefit of a much longer day, at all seasons of the year, than we should enjoy, did not this property of the atmosphere produce this effect. It is owing to the same cause that the disks of the sun and moon appear elliptical or oval, when seen in the horizon, their horizontal diameters appearing longer than their vertical—which is caused by the greater refraction of the rays coming from the lower limb, which is immersed in the densest part of the atmosphere.

The illumination of the heavens which precedes the rising of the sun, and continues sometime after he is set—or, what is commonly called the morning and evening twilight—is likewise produced by the atmospherical refraction—which circumstance forms a very pleasing and beneficial arrangement in the system of nature. It not only prolongs to us the influence of the solar light, and adds nearly two hours to the length of our day, but prevents us from being transported all at once from the darkness of midnight to the splendour of noon-day, and from the effulgence of day to the gloom and horrors of the night—which would bewilder the traveller and navigator in their journeys by sea or land, and strike the living world with terror and amazement.

The following figure will illustrate the position now stated, and the manner in which the refraction of the atmosphere produces these effects. Let A a C, fig. 4, represent one half of our globe, and the dark space between that curve and B r D, the atmosphere. A person standing on the earth’s surface at a would see the sun rise at b, when that luminary was in reality only at c—more than half a degree below the horizon. When the rays of the sun, after having proceeded in a straight line through empty space, strike the upper part of the atmosphere at the point d, they are bent out of their right-lined course, by the refraction of the atmosphere, into the direction d a, so that the body of the sun, though actually intercepted by the curve of the earth’s convexity consisting of a dense mass of land or water, is actually beheld by the spectator at a. The refractive power of the atmosphere gradually diminishes from the horizon to the zenith, and increases from the zenith to the horizon, in proportion to the density of its different strata, being densest at its lower extremity next the earth, and more rare towards its higher regions. If a person at a had the sun, e, in his zenith, he would see him where he really is; for his rays coming perpendicularly through the atmosphere, would be equally attracted in all directions, and would therefore suffer no inflection. But, about two in the afternoon, he would see the sun at i, though, in reality, he was at k, thirty-three seconds lower than his apparent situation. At about four in the afternoon he would see him at m, when he is at n, one minute and thirty-eight seconds from his apparent situation. But at six o’clock, when we shall suppose he sets, he will be seen at o, though he is at that time at p, more than thirty-two minutes below the horizon. These phenomena arise from the different refractive powers of the atmosphere at different elevations, and from the obliquity with which the rays of light fall upon it; for we see every object along that line in which the rays from it are directed by the last medium through which they passed.

figure 4.

The same phenomena happen in relation to the moon, the planets, the comets, the stars, and every other celestial body, all of which appear more elevated, especially when near the horizon, than their true places. The variable and increasing refraction from the zenith to the horizon, is a source of considerable trouble and difficulty in making astronomical observations, and in nautical calculations. For, in order to determine the real altitudes of the heavenly bodies, the exact degree of refraction, at the observed elevation, must be taken into account. To the same cause we are to ascribe a phenomenon that has sometimes occurred—namely, that the moon has been seen rising totally eclipsed, while the sun was still visible in the opposite quarter of the horizon. At the middle of a total eclipse of the moon, the sun and moon are in opposition, or 180 degrees asunder; and, therefore, were no atmosphere surrounding the earth, these luminaries, in such a position, could never be seen above the horizon at the same time. But, by the refraction of the atmosphere near the horizon, the bodies of the sun and moon are raised more than 32 minutes above their true places, which is equal, and sometimes more than equal to the apparent diameters of these bodies.

Extraordinary cases of refraction in relation to terrestrial objects.

In consequence of the accidental condensation of certain strata of the atmosphere, some very singular effects have been produced in the apparent elevation of terrestrial objects to a position much beyond that in which they usually appear. The following instance is worthy of notice. It is taken from the Philosophical Transactions of London for 1798, and was communicated by W. Latham, Esq., F.R.S., who observed the phenomenon from Hastings, on the south coast of England:—‘On July 26, 1797, about five o’clock in the afternoon, as I was sitting in my dining-room in this place, which is situated upon the Parade, close to the sea-shore, nearly fronting the south, my attention was excited by a number of people running down to the sea-side. Upon inquiring the reason, I was informed, that the coast of France was plainly to be distinguished by the naked eye. I immediately went down to the shore, and was surprised to find that, even without the assistance of a telescope, I could very plainly see the cliffs on the opposite coast, which, at the nearest part, are between forty and fifty miles distant, and are not to be discerned from that low situation by the aid of the best glasses. They appeared to be only a few miles off, and seemed to extend for some leagues along the coast. I pursued my walk along the shore eastward, close to the water’s edge, conversing with the sailors and fishermen upon the subject. They at first would not be persuaded of the reality of the appearance; but they soon became so thoroughly convinced by the cliffs gradually appearing more elevated, and approaching nearer, as it were, that they pointed out and named to me the different places they had been accustomed to visit, such as the Bay, the Old Head, or Man, the Windmill, &c. at Boulogne, St. Vallery, and other places on the coast of Picardy, which they afterwards confirmed, when they viewed them through their telescopes. Their observations were, that the places appeared as near as if they were sailing, at a small distance, into the harbours. The day on which this phenomenon was seen was extremely hot; it was high water at Hastings about two o’clock, P.M., and not a breath of wind was stirring the whole day.’ From the summit of an adjacent hill, a most beautiful scene is said to have presented itself. At one glance the spectators could see Dungeness, Dover Cliffs, and the French coast, all along from Calais to St. Vallery, and, as some affirmed, as far to the westward as Dieppe, which could not be much less than eighty or ninety miles. By the telescope, the French fishing-boats were plainly seen at anchor, and the different colours of the land on the heights, with the buildings, were perfectly discernible.

This singular phenomenon was doubtless occasioned by an extraordinary refraction produced either by an unusual expansion, or condensation of the lower strata of the atmosphere, arising from circumstances connected with the extreme heat of the season. The objects seem to have been apparently raised far above their natural positions; for, from the beach at Hastings, a straight line drawn across towards the French coast, would have been intercepted by the curve of the waters. They seem also to have been magnified by the refraction, and brought apparently four or five times nearer the eye than in the ordinary state of the atmosphere.

The following are likewise instances of unusual refraction:—When Captain Colby was ranging over the coast of Caithness, with the telescope of his great Theodolite, on the 21st of June, 1819, at eight o’clock, P.M. from Corryhabbie Hill, near Mortlich, in Banffshire, he observed a brig over the land of Caithness, sailing to the westward in the Pentland Frith, between the Dunnet and Duncansby heads. Having satisfied himself as to the fact, he requested his assistants, Lieutenants Robe and Dawson, to look through the telescope, which they immediately did, and observed the brig likewise. It was very distinctly visible for several minutes, while the party continued to look at it, and to satisfy themselves as to its position. The brig could not have been less than from ninety to one hundred miles distant; and, as the station on Corryhabbie is not above 850 yards above the sea, the phenomenon is interesting. The thermometer was at 44°. The night and day preceding the sight of the brig had been continually rainy and misty, and it was not till 7 o’clock of the evening of the 21st that the clouds cleared off the hill.8

Captain Scoresby relates a singular phenomenon of this kind, which occurred while he was traversing the Polar seas. His ship had been separated by the ice from that of his father for a considerable time, and he was looking out for her every day, with great anxiety. At length, one evening, to his utter astonishment, he saw her suspended in the air, in an inverted position, traced on the horizon in the clearest colours, and with the most distinct and perfect representation. He sailed in the direction in which he saw this visionary phenomenon, and actually found his father’s vessel by its indication. He was divided from him by immense masses of icebergs, and at such a distance, that it was quite impossible to have seen the ship in her actual situation, or to have seen her at all, if her spectrum had not been thus raised several degrees above the horizon into the sky by this extraordinary refraction. She was reckoned to be seventeen miles beyond the visible horizon, and thirty miles distant.

Mrs. Somerville states, that a friend of her’s, while standing on the plains of Hindostan, saw the whole upper chain of the Himalaya mountains start into view, from a sudden change in the density of the air, occasioned by a heavy shower, after a long course of dry and hot weather. In looking at distant objects through a telescope, over the top of a ridge of hills, about two miles distant, I have several times observed, that some of the more distant objects which are sometimes hid by the interposition of a ridge of hills, are, at other times, distinctly visible above them. I have sometimes observed, that objects near the middle of the field of view of a telescope, which was in a fixed position, have suddenly appeared to descend to the lower part, or ascend to the upper part of the field, while the telescope remained unaltered. I have likewise seen, with a powerful telescope, the Bell Rock Lighthouse, at the distance of about twenty miles, to appear as if contracted to less than two-thirds of its usual apparent height, while every part of it was quite distinct and well-defined, and in the course of an hour or less, it appeared to shoot up to its usual apparent elevation—all which phenomena are evidently produced by the same cause to which we have been adverting.

Such are some of the striking effects produced by the refraction of light. It enables us to see objects in a direction where they are not; it raises, apparently, the bottoms of lakes and rivers: it magnifies objects when their light passes through dense mediums: it makes the sun appear above the horizon, when he is actually below it, and thus increases the length of our day: it produces the Aurora and the evening twilight, which forms, in many instances, the most delightful part of a summer day: it prevents us from being involved in total darkness, the moment after the sun has descended beneath the horizon: it modifies the appearances of the celestial bodies, and the directions in which they are beheld: it tinges the sun, moon, and stars, as well as the clouds, with a ruddy hue, when near the horizon: it elevates the appearance of terrestrial objects, and, in certain extraordinary cases, brings them nearer to our view, and enables us to behold them when beyond the line of our visible horizon. In combination with the power of reflection, it creates visionary landscapes, and a variety of grotesque and extraordinary appearances, which delight and astonish, and sometimes appal the beholders. In short,—as we shall afterwards see more particularly—the refraction of light through glasses of different figures, forms the principle on which telescopes and microscopes are constructed, by which both the remote and the minute wonders of creation have been disclosed to view. So that had there been no bodies capable of refracting the rays of light, we should have remained for ever ignorant of many sublime and august objects in the remote regions of the universe, and of the admirable mechanism and the countless variety of minute objects which lie beyond the range of the unassisted eye in our lower creation, all of which are calculated to direct our views, and to enlarge our conceptions of the Almighty Creator.

In the operation of the law of refraction in these and numerous other instances, we have a specimen of the diversified and beneficent effects which the Almighty can produce by the agency of a single principle in nature. By the influence of the simple law of gravitation, the planets are retained in their orbits, the moon directed in her course around the earth, and the whole of the bodies connected with the sun preserved in one harmonious system. By the same law the mountains of our globe rest on a solid basis, the rivers flow through the plains toward the seas, the ocean is confined to its prescribed boundaries, and the inhabitants of the earth are retained to its surface and prevented from flying upwards through the voids of space. In like manner the law by which light is refracted produces a variety of beneficial effects essential to the present constitution of our world and the comfort of its inhabitants. When a ray of light enters obliquely into the atmosphere, instead of passing directly through, it bends a little downwards, so that the greater portion of the rays which thus enter the atmospheric mass, descend by inflection to the earth. We then enjoy the benefit of that light which would otherwise have been totally lost. We perceive the light of day an hour before the solar orb makes its appearance, and a portion of its light is still retained when it has descended nearly eighteen degrees below our horizon. We thus enjoy, throughout the year, seven hundred and thirty hours of light which would have been lost, had it not been refracted down upon us from the upper regions of the atmosphere. To the inhabitants of the polar regions this effect is still more interesting and beneficial. Were it not for their twilight, they would be involved, for a much longer period than they now are, in perpetual darkness; but by the powerful refraction of light which takes place in the frigid zones, the day sooner makes its appearance towards spring, and their long winter nights are, in certain cases, shortened by a period of thirty days. Under the poles, where the darkness of night would continue six months without intermission, if there were no refraction, total darkness does not prevail during the one half of this period. When the sun sets, at the North pole about the 23rd of September, the inhabitants (if any) enjoy a perpetual aurora, till he has descended 18 degrees below the horizon. In his course through the ecliptic the sun is two months before he can reach this point, during which time there is a perpetual twilight. In two months more he arrives again at the same point, namely 18 degrees below the horizon, when a new twilight commences, which is continually increasing in brilliancy, for other two months, at the end of which the body of this luminary is seen rising in all its glory. So that, in this region, the light of day is enjoyed, in a greater or less degree, for ten months without interruption, by the effects of atmospheric refraction; and, during the two months when the influence of the solar light is entirely withdrawn, the moon is shining above the horizon for two half months without intermission; and thus it happens, that no more than two separate fortnights are passed in absolute darkness; and this darkness is alleviated by the light of the stars and the frequent coruscations of the Aurora Borealis. Hence, it appears, that there are no portions of our globe that enjoy, throughout the year, so large a portion of the solar light, as these northern regions, which is chiefly owing to the refraction of the atmosphere.

The refraction of light by the atmosphere, combined with its power of reflecting it, is likewise the cause of that universal light and splendour which appears on all the objects around us. Were the earth disrobed of its atmosphere, and exposed naked to the solar beams—in this case, we might see the sun without having day, strictly so called. His rising would not be preceded by any twilight as it now is. The most intense darkness would cover us till the very moment of his rising; he would then suddenly break out from under the horizon with the same splendour he would exhibit at the highest part of his course, and would not change his brightness till the very moment of his setting, when in an instant all would be black as the darkest night. At noon day we should see the sun like an intensely brilliant globe shining in a sky as black as ebony, like a clear fire in the night seen in the midst of an extensive field, and his rays would show us the adjacent objects immediately around us; but the rays which fall on the objects remote from us would be for ever lost in the expanse of the heavens. Instead of the beautiful azure of the sky, and the colours which distinguish the face of nature by day, we should see nothing but an abyss of darkness, and the stars shining from a vault as dark as chaos. Thus there would be no day, such as we now enjoy, without the atmosphere: since it is by the refraction and reflections connected with this aerial fluid that light is so modified and directed, as to produce all that beauty, splendour and harmony, which appear on the concave of the sky, and on the objects which diversify our terrestrial abode.

The effect of refraction, in respect to terrestrial objects, is likewise of a beneficial nature. The quantity of this refraction is estimated by Dr. Maskelyne at one-tenth of the distance of the object observed, expressed in degrees of a great circle. Hence, if the distance be 10,000 fathoms, its tenth part 1000 fathoms, is the sixtieth part of a degree, or one minute, which is the refraction in altitude. Le Gendre estimates it at one fourteenth; De Lambre at one eleventh; and others at a twelfth of the distance; but it must be supposed to vary at different times and places according to the varying state of the atmosphere. This refraction, as it makes objects appear to be raised higher than they really are, enlarges the extent of our landscapes, and enables us to perceive distant objects which would otherwise have been invisible. It is particularly useful to the navigator at sea. It is one important object of the mariner when traversing his course, to look out for capes and headlands, rocks and islands, so as to descry them as soon as they are within the reach of his eye. Now, by means of refraction, the tops of hills and the elevated parts of coasts, are apparently raised into the air, so that they may be discovered several leagues further off on the sea than they would be, did no such refractive power exist. This circumstance is therefore a considerable benefit to the science of navigation, in enabling the mariner to steer his course aright, and to give him the most early warning of the track he ought to take, or of the dangers to which he may be exposed.

In short, the effects produced by the refraction and reflection of light on the scenery connected with our globe, teach us that these principles, in the hand of the Almighty, might be so modified and directed, as to produce the most picturesque, the most glorious and wonderful phenomena, such as mortal eyes have never yet seen, and of which human imagination can form no conception; and in other worlds, more resplendent and magnificent than ours, such scenes may be fully realized, in combination with the operation of physical principles and agents, with which we are at present unacquainted. From what we already know of the effects of the reflection and the refraction of light, it is not beyond the bounds of probability to suppose, that in certain regions of the universe, light may be reflected and refracted through different mediums, in such a manner, as to present to the view of their inhabitants the prominent scenes connected with distant systems and worlds, and to an extent, as shall infinitely surpass the effects produced by our most powerful telescopes.

CHAPTER III.

ON THE REFRACTION OF LIGHT THROUGH SPHERICAL TRANSPARENT SUBSTANCES, OR LENSES.

It is to the refraction of light that we are indebted for the use of lenses or artificial glasses to aid the powers of vision. It lays the foundation of telescopes, microscopes, camera obscuras, phantasmagorias, and other optical instruments, by which so many beautiful, useful, and wonderful effects have been produced. In order therefore to illustrate the principles on which such instruments are constructed, it is necessary to explain the manner in which the rays of light are refracted and modified, when passing through spherical mediums of different forms. I do not intend however to enter into the minutiÆ of this subject, nor into any abstract mathematical demonstrations, but shall simply offer a few explanations of general principles, and several experimental illustrations, which may enable the general reader to understand the construction of the optical instruments to be afterwards described.

A lens is a transparent substance of a different density from the surrounding medium, and terminating in two surfaces, either both spherical, or one spherical and the other plain. It is usually made of glass, but may also be formed of any other transparent substance, as ice, crystal, diamond, pebbles, or by fluids of different densities and refractive powers, enclosed between concave glasses. Lenses are ground into various forms, according to the purpose they are intended to serve. They may be generally distinguished as being either convex or concave. A convex glass is thickest in the middle, and thinner towards the edges. A concave glass is thin in the middle, and thicker towards the extremities. Of these there are various forms, which are represented in fig. 5. A, is a plano-convex lens, which has one side plane, and the other spherical or convex. B, is a plano-concave, which is plane on the one side and concave on the other. C, is a double-convex, or one which is spherical on both sides. D, a double-concave, or concave on both sides. E, is called a meniscus, which is convex on one side and concave on the other. F, is a concavo-convex, the convex side of which is of a smaller sphere than the concave. In regard to the degree of convexity or concavity in lenses, it is evident that there may be almost an infinite variety. For every convex surface is to be considered as the segment of a circle, the diameter and radius of which may vary to almost any extent. Hence, lenses have been formed by opticians, varying from one-fiftieth of an inch in radius, to two hundred feet. When we speak of the length of the radius of a lens,—as for instance, when we say that a lens is two inches or forty inches radius, we mean, that the convex surface of the glass is the part of a circle the radius of which, or half the diameter is two inches or forty inches; or in other words, were the portion of the sphere on which it is ground formed into a globe of corresponding convexity, it would be four inches or eighty inches in diameter.

figure 5.

figure 6.
figure 7.
figure 8.

The axis of a lens is a straight line drawn through the center of its spherical surface; and as the spherical sides of every lens are arches of circles the axis of the lens would pass through the centre of that circle of which its sides are segments. Rays are those emanations of light which proceed from a luminous body, or from a body that is illuminated. The Radiant is that body or object which emits the rays of light—whether it be a self-luminous body, or one that only reflects the rays of light. Rays may proceed from a Radiant in different directions. They may be either parallel, converging, or diverging. Parallel rays are those which proceed equally distant from each other through their whole course. Rays proceeding from the sun, the planets, the stars, and distant terrestrial objects are considered as parallel, as in fig. 6. Converging rays are such as, proceeding from a body, approach nearer and nearer in their progress, tending to a certain point where they all unite. Thus, the rays proceeding from the object AB, (fig. 7.) to the point F, are said to converge towards that point. All convex glasses cause parallel rays, which fall upon them to converge in a greater or less degree; and they render converging rays still more convergent. If AB, fig. 7. represent a convex lens, and H G I parallel rays falling upon it, they will be refracted and converge towards the point F, which is called the focus, or burning point; because, when the sun’s rays are thus converged to a point by a large lens, they set on fire combustible substances. In this point the rays meet and intersect each other. Diverging rays are those which, proceeding from any point as A, fig. 8, continually recede from each other as they pass along in their course towards BC. All the rays which proceed from near objects as a window in a room, or an adjacent house or garden are more or less divergent. The following figures show the effects of parallel, converging and diverging rays in passing through a double convex lens.

figure 11. figure 9. figure 10.

Fig. 9, shows the effects of parallel rays, KA, DE, LB, falling on a convex glass AB. The rays which fall near the extremities at A and B, are bent or refracted towards CF, the focus, and centre of convexity. It will be observed, that they are less refracted as they approach the center of the lens, and the central ray DEC, which is called the axis of the lens, and which passes through its center, suffers no refraction. Fig. 10, exhibits the course of converging rays, when passing through a similar lens. In this case the rays converge to a focus nearer to the lens than the center; for a convex lens uniformly increases the convergence of converging rays. The converging rays here represented, may be conceived as having been refracted by another convex lens of a longer focus, and, passing on towards a point of convergence, were intercepted by the lens AB. The point D is the place where the rays would have converged to a focus, had they not been thus intercepted. Fig. 11, represents the course of diverging rays when falling on a double convex glass. In this case the rays D B, D A, &c., after passing through the lens, converge to a focus at a point considerably farther from the lens than its centre, as at F. Such rays must be considered as proceeding from near objects, and the fact may be illustrated by the following experiment. Take a common reading-glass, and hold it in the rays of the sun, opposite a sheet of writing-paper or a white wall, and observe at what distance from the glass the rays on the paper converge to a small distinct white spot. This distance gives the focal length of the lens by parallel rays. If now, we hold the glass within a few feet of a window, or a burning candle, and receive its image on the paper, the focal distance of the image from the glass will be found to be longer. If, in the former case, the focal distance was twelve inches,—in the latter case it will be thirteen, fifteen, or sixteen inches, according to the distance of the window or the candle from the glass.

If the lens A B, fig. 9, on which parallel rays are represented as falling, were a plano-convex, as represented at A, fig, 5, the rays would converge to a point P, at double the radius, or the whole diameter of the sphere of which it is a segment. If the thickness of a plano-convex be considered, and if it be exposed on its convex side to parallel rays, as those of the sun, the focus will be at the distance of twice the radius, wanting two-thirds of the thickness of the lens. But if the same lens be exposed with its plane side to parallel rays, the focus will then be precisely at the distance of twice the radius from the glass.

The effects of concave lenses are directly opposite to those of convex. Parallel rays, striking one of those glasses, instead of converging towards a point, are made to diverge. Rays already divergent are rendered more so, and convergent rays are made less convergent. Hence objects seen through concave glasses appear considerably smaller and more distant than they really are. The following diagram, fig. 12, represents the course of parallel rays through a double concave lens, where the parallel rays T A, D E, I B, &c., when passing through the concave glass A B, diverge into the rays G L, E C, H P, &c., as if they proceeded from F, a point before the lens, which is the principal focus of the lens.

figure 12.

The principal focal distance E F, is the same as in convex lenses. Concave glasses are used to correct the imperfect vision of short-sighted persons. As the form of the eye of such persons is too convex, the rays are made to converge before they reach the optic nerve; and therefore a concave glass, causing a little divergency, assists this defect of vision, by diminishing the effect produced by the too great convexity of the eye, and lengthening its focus. These glasses are seldom used, in modern times, in the construction of optical instruments, except as eye-glasses for small pocket perspectives, and opera glasses.

To find the focal distance of a concave glass. Take a piece of paste-board or card paper, and cut a round hole in it, not larger than the diameter of the lens; and, on another piece of paste-board, describe a circle whose diameter is just double the diameter of the hole. Then apply the piece with the hole in it to the lens, and hold them in the sun-beams, with the other piece at such a distance behind, that the light proceeding from the hole may spread or diverge so as precisely to fill the circle; then the distance of the circle from the lens is equal to its virtual focus, or to its radius, if it be a double concave, and to its diameter, if a plano-concave. Let d, e, (fig. 12,) represent the diameter of the hole, and g, i, the diameter of the circle, then the distance C, I, is the virtual focus of the lens.9

The meniscus represented at E, fig. 5, is like the crystal of a common watch, and as the convexity is the same as the concavity, it neither magnifies nor diminishes. Sometimes, however, it is made in the form of a crescent, as at F, fig. 5, and is called a concavo-convex lens; and, when the convexity is greater than the concavity, or, when it is thickest in the middle, it acts nearly in the same way as a double or plano-convex lens of the same focal distance.

Of the IMAGES formed by convex lenses.

It is a remarkable circumstance, and which would naturally excite admiration, were it not so common and well known, that when the rays of light from any object are refracted through a convex lens, they paint a distinct and accurate picture of the object before it, in all its colours, shades, and proportions. Previous to experience, we could have had no conception that light, when passing through such substances, and converging to a point, could have produced so admirable an effect,—an effect on which the construction and utility of all our optical instruments depend. The following figure will illustrate this position. Let L, N, represent a double convex lens, A, C, a, its axis, and OB, an object perpendicular to it. A ray passing from the extremity of the object at O, after being refracted by the lens at F, will pass on in the direction FI, and form an image of that part of the object at I. This ray will be the axis of all the rays which fall on the lens from the point O, and I will be the focus where they will all be collected. In like manner BCM, is the axis of that parcel of rays which proceed from the extremity of the object B, and their focus will be at M; and since all the points in the object between O, and B, must necessarily have their foci between I and M, a complete picture of the points from which they come will be depicted, and consequently an image of the whole object OB.

figure 13.

It is obvious, from the figure, that the image of the object is formed in the focus of the lens, in an inverted position. It must necessarily be in this position, as the rays cross at C, the centre of the lens; and as it is impossible that the rays from the upper part of the object O, can be carried by refraction to the upper end of the image at M. This is a universal principle in relation to convex lenses of every description, and requires to be attended to in the construction and use of all kinds of telescopes and microscopes. It is easily illustrated by experiment. Take a convex lens of eight, twelve, or fifteen inches focal distance, such as a reading glass, or the glass belonging to a pair of spectacles, and holding it, at its focal distance from a white wall, in a line with a burning candle, the flame of the candle will be seen depicted on the wall in an inverted position, or turned upside down. The same experiment may be performed with a window-sash, or any other bright object. But, the most beautiful exhibition of the images of objects formed by convex lenses, is made by darkening a room, and placing a convex lens of a long focal distance in a hole cut out of the window-shutter; when a beautiful inverted landscape, or picture of all the objects before the window, will be painted on a white paper or screen placed in the focus of the glass. The image thus formed exhibits not only the proportions and colours, but also the motions of all the objects opposite the lens, forming as it were a living landscape. This property of lenses lays the foundation of the camera obscura, an instrument to be afterwards described.

The following principles in relation to images formed by convex lenses may be stated. 1. That the image subtends the same angle at the centre of the glass as the object itself does. Were an eye placed at C, the centre of the lens LN, fig. 13, it would see the object OB, and the image IM under the same optical angle, or, in other words, they would appear equally large. For, whenever right lines intersect each other, as OI and BM, the opposite angles are always equal, that is, the angle MCI is equal to the angle OCB. 2. The length of the image formed by a convex lens, is to the length of the object, as the distance of the image is to the distance of the object from the lens: that is, MI is to OB :: as Ca to CA. Suppose the distance of the object CA from the lens, to be forty-eight inches, the length of the object OB = sixteen inches, and the distance of the image from the lens, six inches, then the length of the image will be found by the following proportion, 48 : 16 :: 6 : 2, that is, the length of the image, in such a case, is two inches. 3. If the object be at an infinite distance, the image will be formed exactly in the focus. 4. If the object be at the same distance from the lens as its focus, the image is removed to an infinite distance on the opposite side; in other words, the rays will proceed in a parallel direction. On this principle, lamps on the streets are sometimes directed to throw a bright light along a foot-path where it is wanted, when a large convex glass is placed at its focal distance from the burner; and on the same principle, light is thrown to a great distance from lighthouses, either by a very large convex lens of a short focal distance, or by a concave reflector. 5. If the object be at double the distance of the focus from the glass, the image will also be at double the distance of the focus from the glass. Thus, if a lens of six inches focal distance be held at twelve inches distance from a candle, the image of the candle will be formed at twelve inches from the glass on the other side. 6. If the object be a little further from the lens than its focal distance, an image will be formed, at a distance from the object, which will be greater or smaller in proportion to the distance. For example, if a lens five inches focus, be held at a little more than five inches from a candle, and a wall or screen at five feet six inches distant, receive the image, a large and inverted image of the candle will be depicted, which will be magnified in proportion as the distance of the wall from the candle exceeds the distance of the lens from the candle. Suppose the distance of the lens to be five and a half inches, then the distance of the wall where the image is formed, being twelve times greater, the image of the candle will be magnified twelve times. If MI (fig. 13.) be considered as the object, then OB will represent the magnified image on the wall. On this principle the image of the object is formed by the small object glass of a compound microscope. On the same principle the large pictures are formed by the Magic Lantern and the Phantasmagoria; and in the same way small objects are represented in a magnified form, on a sheet or wall by the Solar microscope. 7. All convex lenses magnify the objects seen through them, in a greater or less degree. The shorter the focal distance of the lens, the greater is the magnifying power. A lens four inches focal distance, will magnify objects placed in the focus, two times in length and breadth; a lens two inches focus will magnify four times, a lens one inch focus eight times; a lens half an inch focus sixteen times, &c. supposing eight inches to be the least distance at which we see near objects distinctly. In viewing objects with small lenses, the object to be magnified should be placed exactly at the focal distance of the lens, and the eye at about the same distance on the other side of the lens. When we speak of magnifying power, as, for example, that a lens one inch focal distance magnifies objects eight times, it is to be understood of the lineal dimensions of the object. But as every object at which we look has breadth as well as length, the surface of the object is in reality magnified sixty-four times, or the square of its lineal dimensions; and for the same reason a lens half an inch focal distance magnifies the surfaces of objects 256 times.

Reflections deduced from the preceding subject.

Such are some of the leading principles which require to be recognised in the construction of refracting telescopes, microscopes, and other dioptric instruments whose performance chiefly depends on the refraction of light.—It is worthy of particular notice that all the phenomena of optical lenses now described, depend upon that peculiar property which the Creator has impressed upon the rays of light, that, when they are refracted to a focus by a convex transparent substance, they depict an accurate image of the objects whence they proceed. This, however common, and however much overlooked by the bulk of mankind, is indeed a very wonderful property with which light has been endued. Previous to experience we could have had no conception that such an effect would be produced; and, in the first instance, we could not possibly have traced it to all its consequences. All the objects in creation might have been illuminated as they now are, for aught we know, without sending forth either direct or reflected rays with the property of forming exact representations of the objects whence they proceeded. But this we find to be a universal law in regard to light of every description, whether as emanating directly from the sun, or as reflected from the objects he illuminates, or as proceeding from bodies artificially enlightened. It is a law or a property of light not only in our own system, but throughout all the systems of the universe to which mortal eyes have yet penetrated. The rays from the most distant star which astronomers have descried, are endued with this property, otherwise they could never have been perceived by means of our optical instruments; for it is by the pictures or images formed in these instruments that such distant objects are brought to view. Without this property of light, therefore, we should have had no telescopes, and consequently we could not have surveyed, as we can now do, the hills and vales, the deep caverns, the extensive plains, the circular ranges of mountains, and many other novel scenes which diversify the surface of our moon. We should have known nothing of the stupendous spots which appear on the surface of the sun—of the phases of Venus—of the satellites and belts of Jupiter—of the majestic rings of Saturn—of the existence of Uranus and his six moons,—or of the planets Vesta, Juno, Ceres, and Pallas, nor could the exact bulks of any of these bodies have been accurately determined. But, above all, we should have been entirely ignorant of the wonderful phenomena of double stars—which demonstrate that suns revolve around suns—of the thousands and millions of stars which crowd the profundities of the Milky Way and other regions of the heavens—of the thousands of NebulÆ or starry systems which are dispersed throughout the immensity of the firmament, and many other objects of sublimity and grandeur, which fill the contemplative mind with admiration and awe, and raise its faculties to higher conceptions than it could otherwise have formed of the omnipotence and grandeur of the Almighty Creator.

Without this property of the rays of light we should likewise have wanted the use of the microscope—an instrument which has disclosed a world invisible to common eyes, and has opened to our view the most astonishing exhibitions of Divine mechanism, and of the wisdom and intelligence of the Eternal Mind. We should have been ignorant of those tribes of living beings, invisible to the unassisted eye, which are found in water, vinegar, and many other fluids—many of which are twenty thousand times smaller than the least visible point, and yet display the same admirable skill and contrivance in their construction, as are manifested in the formation of the larger animals. We should never have beheld the purple tide of life, and even the globules of the blood rolling with swiftness through veins and arteries smaller than the finest hair; or had the least conception that numberless species of animated beings, so minute that a million of them are less than a grain of sand, could have been rendered visible to human eyes, or that such a number of vessels, fluids, movements, diversified organs of sensation, and such a profusion of the richest ornaments and the gayest colours could have been concentrated in a single point. We should never have conceived that even the atmosphere is replenished with invisible animation, that the waters abound with countless myriads of sensitive existence, that the whole earth is full of life, and that there is scarcely a tree, plant, or flower, but affords food and shelter to a species of inhabitants peculiar to itself, which enjoy the pleasures of existence and share in the bounty of the Creator. We could have formed no conception of the beauties and the varieties of mechanism which are displayed in the scenery of that invisible world to which the microscope introduces us—beauties and varieties, in point of ornament and delicate contrivance, which even surpass what is beheld in the visible operations and aspect of nature around us. We find joints, muscles, a heart, stomach, entrails, veins, arteries, a variety of motions, a diversity of forms, and a multiplicity of parts and functions—in breathing atoms. We behold in a small fibre of a peacock’s feather, not more than one-eighth of an inch in length, a profusion of beauties no less admirable than is presented by the whole feather to the naked eye—a stem sending out multitudes of lateral branches, each of which emits numbers of little sprigs, which consist of a multitude of bright shining globular parts, adorned with a rich variety of colours. In the sections of plants, we see thousands and ten thousands of tubes and pores, and other vessels for the conveyance of air and juices for the sustenance of the plant; in some instances, more than ten hundred thousand of these being compressed within the space of a quarter of an inch in diameter, and presenting to the eye the most beautiful configurations. There is not a weed, nor a moss, nor the most insignificant vegetable, which does not show a multiplicity of vessels disposed in the most curious manner for the circulation of sap for its nourishment, and which is not adorned with innumerable graces for its embellishment. All these and ten thousands of other wonders which lie beyond the limits of natural vision, in this new and unexplored region of the universe, would have been for ever concealed from our view, had not the Creator endued the rays of light with the power of depicting the images of objects, when refracted by convex transparent substances.

In this instance, as well as in many others, we behold a specimen of the admirable and diversified effects, which the Creator can produce from the agency of a single principle in nature. By means of optical instruments, we are now enabled to take a more minute and expansive view of the amazing operations of nature, both in heaven and on earth, than former generations could have surmised. These views tend to raise our conceptions of the attributes of that Almighty Being, who presides over all the arrangements of the material system, and to present them to our contemplation in a new, a more elevated, and expansive point of view. There is, therefore, a connection which may be traced between the apparently accidental principle of the rays of light forming images of objects, and the comprehensive views we are now enabled to take of the character and perfections of the Divinity. Without the existence of the law or principle alluded to, we could not, in the present state, have formed precisely the same conceptions either of the Omnipotence, or of the wisdom and intelligence of the Almighty. Had no microscope ever been invented, the idea never could have entered into the mind of man, that worlds of living beings exist beyond the range of natural vision, that organized beings possessed of animation exist, whose whole bulk is less than the ten hundred thousandth part of the smallest grain of sand; that, descending from a visible point to thousands of degrees beyond it, an invisible world exists, peopled with tribes of every form and size, the extent of which, and how far it verges towards infinity downwards, mortals have never yet explored, and perhaps will never be able to comprehend. This circumstance alone presents before us the perfections of the divinity in a new aspect, and plainly intimates that it is the will and the intention of the Deity, that we should explore his works, and investigate the laws by which the material world is regulated, that we may acquire more expansive views of his character and operations. The inventions of man in relation to art and science, are not therefore to be considered as mere accidental occurrences, but as special arrangements in the divine government, for the purpose of carrying forward the human mind to more clear and ample views of the scenes of the universe, and of the attributes and the agency of Him “who is wonderful in counsel and excellent in working.”

CHAPTER IV.

ON THE REFLECTION OF LIGHT.

The reflection of the rays of light is that property by which—after approaching the surfaces of bodies, they are thrown back, or repelled. It is in consequence of this property that all the objects around us, and all the diversified landscapes on our globe, are rendered visible. It is by light reflected from their surfaces that we perceive the planetary bodies and their satellites, the belts of Jupiter, the rings of Saturn, the various objects which diversify the surface of the Moon, and all the bodies in the universe which have no light of their own. When the rays of light fall upon rough and uneven surfaces, they are reflected very irregularly and scattered in all directions, in consequence of which thousands of eyes, at the same time, may perceive the same objects, in all their peculiar colours, aspects, and relations. But, when they fall upon certain smooth and polished surfaces, they are reflected with regularity, and according to certain laws. Such surfaces, when highly polished, are called Mirrors or Speculums; and it is to the reflection of light from such surfaces, and the effects it produces, that I am now to direct the attention of the reader.

Mirrors or Specula, may be distinguished into three kinds, plane, concave, and convex, according as they are bounded by plane or spherical surfaces. These are made either of metal or of glass, and have their surfaces highly polished for the purpose of reflecting the greatest number of rays. Those made of glass are foliated or quicksilvered on one side; and the metallic specula are generally formed of a composition of different metallic substances, which, when accurately polished, is found to reflect the greatest quantity of light. I shall, in the first place, illustrate the phenomena of reflection produced by plane-mirrors.

When light impinges, or falls, upon a polished flat surface, rather more than the half of it is reflected, or thrown back in a direction similar to that of its approach; that is to say, if it fall perpendicularly on the polished surface, it will be perpendicularly reflected; but if it fall obliquely, it will be reflected with the same obliquity. Hence, the following fundamental law, regarding the reflection of light, has been deduced both from experiment and mathematical demonstration, namely, that the angle of reflection is, in all cases, exactly equal to the angle of incidence. This is a law which is universal in all cases of reflection, whether it be from plane or spherical surfaces, or whether these surfaces be concave or convex, and which requires to be recognized in the construction of all instruments which depend on the reflection of the rays of light. The following figure (fig. 14) will illustrate the position now stated.

Let AB represent a plane mirror, and CD a line or ray of light perpendicular to it. Let FD represent the incident ray from any object, then DE will be the reflected ray, thrown back in the direction from D to E, and it will make with the perpendicular CD the same angle which the incident ray FD did with the same perpendicular, that is, the angle FDC will be equal to the angle EDC, in all cases of obliquity. The incident ray of light may be considered as rebounding from the mirror, like a tennis ball from a marble pavement, or the wall of a court.

figure 14.

In viewing objects by reflection we see them in a different direction from that in which they really are, namely, along the line in which the rays come to us last. Thus, if AB (fig. 15) represent a plane mirror, the image of an object C appears to the eye at E behind the mirror, in the direction EG, and always in the intersection G of the perpendicular CG, and the reflected ray EG—and consequently at G as far behind the mirror, as the object C is before it. We therefore see the image in the line EG, the direction in which the reflected rays proceed. A plane mirror does not alter the figure or size of objects; but the whole image is equal and similar to the whole object, and has a like situation with respect to one side of the plane, that the object has with respect to the other.

figure 15.

Mr. Walker illustrates the manner in which we see our faces in a mirror by the following figure (16). AB represents a mirror, and OC, a person looking into it. If we conceive a ray proceeding from the forehead CE, it will be sent to the eye at O, agreeably to the angle of incidence and reflection. But the mind puts CEO into one line, and the forehead is seen at H, as if the lines CEO had turned on a hinge at E.—It seems a wonderful faculty of the mind to put the two oblique lines CE and OE into one straight line OH, yet it is seen every time we look at a mirror. For the ray has really travelled from C to E, and from E to O, and it is that journey which determines the distance of the object; and hence we see ourselves as far beyond the mirror as we stand from it. Though a ray is here taken only from one part of the face, it may be easily conceived that rays from every other part of the face must produce a similar effect.

figure 16.

In every plain mirror, the image is always equal to the object, at what distance soever it may be placed; and as the mirror is only at half the distance of the image from the eye, it will completely receive an image of twice its own length. Hence a man six feet high may view himself completely in a looking glass of three feet in length, and half his own breadth; and this will be the case at whatever distance he may stand from the glass. Thus, the man AC (fig. 17) will see the whole of his own image in the glass AB, which is but one half as large as himself. The rays from the head pass to the mirror in the line Aa, perpendicular to the mirror, and are returned to the eye in the same line; consequently, having travelled twice the length Aa, the man must see his head at B. From his feet C rays will be sent to the bottom of the mirror at B; these will be reflected at an equal angle to the eye in the direction BA, as if they had proceeded in the direction DbA, so that the man will see his foot at D, and consequently his whole figure at BD.

figure 17.

A person when looking into a mirror, will always see his own image as far beyond the mirror as he is before it, and as he moves to or from it, the image will, at the same time, move towards or from him on the other side; but apparently with a double velocity, because the two motions are equal and contrary. In like manner, if while the spectator is at rest, an object be in motion, its image behind the mirror will be seen to move at the same time. And if the spectator moves, the images of objects that are at rest will appear to approach, or recede from him, after the same manner as when he moves towards real objects; plane mirrors reflecting not only the object, but the distance also, and that exactly in its natural dimensions—The following principle is sufficient for explaining most of the phenomena seen in a plane mirror, namely;—That the image of an object seen in a plane mirror, is always in a perpendicular to the mirror joining the object and the image, and that the image is as much on one side the mirror, as the object is on the other.

Reflection by Convex and Concave Mirrors.

Both convex and concave mirrors are formed of portions of a sphere. A convex speculum is ground and polished in a concave dish or tool which is a portion of a sphere, and a concave speculum is ground upon a convex tool. The inner surface of a sphere brings parallel rays to a focus at one fourth of its diameter, as represented in the following figure, where C is the centre of the sphere on which the concave speculum AB is formed, and F the focus where parallel rays from a distant object would be united, after reflection, that is, at one half the radius, or one fourth of the diameter from the surface of the speculum. Were a speculum of this kind presented to the sun, F would be the point where the reflected rays would be converged to a focus, and set fire to combustible substances if the speculum be of a large diameter, and of a short focal distance. Were a candle placed in that focus, its light would be reflected parallel as represented in the figure. These are properties of concave specula which require to be particularly attended to in the construction of reflecting telescopes. It follows, from what has been now stated, that if we intend to form a speculum of a certain focal distance,—for example, two feet, it is necessary that it should be ground upon a tool whose radius is double that distance, or four feet.

figure 18.

Properties of Convex Mirrors.

From a convex surface, parallel rays when reflected are made to diverge; convergent rays are reflected less convergent; and divergent rays are rendered more divergent. It is the nature of all convex mirrors and surfaces to scatter or disperse the rays of light, and in every instance to impede their convergence. The following figure shows the course of parallel rays as reflected from a convex mirror. AEB is the convex surface of the mirror; and KA, IE, LB, parallel rays falling upon it. These rays, when they strike the mirror, are made to diverge in the direction AG, BH, &c. and both the parallel and divergent rays are here represented as they appear in a dark chamber, when a convex mirror is presented to the solar rays. The dotted lines denote only the course or tendency of the reflected rays, towards the virtual focus F, were they not intercepted by the mirror. This virtual focus is just equal to half the radius CE.

figure 19.

The following are some of the properties of convex mirrors: 1. The image appears always erect, and behind the reflecting surface. 2. The image is always smaller than the object, and the diminution is greater in proportion as the object is further from the mirror, but if the object touch the mirror, the image at the point of contact is of the same size as the object. 3. The image does not appear so far behind the reflecting surface as in a plain mirror. 4. The image of a straight object, placed either parallel or oblique to the mirror is seen curved in the mirror; because the different points of the object are not all at an equal distance from the surface of the mirror. 5. Concave mirrors have a real focus where an image is actually formed; but convex specula have only a virtual focus, and this focus is behind the mirror; no image of any object being formed before it.

The following are some of the purposes to which convex mirrors are applied. They are frequently employed by painters for reducing the proportions of the objects they wish to represent, as the images of objects diminish in proportion to the smallness of the radius of convexity, and to the distances of objects from the surface of the mirror. They form a fashionable part of modern furniture, as they exhibit a large company assembled in a room, with all the furniture it contains, in a very small compass, so that a large hall with all its objects, and even an extensive landscape, being reduced in size, may be seen from one point of view. They are likewise used as the small specula of those reflecting telescopes which are fitted up on the Cassegrainian plan, and in the construction of Smith’s Reflecting Microscope. But on the whole, they are very little used in the construction of optical instruments.

Properties of Concave speculums.

Concave specula have properties very different from those which are convex; they are of more importance in the construction of reflecting telescopes and other optical instruments; and therefore require more minute description and illustration. Concave mirrors cause parallel rays to converge; they increase the convergence of rays that are already converging; they diminish the divergence of diverging rays; and, in some cases, render them parallel and even convergent; which effects are all in proportion to the concavity of the mirror. The following figures show the course of diverging and parallel rays as reflected from concave mirrors.

Fig. 20 represents the course of parallel rays, and AB, the concave mirror on which they fall. In this case, they are reflected so as to unite at F, which point is distant from its surface one fourth of the diameter of the sphere of the mirror. This point is called the focus of parallel rays, or the true focus of the mirror. And, since the sun beams are parallel among themselves, if they are received on a concave mirror, they will all be reflected to that point, and there burn in proportion to the quantity of rays collected by the mirror. Fig. 21. shows the direction of diverging rays, or those which proceed from a near object. These rays proceeding from an object further from the mirror than the true focal point, as from D to A and to B, are reflected converging and meet at a point F, further from the mirror than the focal point of parallel rays. If the distance of the radiant, or object D, be equal to the radius CE, then will the focal distance be likewise equal to the radius: That is, if an object be placed in the center of a concave speculum, the image will be reflected upon the object, or they will seem to meet and embrace each other in the centre. If the distance of the radiant be equal to half the radius, its image will be reflected to an infinite distance, for the rays will then be parallel. If, therefore, a luminous body be placed at half the radius from a concave speculum, it will enlighten places directly before it at great distances. Hence their use when placed behind a candle in a common lantern; hence their utility in throwing light upon objects in the Magic Lantern and Phantasmagoria, and hence the vast importance of very large mirrors of this description, as now used in most of our Light Houses, for throwing a brilliant light to great distances at sea to guide the mariner when directing his course under the cloud of night.

figure 20.

figure 21.

When converging rays fall upon a concave mirror, they are reflected more converging and unite at a point between the focus of parallel rays and the mirror; that is, nearer the mirror than one half the radius; and their precise degree of convergency will be greater than that wherein they converged before reflection.

Of the images formed by Concave Mirrors.

If rays proceeding from a distant object fall upon a concave speculum, they will paint an image or representation of the object on its focus before the mirror. This image will be inverted, because the rays cross at the points where the image is formed. We have already seen that a convex glass forms an image of an object behind it; the rays of light from objects pass through the glass, and the picture is formed on the side farthest from the object. But in concave mirrors the images of distant objects—and of all objects that are farther from its surface than its principal focus—are formed before the mirror, or on the same side as the object. In almost every other respect, however, the effect of a concave mirror is the same as that of a convex lens, in regard to the formation of images, and the course pursued by the rays of light, except that the effect is produced in the one case by refraction, and in the other by reflection. The following figure represents the manner in which images are formed by concave mirrors. GF represents the reflecting surface of the mirror; OAB, the object; and IAM, the image formed by the mirror. The rays proceeding from O, will be carried to the mirror, in the direction OG, and according to the law that the angle of incidence is equal to the angle of reflection, will be reflected to I, in the direction GI. In like manner the rays from B, will be reflected from F to M, the rays from A, will be reflected to a, and so of all the intermediate rays, so that an inverted image of the object OB, will be formed at IM. If the rays proceeded from objects at a very great distance the image would be formed in the real focus of the mirror, or at one-fourth the diameter of the sphere from its surface; but near objects, which send forth diverging rays, will have their images formed a little farther from the surface of the mirror.

figure 22.

If we suppose a real object placed at IM, then OB will represent its magnified image, which will be larger than the object, in proportion to its distance from the mirror. This may be experimentally illustrated by a concave mirror and a candle. Suppose a concave mirror whose focal distance is five inches, and that a candle is placed before it, at a little beyond its focus, (as at IM)—suppose at five and a half inches,—and that a wall or white screen receives the image, at the distance of five feet six inches from the mirror, an image of the candle will be formed on the wall which will be twelve times longer and broader than the candle itself. In this way concave mirrors may be made to magnify the images of objects to an indefinite extent. This experiment is an exact counterpart of what is effected in similar circumstances by a convex lens, as described p. 74; the mirror performing the same thing by reflection, as the lens did by refraction.

From what has been stated in relation to concave mirrors it will be easily understood how they make such powerful burning-glasses. Suppose the focal distance of a concave mirror to be twelve inches, and its diameter or breadth twelve inches. When the sun’s rays fall on such a mirror, they form an image of the sun at the focal point whose diameter is found to be about one-tenth of an inch. All the rays which fall upon the mirror are converged into this small point; and consequently their intensity is in proportion as the square of the surface of the mirror is to the square of the image. The squares of these diameters are as 14,400 to 1; and consequently the density of the sun’s rays, in the focus, is to their density on the surface of the mirror as 14,400 to 1. That is, the heat of the solar rays in the focus of such a mirror will be fourteen thousand four hundred times greater than before—a heat which is capable of producing very powerful effects in melting and setting fire to substances of almost every description.

Were we desirous of forming an image by a concave speculum which shall be exactly equal to the object, the object must be placed exactly in the centre; and, by an experiment of this kind, the centre of the concavity of a mirror may be found.

In the cases now stated, the images of objects are all formed in the front of the mirror, or between it and the object. But there is a case in which the image is formed behind the mirror. This happens when the object is placed between the mirror and the focus of parallel rays, and then the image is larger than the object. In fig. 23, GF is a concave mirror, whose focus of parallel rays is at E. If an object OB be placed a little within this focus, as at A, a large image IM will be seen behind the mirror, somewhat curved and erect, which will be seen by an eye looking directly into the front of the mirror. Here the image appears at a greater distance behind the mirror than the object is before it, and the object appears magnified in proportion to its distance from the focus and the mirror. If the mirror be one inch focal distance, and the object be placed eight-tenths of an inch from its surface, the image would be five times as large as the object in length and breadth, and consequently twenty-five times larger in surface. In this way small objects may be magnified by reflection, as such objects are magnified by refraction, in the case of deep convex lenses. When such mirrors are large, for example six inches diameter, and eight or ten inches focal distance, they exhibit the human face as of an enormous bulk. This is illustrated by the following figure. Let C N, Fig. 24, represent the surface of a concave mirror, and A a human face looking into it, the face will appear magnified as represented by the image behind the mirror D Q. Suppose a ray A C proceeding from the forehead, and another M N from the chin; these rays are reflected to the person’s eye at O, which consequently sees the image in the lines of reflection O D, O Q, and in the angle D O Q, and consequently magnified much beyond the natural size, and at a small distance behind the mirror.

figure 23.

figure 24.

If we suppose the side T U to represent a convex mirror, and the figure D Q a head of an ordinary size, then the figure A will represent the diminished appearance which a person’s face exhibits, when viewed in such a mirror. It will not only appear reduced, but somewhat distorted; because from the form of the mirror, one part of the object is nearer to it than another, and consequently will be reflected under a different angle.

The effect we have now mentioned as produced by concave mirrors, will only take place when the eye is nearer the mirror than its principal focus. If the spectator retire beyond this focus—suppose to the distance of five or six feet, he will not see the image behind the mirror; but he will see his image in a diminished form, hanging upside down, and suspended in the air, in a line between his eye and the mirror. In this case, his image is formed before the mirror as represented at IM fig. 22. In this situation, if you hold out your hand towards the mirror, the hand of the image will come out towards your hand, and, when at the centre of concavity, it will be of an equal size with it, and you may shake hands with this aerial image. If you move your hand farther, you will find the hand of the image pass by your hand, and come between it and your body. If you move your hand towards either side, the hand of the image will move towards the other side; the image moving always in a contrary direction to the object. All this while the by-standers, if any, see nothing of the image, because none of the reflected rays that form it can enter their eyes.—The following figure represents a phenomenon produced in the same manner. A B is a concave mirror of a large size; C represents a hand presented before the mirror, at a point farther distant than its focus. In this case, an inverted image of the hand is formed which is seen hanging in the air at M. The rays C and D go diverging from the two opposite points of the object, and by the action of the mirror, they are again made to converge to points at O and S where they cross, form an image, and again proceed divergent to the eye.10

figure 25.

In consequence of the properties of concave mirrors, now described, many curious experiments and optical deceptions have been exhibited. The appearance of images in the air, suspended between the mirror and the object, have sometimes been displayed with such dexterity and an air of mystery, as to have struck with astonishment those who were ignorant of the cause. In this way birds, flying angels, spectres and other objects have been exhibited, and when the hand attempts to lay hold on them, it finds them to be nothing, and they seem to vanish into air. An apple or a beautiful flower is presented, and when a spectator attempts to touch it, it instantly vanishes, and a death’s head immediately appears, and seems to snap at his fingers. A person with a drawn sword appears before him, in an attitude as if about to run him through, or one terrific phantom starts up after another, or sometimes the resemblances of deceased persons are made to appear, as if, by the art of conjuration, they had been forced to return from the world of spirits. In all such exhibitions, a very large concave mirror is requisite, a brilliant light must be thrown upon the objects, and every arrangement is made, by means of partitions, &c., to prevent either the light, the mirror, or the object from being seen by the spectators. The following representation (fig. 26.) shows one of the methods by which this is effected: A is a large concave mirror, either of metal or of glass, placed on the back part of a dark box, D is the performer, concealed from the spectators by the cross partition C; E is a strong light, which is likewise concealed by the partition I, which is thrown upon the actor D, or upon any thing he may hold in his hand. If he hold a book, as represented in the figure, the light reflected from it will pass between the partitions C and I to the mirror, and will be reflected from thence to Z, where the image of the book will appear so distinct and tangible, that a spectator looking through the opening at X, will imagine that it is in his power to take hold of it. In like manner, the person situated at D, may exhibit his own head or body—a portrait, a painting, a spectre, a landscape, or any object or device which he can strongly illuminate.

figure 26.

figure 27.

figure 28.

There is another experiment, made with a concave mirror, which has somewhat puzzled philosophers to account for the phenomena. Take a glass bottle AC, (fig. 27) and fill it with water to the point B; leave the upper part BC empty, and cork it in the common manner. Place this bottle opposite a concave mirror, and beyond its focus, that it may appear reversed, and, before the mirror place yourself still further distant from the bottle, and it will appear in the situation A B C. Now, it is remarkable in this apparent bottle, that the water, which, according to the laws of catoptrics, should appear at A B, appears on the contrary at B C, and consequently, the part A B appears empty. If the bottle be inverted and placed before the mirror, its image will appear in its natural erect position, and the water which is in reality at BC (fig. 28) is seen at A B. If while the bottle is inverted, it be uncorked, and the water run gently out, it will appear, that, while the part BC is emptying, that of A B in the image is filling, and, what is remarkable, as soon as the bottle is empty, the illusion ceases, the image also appearing entirely empty.—The remarkable circumstances in this experiment are, first, not only to see the object where it is not, but also where its image is not; and secondly, that of two objects which are really in the same place, as the surface of the bottle and the water it contains, the one is seen at one place, and the other at another; and to see the bottle in the place of its image, and the water where neither it nor its image are.

The following experiments are stated by Mr. Ferguson in his “Lectures on select Subjects,” &c. “If a fire be made in a large room, and a smooth mahogany table be placed at a good distance near the wall, before a large concave mirror, so placed that the light of the fire may be reflected from the mirror to its focus upon the table; if a person stand by the table, he will see nothing upon it but a longish beam of light: but if he stand at a distance toward the fire, not directly between the fire and mirror, he will see an image of the fire upon the table, large and erect. And if another person who knows nothing of the matter beforehand should chance to come into the room, and should look from the fire toward the table, he would be startled at the appearance; for the table would seem to be on fire, and by being near the wainscot, to endanger the whole house. In this experiment there should be no light in the room but what proceeds from the fire; and the mirror ought to be at least fifteen inches in diameter. If the fire be darkened by a screen, and a large candle be placed at the back of the screen, a person standing by the candle will see the appearance of a very fine large star, or rather planet, upon the table, as bright as Venus or Jupiter. And if a small wax taper—whose flame is much less than the flame of the candle—be placed near the candle, a satellite to the planet will appear on the table; and if the taper be moved round the candle, the satellite will go round the planet.”

Many other illustrations of the effects of concave specula might have been given, but I shall conclude this department by briefly stating some of the general properties of speculums.

1. There is a great resemblance between the properties of convex lenses and concave mirrors. They both form an inverted focal image of any remote object, by the convergence of the pencil of rays. In those instruments whose performances are the effects of reflection, as reflecting telescopes, the concave mirror is substituted in the place of the convex lens. The whole effect of these instruments, in bringing to view remote objects in heaven and on earth, entirely depends on the property of a concave mirror in forming images of objects in its focus. 2. The image of an object placed beyond the centre, is less than the object; if the object be placed between the principal focus and the centre, the image is greater than the object. In both cases the image is inverted. 3. When the object is placed between the focus and the mirror, the image situated behind the mirror is greater than the object, and it has the same direction: in proportion as the object approaches the focus, the image becomes larger and more distant. These and similar results are proved by placing a lighted candle at different distances from a concave mirror. 4. An eye cannot see an image in the air except it be placed in the diverging rays; but if the image be received on a piece of white paper, it may be seen in any position of the eye, as the rays are then reflected in every direction. 5. If a picture drawn according to the rules of perspective, be placed before a large concave speculum, a little nearer than its principal focus, the image of the picture will appear extremely natural, and very nearly like the real objects whence it was taken. Not only are the objects considerably magnified, so as to approach to their natural size, but they have also different apparent distances, as in nature, so that the view of the inside of a church appears very like what it is in reality, and representations of landscapes appear very nearly, as they do from the spot whence they were taken. In this respect a large concave speculum may be made to serve nearly the same purpose, as the Optical Diagonal Machine, in viewing perspective prints. 6. The concave speculum is that alone which is used as the great mirror which forms the first image in reflecting telescopes; and it is likewise the only kind of speculum used as the small mirror, in that construction of the instrument called the Gregorian Reflector.

Quantity of light reflected by polished surfaces.

As this is a circumstance connected with the construction of reflecting telescopes, it may not be improper, in this place, to state some of the results of the accurate experiments of M. Bonguer on this subject. This philosopher ascertained that of the light reflected from mercury, or quicksilver, more than one-fourth is lost, though it is probable that no substances reflect more light than this. The rays were received at an angle of eleven and a half degrees of incidence, measured from the surface of the reflecting body, and not from the perpendicular. The reflection from water was found to be almost as great as that of quicksilver; so that in very small angles it reflects nearly three-fourths of the direct light. This is the reason why so strong a reflection appears on water, when one walks, in still weather, on the brink of a lake opposite to the sun. The direct light of the sun diminishes gradually as it approaches the horizon, while the reflected light at the same time grows stronger; so that there is a certain elevation of the sun in which the united force of the direct and reflected light will be the greatest possible, and this is when he is twelve or thirteen degrees in altitude. On the other hand, light reflected from water at great angles of incidence is extremely small. When the light was perpendicular, it reflected no more than the thirty-seventh part which mercury does in the same circumstances, and only the fifty-fifth part of what fell upon it in this case.

Using a smooth piece of glass, one line in thickness, he found that, when it was placed at an angle of fifteen degrees with the incident rays, it reflected 628 parts of 1000 which fell upon it; at the same time, a metallic mirror which he tried in the same circumstances, reflected only 561 of them. At a less angle of incidence much more light was reflected; so that at an angle of three degrees, the glass reflected 700 parts, and the metal something less, as in the former case. The most striking observations made by this experimenter relate to the very great difference in the quantity of light reflected at different angles of incidence. He found that for 1000 incident rays, the reflected rays, at different angles of incidence, were as follows.

Angles of incidence Rays reflected by water Rays reflected by glass
501 549
10 333 412
15 211 299
30 65 112
50 22 34
70 18 25
90 18 25

With regard to such mirrors as the specula of reflecting telescopes, it will be found, in general, that they reflect little more than the one half of the rays which fall upon them.

Uncommon appearances in nature produced by the combined influences of Reflection and Refraction.

The reflection and refraction of the rays of light frequently produce phenomena which astonish the beholders, and which have been regarded by the ignorant and the superstitious, as the effects of supernatural agency. Of these phenomena I shall state a few examples.

One of the most striking appearances of this kind is what has been termed the Fata Morgana, or optical appearances of figures in the sea and the air, as seen in the Faro of Messina. The following account is translated from a work of Minasi, who witnessed the phenomenon, and wrote a dissertation on the subject. “When the rising sun shines from that point whence its incident ray forms an angle of about forty-five degrees to the sea of Riggio, and the bright surface of the water in the bay is not disturbed either by the wind or the current, the spectator being placed on an eminence of the city, with his back to the sun and his face to the sea;—on a sudden there appear on the water, as in a catoptric theatre, various multiplied objects, that is to say, numberless series of pilasters, arches, castles well delineated, regular columns, lofty towers, superb palaces, with balconies and windows, extended alleys of trees, delightful plains with herds and flocks, armies of men on foot and horseback, and many other strange images, in their natural colours and proper actions, passing rapidly in succession along the surface of the sea, during the whole of the short period of time, while the above mentioned causes remain.—But, if in addition to the circumstances now described, the atmosphere be highly impregnated with vapour and dense exhalations, not previously dispersed by the winds or the sun, it then happens that, in this vapour, as in a curtain extended along the channel, at the height of about thirty palms, and nearly down to the sea, the observer will behold the scene of the same objects, not only reflected from the surface of the sea, but likewise in the air, though not so distant or well defined, as the former objects from the sea.—Lastly, if the air be slightly hazy or opake, and at the same time dewy and adapted to form the iris, the then above-mentioned objects will appear only at the surface of the sea, as in the first case, but all vividly coloured or fringed with red, green, blue and other prismatic colours.”11

It is somewhat difficult to account for all the appearances here described; but, in all probability, they are produced by a calm sea, and one or more strata of superincumbent air differing in refractive and consequently in reflective power. At any rate reflection and refraction are some of the essential causes which operate in the production of the phenomena.

The Mirage, seen in the deserts of Africa, is a phenomenon, in all probability produced by a similar cause. M. Monge, who accompanied the French army to Egypt, relates that, when in the desert between Alexandria and Cairo, the mirage of the blue sky was inverted, and so mingled with the sand below, as to give to the desolate and arid wilderness an appearance of the most rich and beautiful country. They saw, in all directions, green islands, surrounded with extensive lakes of pure, transparent water. Nothing could be conceived more lovely and picturesque than the landscape. In the tranquil surface of the lakes, the trees and houses with which the islands were covered, were strongly reflected with vivid and varied hues, and the party hastened forward to enjoy the cool refreshments of shade and stream which these populous villages proffered to them. When they arrived, the lake on whose bosom they floated, the trees among whose foliage they were embowered, and the people who stood on the shore inviting their approach, had all vanished, and nothing remained but an uniform and irksome desert of sand and sky, with a few naked huts and ragged Arabs. Had they not been undeceived by their nearer approach, there was not a man in the French army who would not have sworn that the visionary trees and lakes had a real existence in the midst of the desert.

Dr. Clark observed precisely the same appearances at Rosetta. The city seemed surrounded with a beautiful sheet of water; and so certain was his Greek interpreter—who was unacquainted with the country—of this fact, that he was quite indignant at an Arab who attempted to explain to him that it was a mere optical delusion. At length they reached Rosetta in about two hours, without meeting with any water; and on looking back on the sand they had just crossed, it seemed to them as if they had waded through a vast blue lake.

figure 29.

On the 1st of August, 1798, Dr. Vince observed at Ramsgate a ship which appeared as at A, (fig. 29.) the topmast being the only part of it that was seen above the horizon. An inverted image of it was seen at B, immediately above the real ship A, and an erect image at C, both of them being complete and well defined. The sea was distinctly seen between them, as at V W. As the ship rose to the horizon the image C gradually disappeared, and while this was going on, the image B descended, but the mainmast of B did not meet the mainmast of A. The two images BC were perfectly visible when the whole ship was actually below the horizon. Dr. Vince then directed his telescope to another ship whose hull was just in the horizon, and he observed a complete inverted image of it, the mainmast of which just touched the mainmast of the ship itself. He saw at the same time several other ships whose images appeared in nearly a similar manner, in one of which the two images were visible when the whole ship was beneath the horizon. These phenomena must have been produced by the same causes which operated in the case formerly mentioned, in relation to Captain Scoresby, when he saw the figure of his father’s ship inverted in the distant horizon. Such cases are, perhaps not uncommon, especially in calm and sultry weather, but they are seldom observed, except when a person’s attention is accidentally directed to the phenomenon, and, unless he use a telescope, it will not be so distinctly perceived.

The following phenomenon, of a description nearly related to the above, has been supposed to be chiefly owing to reflection. On the 18th of November, 1804, Dr. Buchan, when watching the rising sun, about a mile to the east of Brighton, just as the solar disk emerged from the surface of the water, saw the face of the cliff on which he was standing, a windmill, his own figure and the figure of his friend, distinctly represented, precisely opposite, at some distance from the ocean. This appearance lasted about ten minutes, till the sun had risen nearly his own diameter above the sea. The whole then seemed to be elevated into the air and successively disappeared. The surface of the sun was covered with a dense fog of many yards in height, which gradually receded from the rays of the sun as he ascended from the horizon.

The following appearance most probably arose chiefly from the refraction of the atmosphere. It was beheld at Ramsgate, by Dr. Vince of Cambridge and another gentleman. It is well known that the four turrets of Dover castle are seen at Ramsgate, over a hill which intervenes between a full prospect of the whole. On the 2nd of August, 1806, not only were the four turrets visible, but the castle itself appeared as though situated on that side of the hill nearest Ramsgate, and so striking was the appearance, that for a long time the Doctor thought it an illusion; but at last, by accurate observation, was convinced that it was an actual image of the castle. He, with another individual, observed it attentively for twenty minutes, but were prevented by rain from making further observations. Between the observers and the land from which the hill rises, there were about six miles of sea, and from thence to the top of the hill there was about the same distance, their own height above the surface of the water was about seventy feet.—The cause of this phenomenon was, undoubtedly, unequal refraction. The air being more dense near the ground and above the sea than at greater heights, reached the eye of the observer, not in straight but in curvilinear lines. If the rays from the castle had in their path struck an eye at a much greater distance than Ramsgate, the probability is, that the image of the castle would have been inverted in the air; but in the present case,the rays from the turret and the base of the castle had not crossed each other.

To similar causes as those now alluded to are to be attributed such phenomena as the following:

The Spectre of the Brocken. This is a wonderful and, at first sight, a terrific phenomenon, which is sometimes seen from the summit of one of the Hartz mountains in Hanover, which is about 3,300 feet above the level of the sea, and overlooks all the country fifteen miles round. From this mountain the most gigantic and terrific spectres have been seen, which have terrified the credulous, and gratified the curious, in a very high degree. M. HawÉ who witnessed this phenomenon, says, the sun rose about four o’clock, after he had ascended to the summit, in a serene sky, free of clouds; and about a quarter past five, when looking round to see if the sky continued clear, he suddenly beheld at a little distance, a human figure of a monstrous size turned towards him, and glaring at him. While gazing on this gigantic spectre, with a mixture of awe and apprehension, a sudden gust of wind nearly carried off his hat, and he clapt his hand to his head to detain it, when to his great delight, the colossal spectre did the same. He changed his body into a variety of attitudes,all which the spectre exactly imitated, and then suddenly vanished without any apparent cause, and, in a short time as suddenly appeared. Being joined by another spectator, after the first visions had disappeared, they kept steadily looking for the aËrial spectres, when two gigantic monsters suddenly appeared. These spectres had been long considered as preternatural, by the inhabitants of the adjacent districts, and the whole country had been filled with awe and terror. Some of the lakes of Ireland are found to be susceptible of producing illusions, particularly the lake of Killarney. This romantic sheet of water is bounded on one side, by a semicircle of rugged mountains, and on the other by a flat morass; and the vapours generated in the marsh, and broken by the mountains, continually represent the most fantastic objects. Frequently men riding along the shore are seen as if they were moving across the lake, which is supposed to have given rise to the legend of O’Donougho, a magician who is said to be visible on the lake every May morning.

There can be little doubt that most of those visionary appearances which have been frequently seen in the sky and in mountainous regions, are phantoms produced by the cause to which I am adverting, such as armies of footmen and horsemen, which some have asserted to have been seen in the air near the horizon. A well authenticated instance of this kind occurred in the Highlands of Scotland:—Mr. Wren of Wetton Hall, and D. Stricket his servant, in the year 1744, were sitting at the door of the house in a summer evening, when they were surprised to see opposite to them on the side of Sonterfell hill—a place so extremely steep, that scarce a horse could walk slowly along it—the figure of a man with a dog pursuing several horses, all running at a most rapid pace. Onwards they passed till at last they disappeared at the lower end of the Fell. In expectation of finding the man dashed to pieces by so tremendous a fall, they went early next morning and made a search, but no trace of man or horse, or the prints of their feet on the turf could be found. Sometime afterwards, about seven in the evening, on the same spot, they beheld a troop of horsemen advancing in close ranks and at a brisk pace. The inmates of every cottage for a mile round beheld the wondrous scene, though they had formerly ridiculed the story told by Mr. Wren and his servant, and were struck with surprise and fear. The figures were seen for upwards of two hours, till the approach of darkness rendered them invisible. The various evolutions and changes through which the troops passed were distinctly visible, and were marked by all the observers. It is not improbable that these aËrial troopers were produced by the same cause which made the castle of Dover to appear on the side of the hill next to Ramsgate, and it is supposed that they were the images of a body of rebels, on the other side of the hill, exercising themselves previous to the rebellion in 1745.12

I shall mention only another instance of this description which lately occurred in France, and for a time caused a powerful sensation among all ranks. On Sunday the 17th of December, 1826, the clergy in the parish of MignÉ, in the vicinity of Poictiers, were engaged in the exercises of the Jubilee which preceded the festival of Christmas, and a number of persons to the amount of 3000 souls assisted in the service. They had planted as part of the ceremony, a large cross, twenty-five feet high, and painted red, in the open air beside the church. While one of the preachers, about five in the evening, was addressing the multitude, he reminded them of the miraculous cross which appeared in the sky to Constantine and his army, and the effect it produced—when suddenly a similar celestial cross appeared in the heavens just before the porch of the church about 200 feet above the horizon, and 140 feet in length, and its breadth from three to four feet, of a bright silver colour tinged with red. The curate and congregation fixed their wondering gaze upon this extraordinary phenomenon, and the effect produced on the minds of the assembly was strong and solemn: they spontaneously threw themselves on their knees; and many, who had been remiss in their religious duties, humbly confessed their sins, and made vows of penance and reformation. A commission was appointed to investigate the truth of this extraordinary appearance, and a memorial stating the above and other facts was subscribed by more than forty persons of rank and intelligence, so that no doubt was entertained as to the reality of the phenomenon. By many it was considered as strictly miraculous, as having happened at the time and in the circumstances mentioned. But it is evident, from what we have already stated, that it may be accounted for on physical principles. The large cross of wood painted red was doubtless the real object which produced the magnified image. The state of the atmosphere, according to the descriptions given in the memorial, must have been favourable for the production of such images. The spectrum of the wooden cross must have been cast on the concave surface of some atmospheric mirror, and so reflected back to the eyes of the spectators, from an opposite place—retaining exactly the same shape and proportions, but dilated in size; and what is worthy of attention, it was tinged with red, the very colour of the object of which it was the reflected image.

Such phenomena as we have now described, and the causes of them which science is able to unfold, are worthy of consideration, in order to divest the mind of superstitious terrors, and enable it clearly to perceive the laws by which the Almighty directs the movements of the material system. When any appearance in nature, exactly the reverse of every thing we could have previously conceived—presents itself to view, and when we know of no material cause by which it could be produced, the mind must feel a certain degree of awe and terror, and will naturally resort to supernatural agency as acting either in opposition to the established laws of the universe, or beyond the range to which they are confined. Besides the fears and apprehensions to which such erroneous conceptions give rise, they tend to convey false and distorted impressions of the attributes of the Deity and of his moral government. Science, therefore, performs an invaluable service to man, by removing the cause of superstitious alarms, by investigating the laws and principles which operate in the physical system, and by assigning reasons for those occasional phenomena, which at first sight appeared beyond the range of the operation of natural causes.

The late ingenious Dr. Wollaston illustrated the causes of some of the phenomena we have described, in the following manner. He looked along the side of a red hot poker at a word or object ten or twelve feet distant; and at a distance less than three eights of an inch from the line of the poker, an inverted image was seen, and within and without that image, an erect image, in consequence of the change produced, by the heat of the poker, in the density of the air. He also suggested the following experiment as another illustration of the same principle, namely, viewing an object through a stratum of spirit of wine lying above water, or a stratum of water laid above one of syrup. He poured into a square phial a small quantity of clear syrup, and above this he poured an equal quantity of water which gradually combined with the syrup, as seen at A. fig. 30. The word ‘Syrup,’ on a card held behind the bottle, appeared erect when seen through the pure spirit, but inverted, when seen through the mixture of water and syrup. He afterwards put nearly the same quantity of rectified spirits of wine above the water, as seen at B, and he saw the appearance as represented, namely, the true place of the word ‘Spirit,’ and the inverted and erect images below. These substances, by their gradual incorporation, produce refracting power, diminishing from the spirit of wine to the water, or from the syrup to the water; so that by looking through the mixed stratum, an inverted image of any object is seen behind the bottle. These experiments show that the mirage and several other atmospherical phenomena may be produced by variations in the refractive power of different strata of the atmosphere.

figure 30.

It is not unlikely that phenomena of a new and different description from any we have hitherto observed, may be produced from the same causes to which we have adverted. A certain optical writer remarks—‘If the variation of the refractive power of the air takes place in a horizontal line perpendicular to the line of vision, that is, from right to left, then we may have a lateral Mirage, that is, an image of a ship may be seen on the right or left hand of the real ship, or on both, if the variation of refractive power is the same on each side of the line of vision, and a fact of this kind was once observed on the Lake of Geneva. If there should happen at the same time, both a vertical and a lateral variation of refractive power in the air, and if the variation should be such as to expand or elongate the object in both directions, then the object would be magnified as if seen through a telescope, and might be seen and recognized at a distance at which it would not otherwise have been visible. If the refracting power, on the contrary, varied, so as to construct the object in both directions, the image of it would be diminished as if seen through a concave lens.’

Remarks and Reflections, in reference to the phenomena described above.

Such, then, are some of the striking and interesting effects produced by the refraction and the reflection of the rays of light. As the formation of the images of objects by convex lenses, lays the foundation of the construction of refracting telescopes and microscopes, and of all the discoveries they have brought to light, so the property of concave specula, in forming similar images, is that on which the construction of Reflecting telescopes entirely depends. To this circumstance Herschel was indebted for the powerful telescopes he was enabled to construct—which were all formed on the principle of reflection—and for all the discoveries they enabled him to make in the planetary system, and in the sidereal heavens. The same principles which operate in optical instruments, under the agency of man, we have reason to believe, frequently act on a more expansive scale in various parts of the system of nature. The magnificent Cross which astonished the preacher and the immense congregation assembled at MignÉ, was, in all probability, formed by a vast atmospherical speculum formed by the hand of nature, and representing its objects on a scale far superior to that of human art; and probably, to the same cause is to be attributed the singular phenomenon of the coast of France having been made to appear within two or three miles of the town of Hastings, as formerly described, (see p. 53.) Many other phenomena which we have never witnessed, and of which we can form no conception, may be produced by the same cause operating in an infinity of modes.

The facts we have stated above, and the variety of modes by which light may be refracted and reflected by different substances in nature, lead us to form some conceptions of the magnificent and diversified scenes which light may produce in other systems and worlds, under the arrangements of the all-wise and Beneficent Creator. Light, in all its modifications and varieties of colour and reflection, may be considered as the beauty and glory of the universe, and the source of unnumbered enjoyments to all its inhabitants. It is a symbol of the Divinity himself; for “God is Light, and in Him is no darkness at all.” It is a representative of Him who is exhibited in the Sacred oracles, as “The Sun of Righteousness,” and “the Light of the world.” It is an emblem of the glories and felicities of that future world, where knowledge shall be perfected, and happiness complete; for its inhabitants are designated “the saints in light;” and it is declared in Sacred history, to have been the first born of created beings. In our lower world, its effects on the objects which surround us, and its influences upon all sensitive beings, are multifarious and highly admirable. While passing from infinitude to infinitude, it reveals the depth and immensity of the heavens, the glory of the sun, the beauty of the stars, the arrangements of the planets, the rainbow encompassing the sky with its glorious circle, the embroidery of flowers, the rich clothing of the meadows, the valleys standing thick with corn, “the cattle on a thousand hills,” the rivers rolling through the plains, and the wide expanse of the ocean. But in other worlds the scenes it creates may be far more resplendent and magnificent. This may depend upon the refractive and reflective powers with which the Creator has endowed the atmospheres of other planets, and the peculiar constitution of the various objects with which they are connected. It is evident, from what we already know of the reflection of light, that very slight modifications of certain physical principles, and very slight additions to the arrangements of our terrestrial system, might produce scenes of beauty, magnificence and splendour of which, at present, we can form no conception. And, it is not unlikely that by such diversities of arrangement, in other worlds, an infinite variety of natural scenery is produced throughout the universe.

In the arrangements connected with the planet Saturn, and the immense rings with which it is encompassed, and in the various positions which its satellites daily assume with regard to one another, to the planet itself, and to these rings—there is, in all probability, a combination of refractions, reflections, light, and shadows, which produce scenes wonderfully diversified, and surpassing in grandeur what we can now distinctly conceive. In the remote regions of the heavens, there are certain bodies composed of immense masses of luminous matter, not yet formed into any regular system, and which are known by the name of NebulÆ. What should hinder us from supposing that certain exterior portions of those masses form speculums of enormous size, as some parts of our atmosphere are sometimes found to do? Such specula may be conceived to be hundreds and even thousands of miles in diameter, and that they may form images of the most distant objects in the heavens, on a scale of immense magnitude and extent, and which may be reflected, in all their grandeur, to the eyes of intelligences at a vast distance. And, if the organs of vision of such beings, be far superior to ours in acuteness and penetrating power, they may thus be enabled to take a survey of an immense sphere of vision, and to descry magnificent objects at distances the most remote from the sphere they occupy. Whatever grounds there may be for such suppositions, it must be admitted, that all the knowledge we have hitherto acquired respecting the operation of light, and the splendid effects it is capable of producing, is small indeed, and limited to a narrow circle, compared with the immensity of its range, the infinite modifications it may undergo, and the wondrous scenes it may create in regions of creation to which human eyes have never yet penetrated,—and which may present to view objects of brilliancy and magnificence such as, “Eye hath not yet seen, nor ear heard, nor hath it entered into the heart of man to conceive.”

CHAPTER V.

SECT. I.—ON THE COLOURS OF LIGHT.

We have hitherto considered light chiefly as a simple homogeneous substance, as if all its rays were white, and as if they were all refracted in the same manner by the different lenses on which they fall. Investigations however, into the nature of this wonderful fluid, have demonstrated that this is not the case, and that it is possessed of certain additional properties, of the utmost importance in the system of nature. Had every ray of light been a pure white, and incapable of being separated into any other colours, the scene of the universe would have exhibited a very different aspect from what we now behold. One uniform hue would have appeared over the whole face of nature, and one object could scarcely have been distinguished from another. The different shades of verdure which now diversify every landscape, the brilliant colouring of the flowery fields, and almost all the beauties and sublimities which adorn this lower creation would have been withdrawn. But it is now ascertained that every ray of white light is composed of an assemblage of colours, whence proceed that infinite variety of shade and colour with which the whole of our terrestrial habitation is arrayed. Those colours are found not to be in the objects themselves, but in the rays of light which fall upon them, without which they would either be invisible, or wear an uniform aspect. In reference to this point, Goldsmith has well observed: ‘The blushing beauties of the rose, the modest blue of the violet, are not in the flowers themselves, but in the light that adorns them. Odour, softness, and beauty of figure are their own; but it is light alone that dresses them up in those robes which shame the monarch’s glory.’

Many strange opinions and hypotheses were entertained respecting colours, by the ancients, and even by many modern writers, prior to the time of Sir Isaac Newton. The Pythagoreans called colour the superficies of bodies; Plato said that it was a flame issuing from them. According to Zeno it is the first configuration of matter, and according to Aristotle, it is that which moves bodies actually transparent. Among the moderns, Des Cartes imagined that the difference of colour proceeds from the prevalence of the direct or rotatory motions of the particles of light. Grimaldi, Dechales, and others, thought the differences of colour depended upon the quick or slow vibrations of a certain elastic medium filling the whole universe. Rohault imagined that the different colours were made by the rays of light entering the eye at different angles with respect to the optic axis; and Dr. Hook conceived that colour is caused by the sensation of the oblique or uneven pulse of light; and this being capable of no more than two varieties, he concluded that there could be no more than two primary colours. Such were some of the crude opinions which prevailed before the era of the illustrious Newton, by whose enlightened investigations the true theory of colours was at last discovered. In the year 1666 this philosopher began to investigate the subject; and finding the coloured image of the sun, formed by a glass prism, to be of an oblong and not of a circular form, as according to the laws of refraction it ought to be, he was surprised at the great disproportion between its length and breadth, the former being five times the length of the latter; and he began to conjecture that light is not homogeneal, but that it consists of rays some of which are much more refrangible than others. Prior to this period, philosophers supposed that all light, in passing out of one medium into another of different density was equally refracted in the same or like circumstances; but Newton discovered that this is not the fact; but that there are different species of light, and that each species is disposed both to suffer a different degree of refrangibility in passing out of one medium into another,—and to excite in us the idea of a different colour from the rest; and that bodies appear of that colour which arises from the peculiar rays they are disposed to reflect. It is now, therefore, universally acknowledged, that the light of the sun, which to us seems perfectly homogeneal and white, is composed of no fewer than seven different colours, namely Red, Orange, Yellow, Green, Blue, Indigo and Violet. A body which appears of a red colour has the property of reflecting the red rays more powerfully than any of the others; a body of a green colour reflects the green rays more copiously than rays of any other colour, and so of the orange, yellow, blue, purple and violet. A body which is of a black colour, instead of reflecting—absorbs all, or the greater part of the rays that fall upon it; and, on the contrary, a body that appears white reflects the greater part of the rays indiscriminately without separating the one from the other.

Before proceeding to describe the experiments by which the above results were obtained, it may be proper to give some idea of the form and effects of the Prism by which such experiments are made. This instrument is triangular and straight, and generally about three or four inches long. It is commonly made of white glass, as free as possible from veins and bubbles, and other similar defects, and is solid throughout. Its lateral faces, or sides, should be perfectly plane and of a fine polish. The angle formed by the two faces, one receiving the ray of light that is refracted in the instrument, and the other affording it an issue on its returning into the air, is called the refracting angle of the prism, as ACB, (fig. 31.) The manner in which Newton performed his experiments, and established the discovery to which we have alluded, is as follows.

In the window-shutter EG, (fig. 31.) of a dark room, a hole F, was made, of about one third of an inch diameter, and behind it was placed a glass prism ACB, so that the beam of light, SF, proceeding directly from the sun was made to pass through the prism. Before the interposition of the prism, the beam proceeded in a straight line towards T, where it formed a round white spot; but being now bent out of its course by the prism, it formed an oblong image OP, upon the white pasteboard, or screen LM, containing the seven colours marked in the figure—the red being the least, and the violet the most refracted from the original direction of the solar beam, ST. This oblong image is called the prismatic spectrum. If the refracting angle of the prism ACB, be 64 degrees, and the distance of the pasteboard from the prism about 18 feet, the length of the image OP will be about 10 inches, and the breadth 2 inches. The sides of the spectrum are right lines distinctly bounded, and the ends are semicircular. From this circumstance it is evident that it is still the image of the sun, but elongated by the refractive power of the prism. It is evident from the figure, that since some part of the beam, RO, is refracted much further out of its natural course WT, than some other part of the beam, as WP, the rays towards RO have a much greater disposition to be refracted than those toward WP; and that this disposition arises from the naturally different qualities of those rays, is evident from this consideration, that the refracting angle or power of the prism is the same in regard to the superior part of the beam as to the inferior.

figure 31.

By making a hole in the screen LM opposite any one of the colours of the spectrum, so as to allow that colour alone to pass—and by letting the colour thus separated fall upon a second prism—Newton found that the light of each of the colours was alike refrangible, because the second prism could not separate them into an oblong image, or into any other colour. Hence he called all the seven colours simple or homogeneous, in opposition to white light, which he called compound or heterogeneous. With the prism which this philosopher used he found the lengths of the colours and spaces of the spectrum to be as follows: Red, 45; Orange, 27; Yellow, 40; Green, 60; Blue, 60; Indigo, 48; Violet, 80: or 360 in all. But these spaces vary a little with prisms formed of different substances, and as they are not separated by distinct limits, it is difficult to obtain any thing like an accurate measure of their relative extents. Newton examined the ratio between the sines of incidence and refraction of these decompounded rays (see p. 30,) and found that each of the seven primary colour-making rays, had certain limits within which they were confined. Thus let the sine of incidence in glass be divided into 50 equal parts, the sine of refraction into air of the least refrangible, and the most refrangible rays will contain respectively 77 and 78 such parts. The sines of refraction of all the degrees of red will have the intermediate degrees of magnitude, from 77 to 77 one-eighth; Orange from 77 one-eighth to 77 one-fifth; Yellow from 77 one-fifth to 77 one-third; Green from 77 one-third to 77 one-half; Blue from 77 one-half to 77 two-thirds; Indigo from 77 two-thirds to 77 seven-ninths; and Violet from 77 seven-ninths to 78.

From what has been now stated, it is evident that, in proportion as any part of an optic glass bears a resemblance to the form of a prism, the component rays that pass through it must be necessarily separated, and will consequently paint or tinge the object with colours. The edges of every convex lens approach to this form, and it is on this account that the extremities of objects when viewed through them are found to be tinged with the prismatic colours. In such a glass, therefore, those different coloured rays will have different foci, and will form their respective images at different distances from the lens. Thus, suppose LN (fig. 32.) to represent a double convex-lens, and OB an object at some distance from it. If the object OB was of a pure red colour, the rays proceeding from it would form a red image at Rr; if the object was of a violet colour, an image of that colour would be formed at Vv, nearer the lens; and if the object was white or any other combination of the colour-making rays, those rays would have their respective foci at different distances from the lens, and form a succession of images, in the order of the prismatic colours, between the space Rr and Vv.

figure 32.

figure 33.

This may be illustrated by experiment in the following manner. Take a card or slip of white pasteboard, as ABEF, (fig. 33.) and paint one half ABCD red, the other half CF, violet or indigo; and tying black threads across it, set it near the flame of a candle G, then take a lens HI, and holding a sheet of white paper behind it, move it backwards and forwards upon the edge of a graduated ruler, till you see the black threads most distinctly in the image, and you will find the focus of the violet FE, much nearer than that of the red AC, which plainly shows that bodies of different colours can never be depicted by convex-lenses, without some degree of confusion.

The quantity of dispersion of the coloured rays in convex lenses depends upon the focal length of the glass; the space which the coloured images occupy being about the twenty-eighth part. Thus if the lens be twenty-eight inches focal distance, the space between Rr and Vv (fig 32) will be about one inch; if it be twenty-eight feet focus, the same space will be about one foot, and so on in proportion. Now, when such a succession of images formed by the different coloured rays, is viewed through an eye-glass, it will seem to form but one image, and consequently very indistinct, and tinged with various colours, and as the red figure Rr is largest, or seen under the greatest angle—the extreme parts of this confused image will be red, and a succession of the prismatic colours will be formed within this red fringe, as is generally found in common refracting-telescopes, constructed with a single object-glass. It is owing to this circumstance that the common refracting telescope cannot be much improved without having recourse to lenses of a very long focal distance; and hence, about 150 years ago, such telescopes were constructed of 80, and 100, and 120 feet in length. But still the image was not formed so distinctly as was desired, and the aperture of the object-glass was obliged to be limited. This is a defect which was long regarded as without a remedy; and even Newton himself despaired of discovering any means by which the defects of refracting telescopes might be removed and their improvement effected. This, however, was accomplished by Dollond to an extent far surpassing what could have been expected, of which a particular account will be given in the sequel.

It was originally remarked by Newton, and the fact has since been confirmed by the experiments of Sir W. Herschel, that the different-coloured rays have not the same illuminating power. The violet rays appear to have the least illuminating effect; the indigo more, and the effect increases in the order of the colours,—the green being very great; between the green and the yellow the greatest of all; the yellow the same as the green; but the red less than the yellow. Herschel also endeavoured to determine whether the power of the differently-coloured rays to heat bodies, varied with their power to illuminate them. He introduced a beam of light into a dark room, which was decomposed by a prism, and then exposed a very sensible thermometer to all the rays in succession, and observed the heights to which it rose in a given time. He found that their heating power increased from the violet to the red. The mercury in the thermometer rose higher when its bulb was placed in the Indigo than when it was placed in the violet, still higher in blue, and highest of all at red. Upon placing the bulb of the thermometer below the red, quite out of the spectrum, he was surprised to find that the mercury rose highest of all; and concluded that rays proceed from the sun, which have the power of HEATING, but not of illuminating bodies. These rays have been called invisible solar rays. They were about half an inch from the commencement of the red rays; at a greater distance from this point the heat began to diminish, but was very perceptible even at the distance of 1½ inch. He determined that the heating power of the red to that of the green rays, was 2¾ to 1, and 3½ to 1, in red to violet. He afterwards made experiments to collect those invisible calorific rays, and caused them to act independently of the light, from which he concluded that they are sufficient to account for all the effects produced by the solar rays in exciting heat; that they are capable of passing through glass, and of being refracted and reflected, after they have been finally detached from the solar beam.

M. Ritter of Jena, Wollaston, Beckman and others, have found that the rays of the spectrum are possessed of certain chemical properties—that beyond the least brilliant extremity, namely, a little beyond the violet ray, there are invisible rays which act chemically, while they have neither the power of heating nor illuminating bodies. Muriate of silver exposed to the action of the red rays becomes blackish; a greater effect is produced by the yellow: a still greater by the violet, and the greatest of all by the invisible rays beyond the violet. When phosphorus is exposed to the action of the invisible rays beyond the red, it emits white fumes; but the invisible rays beyond the violet extinguish them. The influence of these rays is daily seen in the change produced upon vegetable colours, which fade, when frequently exposed to the direct influence of the sum. What object they are destined to accomplish in the general economy of nature, is not yet distinctly known; we cannot however doubt that they are essentially requisite to various processes going forward in the material system. And we know that, not only the comfort of all the tribes of the living world, but the very existence of the animal and vegetable creation depends upon the unremitting agency of the Calorific rays.

It has likewise been lately discovered that certain rays of the spectrum, particularly the violet, possesses the property of communicating the magnetic power. Dr. Morichini, of Rome, appears to have been the first who found that the violet rays of the spectrum had this property. The result of his experiments, however, was involved in doubt, till it was established by a series of experiments instituted by Mrs. Somerville, whose name is so well known in the scientific world. This lady having covered half of a sewing-needle, about an inch long, with paper, she exposed the other half for two hours, to the violet rays. The needle had then acquired North polarity. The indigo rays produced nearly the same effect; and the blue and green rays produced it in a still less degree. In the yellow, orange, red and invisible rays, no magnetic influence was exhibited, even though the experiment was continued for three successive days. The same effects were produced by enclosing the needle in blue or green glass, or wrapping it in blue and green ribbands one half of the needle being always covered with paper.

One of the most curious discoveries of modern times, in reference to the solar spectrum, is that of Fraunhofer of Munich—one of the most distinguished artists and opticians on the Continent.13 He discovered that the spectrum is covered with dark and coloured lines, parallel to one another, and perpendicular to the length of the spectrum; and he counted no less than 590 of these lines. In order to observe these lines, it is necessary to use prisms of the most perfect construction, of very pure glass, free of veins—to exclude all extraneous light, and even to stop those rays which form the coloured spaces, which we are not examining. It is necessary also to use a magnifying instrument, and the light must enter and emerge from the prism at equal angles. One of the important practical results of this discovery is, that those lines are fixed points in the spectrum, or rather, that they have always the same position in the coloured spaces in which they are found. Fraunhofer likewise discovered in the spectrum produced by the light of Venus, the same streaks, as in the solar spectrum; in the spectrum of the light of Sirius, he perceived three large streaks which, according to appearance, had no resemblance to those of the light of the sun; one of them was in the green, two in the blue. The stars appear to differ from one another in their streaks. The electric light differs very much from the light of the sun and that of a lamp, in regard to the streaks of the spectrum—‘This experiment may also be made, though in an imperfect manner, by viewing a narrow slit between two nearly closed window-shutters, through a very excellent glass prism held close to the eye, with the refracting angle parallel to the line of light. When the spectrum is formed by the sun’s rays, either direct or indirect, as from the sky, clouds, rainbow, moon, or planets, the black bands are always found to be in the same parts of the spectrum, and under all circumstances to maintain the same relative position, breadth and intensities.’

From what has been stated in reference to the solar spectrum it will evidently appear, that white light is nothing else than a compound of all the prismatic colours; and this may be still farther illustrated by shewing, that the seven primary colours, when again put together, recompose white light. This may be rudely proved for the purpose of illustration, by mixing together seven different powders, having the colours and proportion of the spectrum; but the best mode, on the whole, is the following. Let two circles be drawn on a smooth round board, covered with white paper, as in fig. 34: Let the outermost be divided into 360 equal parts; then draw seven right lines as A,B,C, &c., from the center to the outermost circle, making the lines A and B include 80 degrees of that circle. The lines B and C, 40 degrees; C and D, 60; D and E, 60; E and F, 48; F and G, 27; G and A, 45. Then between these two circles paint the space AG red, inclining to orange near G; GF orange, inclining to yellow near F; FE yellow, inclining to green near E; ED green, inclining to blue near D; DC blue, inclining to indigo near C; CB indigo, inclining to violet near B; and BA violet, inclining to a soft red near A. This done, paint all that part of the board black which lies within the inner circle; and putting an axis through the centre of the board, let it be turned swiftly round that axis, so that the rays proceeding from the above colours, may be all blended and mixed together in coming to the eye. Then the whole coloured part will appear like a white ring a little grayish—not perfectly white, because no art can prepare or lay on perfect colours, in all their delicate shades, as found in the real spectrum.

figure 34.

That all the colours of light, when blended together in their proper proportions, produce a pure white is rendered certain by the following experiment. Take a large convex glass, and place it in the room of the paper or screen on which the solar spectrum was depicted (LM fig. 31), the glass will unite all the rays which come from the prism, if a paper is placed to receive them, and you will see a circular spot of a pure lively white. The rays will cross each other in the focus of the glass, and, if the paper be removed a little further from that point, you will see the prismatic colours again displayed, but in an inverted order, owing to the crossing of the rays.

SECT. 2.—ON THE COLOURS OF NATURAL OBJECTS.

From what has been stated above we may learn the true cause of those diversified hues exhibited by natural and artificial objects, and the variegated colouring which appears on the face of nature. It is owing to the surfaces of bodies being disposed to reflect one colour rather than another. When this disposition is such that the body reflects every kind of ray, in the mixed state in which it receives them, that body appears white to us—which, properly speaking, is no colour, but rather the assemblage of all colours. If the body has a fitness to reflect one sort of rays more abundantly than others, by absorbing all the others, it will appear of the colour belonging to that species of rays. Thus, the grass is green, because it absorbs all the rays except the green. It is these green rays only which the grass, the trees, the shrubs, and all the other verdant parts of the landscape reflect to our sight, and which make them appear green. In the same manner the different flowers reflect their respective colours; the rose, the red rays; the violet, the blue; the jonquil, the yellow; the marigold, the orange, and every object, whether natural or artificial, appears of that colour which its peculiar texture is fitted to reflect. A great number of bodies are fitted to reflect at once several kinds of rays, and of consequence they appear under mixed colours. It may even happen, that of two bodies which should be green, for example, one may reflect the pure green of light, and the other the mixture of yellow and blue. This quality, which varies to infinity, occasions the different kinds of rays to unite in every possible manner, and every possible proportion; and hence the inexhaustible variety of shades and hues which nature has diffused over the landscape of the world. When a body absorbs nearly all the light which reaches it, that body appears black. It transmits to the eye so few reflected rays that it is scarcely perceptible in itself, and its presence and form make no impression upon us, unless as it interrupts the brightness of the surrounding space. Black is, therefore, the absence of all the coloured rays.

It is evident, then, that all the various assemblages of colours which we see in the objects around us, are not in the bodies themselves, but in the light which falls upon them. There is no colour inherent in the grass, the trees, the fruits, and the flowers, nor even in the most splendid and variegated dress that adorns a lady. All such objects are as destitute of colour, in themselves, as bodies which are placed in the centre of the earth, or as the chaotic materials out of which our globe was formed, before light was created. For where there is no light, there is no colour. Every object is black, or without colour, in the dark, and it only appears coloured as soon as light renders it visible. This is further evident from the following experiment. If we place a coloured body in one of the colours of the spectrum which is formed by the prism, it appears of the colour of the rays in which it is placed. Take, for example, a red rose, and expose it first to the red rays, and it will appear of a more brilliant ruddy hue. Hold it in the blue rays, and it appears no longer red, but of a dingy blue colour, and in like manner its colour will appear different, when placed in all the other differently coloured rays. This is the reason why the colours of objects are essentially altered by the nature of the light in which they are seen. The colours of ribbons and various pieces of silk or woollen stuff are not the same when viewed by candle-light as in the day time. In the light of a candle or a lamp, blue often appears green, and yellow objects assume a whitish aspect. The reason is that the light of a candle is not so pure a white as that of the sun, but has a yellowish tinge, and therefore, when refracted by the prism, the yellowish rays are found to predominate, and the superabundance of yellow rays gives to blue objects a greenish hue.

The doctrine we are now illustrating is one which a great many persons, especially among the fair sex, find it difficult to admit. They cannot conceive it possible that there is no colour really inherent in their splendid attire, and no tints of beauty in their countenances. ‘What,’ said a certain lady, ‘are there no colours in my shawl, and in the ribbons that adorn my head-dress—and, are we all as black as negroes in the dark; I should almost shudder to think of it.’ Such persons, however, need be in no alarm at the idea; but may console themselves with the reflection, that, when they are stripped of all their coloured ornaments in the dark, they are certain that they will never be seen by any one in that state; and therefore, there is no reason to regret the temporary loss of those beauties which light creates—when they themselves and all surrounding objects are invisible. But, to give a still more palpable proof of this position, the following popular experiments may be stated.

Take a pint of common spirit, and pour it into a soup dish, and then set it on fire; as it begins to blaze, throw a handful of salt into the burning spirit, and keep stirring it with a spoon. Several handfuls may thus be successively thrown in, and then the spectators, standing around the flame, will see each other frightfully changed, their colours being altered into a ghastly blackness, in consequence of the nature of the light which falls upon them—which produces colours very different from those of the solar light. The following experiment, as described by Sir D. Brewster, illustrates the same principle. ‘Having obtained the means of illuminating any apartment with yellow light, let the exhibition be made in a room with furniture of various bright colours, and with oil or water coloured paintings on the wall. The party which is to witness the experiment should be dressed in a diversity of the gayest colours; and the brightest coloured flowers, and highly coloured drawings should be placed on the tables. The room being at first lighted with ordinary lights, the bright and gay colours of every thing that it contains will be finely displayed. If the white lights are now suddenly extinguished, and the yellow lamps lighted, the most appalling metamorphosis will be exhibited. The astonished individuals will no longer be able to recognise each other. All the furniture of the room, and all the objects it contains, will exhibit only one colour. The flowers will lose their hues; the paintings and drawings will appear as if they were executed in China ink, and the gayest dresses, the brightest scarlets, the purest lilacs, the richest blues and the most vivid greens, will all be converted into one monotonous yellow. The complexions of the parties, too, will suffer a corresponding change. One pallid deathlike yellow, will envelope the young and the old, and the sallow face will alone escape from the metamorphosis. Each individual derives merriment from the cadaverous appearance of his neighbour, without being sensible that he is one of the ghastly assemblage.’

——Like the unnatural hue
Which autumn paints upon the perished leaf,

From such experiments as these we might conclude, that were the solar rays of a very different description from what they are now found to be, the colours which embellish the face of nature, and the whole scene of our sublunary creation would assume a new aspect, and appear very different from what we now behold around us in every landscape. We find that the stars display great diversity of colour; which is doubtless owing to the different kinds of light which are emitted from those bodies; and hence we may conclude, that the colouring thrown upon the various objects of the universe is different in every different system, and that thus, along with other arrangements, an infinite variety of colouring and of scenery is distributed throughout the immensity of creation.

The atmosphere, in consequence of its different refractive and reflective powers, is the source of a variety of colours which frequently embellish and diversify the aspect of our sky. The air reflects the blue rays most plentifully, and must therefore transmit the red, orange, and yellow, more copiously than the other rays. When the sun and other heavenly bodies are at a high elevation, their light is transmitted without any perceptible change, but when they are near the horizon, their light must pass through a long and dense track of air, and must therefore be considerably modified before it reach the eye of the observer. The momentum of the red rays being greater than that of the violet, will force their way through the resisting medium, while the violet rays will be either reflected or absorbed. If the light of the setting sun, by thus passing through a long track of air, be divested of the green, blue, indigo, and violet rays, the remaining rays which are transmitted through the atmosphere, will illuminate the western clouds, first with an orange colour; and then, as the sun gradually sinks into the horizon, the track through which the rays must pass becoming longer, the yellow and orange are reflected, and the clouds grow more deeply red, till at length the disappearance of the sun leaves them of a leaden hue by the reflection of the blue light through the air. Similar changes of colour are sometimes seen on the eastern and western fronts of white buildings. St. Paul’s Church, in London, is frequently seen at sun-set, tinged with a very considerable degree of redness; and the same cause occasions the moon to assume a ruddy colour, by the light transmitted through the atmosphere. From such atmospherical refractions and reflections are produced those rich and beautiful hues with which our sky is gilded by the setting sun, and the glowing red which tinges the morning and evening clouds, till their ruddy glare is tempered by the purple of twilight, and the reflected azure of the sky.

When a direct spectrum is thrown on colours darker than itself, it mixes with them: as the yellow spectrum of the setting sun, thrown on the green grass, becomes a greener yellow. But when a direct spectrum is thrown on colours brighter than itself, it becomes instantly changed into the reverse spectrum, which mixes with those brighter colours. Thus the yellow spectrum of the setting sun thrown on the luminous sky, becomes blue, and changes with the colour or brightness of the clouds on which it appears. The red part of light being capable of struggling through thick and resisting mediums which intercept all other colours—is likewise the cause why the sun appears red when seen through a fog,—why distant light, though transmitted through blue or green glass, appears red—why lamps at a distance, seen through the smoke of a long street, are red, while those that are near, are white. To the same cause it is owing that a diver at the bottom of the sea is surrounded with the red light which has pierced through the superincumbent fluid, and that the blue rays are reflected from the surface of the ocean. Hence, Dr. Halley informs us that, when he was in a diving bell, at the bottom of the sea, his hand always appeared red in the water.

The blue rays, as already noticed, being unable to resist the obstructions they meet with in their course through the atmosphere, are either reflected or absorbed in their passage. It is to this cause, that most philosophers ascribe the blue colour of the sky, the faintness and obscurity of distant objects, and the bright azure which tinges the mountains of a distant landscape.

SECT. 3.—PHENOMENA OF THE RAINBOW.

Since the rays of light are found to be decomposed by refracting surfaces, and reflected in an infinite variety of modes and shades of colour, we need not be surprised at the changes produced in any scene or object by the intervention of another, and by the numerous modifications of which the primary colours of nature are susceptible. The vivid colours which gild the rising and the setting sun, must necessarily differ from those which adorn its noon-day splendour. Variety of atmospheric scenery will thus necessarily be produced, greater than the most lively fancy can well imagine. The clouds will sometimes assume the most fantastic forms, and at other times will be irradiated with beams of light, or, covered with the darkest hues, will assume a lowering aspect, prognostive of the thunder’s roar and the lightning’s flash—all in accordance with the different rays that are reflected to our eyes, or the quantity absorbed by the vapours which float in the atmosphere.

Light, which embellishes with so much magnificence a pure and serene sky, by means of innumerable bright starry orbs which are spread over it, sometimes, in a dark and cloudy sky, exhibits an ornament which, by its pomp, splendour and variety of colours, attracts the attention of every eye that has an opportunity of beholding it. At certain times, when there is a shower either around us, or at a distance from us in an opposite quarter to that of the sun, a species of arch or bow is seen in the sky, adorned with all the seven primary colours of light. This phenomenon, which is one of the most beautiful meteors in nature, has obtained the name of the Rainbow. The rainbow was, for ages, considered as an inexplicable mystery, and by some nations it was adored as a deity. Even after the dawn of true philosophy, it was a considerable time before any discovery of importance was made, as to the true causes which operate in the production of this phenomenon. About the year 1571, M. Fletcher of Breslau, made a certain approximation to the discovery of the true cause, by endeavouring to account for the colours of the rainbow by means of a double refraction and one reflection. A nearer approximation was made by Antonio de Dominis, bishop of Spalatro, about 1601. He maintained that the double refraction of Fletcher, with an intervening reflection, was sufficient to produce the colours of the bow, and also to bring the rays that formed them to the eye of the spectator, without any subsequent reflection. To verify this hypothesis, he procured a small globe of solid glass, and viewing it when it was exposed to the rays of the sun—with his back to that luminary—in the same manner as he had supposed the drops of rain were situated with respect to them, he observed the same colours which he had seen in the rainbow, and in the same order. But he could give no good reason why the bow should be coloured, and much less any satisfactory account of the order in which the colours appear. It was not till Sir I. Newton discovered the different refrangibility of the rays of light, that a complete and satisfactory explanation could be given of all the circumstances connected with this phenomenon.

As the full elucidation of this subject involves a variety of optical and mathematical investigations, I shall do little more than explain the general principle on which the prominent phenomena of the rainbow may be accounted for, and some of the facts and results which theory and observation have deduced.

We have just now alluded to an experiment with a glass globe:—If, then, we take either a solid glass globe, or a hollow globe filled with water, and suspend it so high in the solar rays above the eye, that the spectator, with his back to the sun, can see the globe red;—if it be lowered slowly, he will see it orange, then yellow, then green, then blue, then indigo, and then violet; so that the drop at different heights, shall present to the eye the seven primitive colours in succession. In this case, the globe, from its form, will act in some measure like a prism, and the ray will be separated into its component parts. The following figure will more particularly illustrate this point. Suppose A (fig. 35.) to represent a drop of rain—which may be considered as a globe of glass in miniature, and will produce the same effect on the rays of light—and let Sd represent a ray from the sun falling upon the upper part of the drop at D. At the point of entering the drop, it will suffer a refraction, and instead of going forward to C, it will be bent to N. From N a part of the light will be reflected to Q—some part of it will, of course, pass through the drop. By the obliquity with which it falls on the side of the drop at Q, that part becomes a kind of prism, and separates the ray into its primitive colours. It is found by computation that, after a ray has suffered two refractions and one reflection, as here represented, the least refrangible part of it, namely the red ray, will make an angle with the incident solar ray of 42° 2´, as Sfq; and the violet, or greatest refrangible ray will make with the solar ray, an angle of 40° 17´, as Scq; and thus all the particles of water within the difference of those two angles, namely 1° 45´—(supposing the ray to proceed merely from the centre of the sun)—will exhibit severally the colours of the prism, and constitute the interior bow of the cloud. This holds good at whatever height the sun may chance to be in a shower of rain. If he be at a high altitude, the rainbow will be low; if he be at a low elevation, the rainbow must be high; and if a shower happen in a vale, when the spectator is on a mountain, he will sometimes see the bow in the form of a complete circle below him. We have at present described the phenomena only of a single drop; but it is to be considered that in a shower of rain there are drops at all heights and at all distances; and therefore the eye situated at G will see all the different colours. All those drops that are in a certain position with respect to the spectator will reflect the red rays, all those in the next station the orange, those in the next the green, and so on with regard to all the other colours.

figure 35.

It appears, then, that the first or primary bow is formed by two refractions and one reflection; but there is frequently a second bow, on the outside of the other, which is considerably fainter. This is produced by drops of rain above the drop we have supposed at A. If B (fig. 35.) represent one of these drops, the ray to be sent to the eye enters the drop near the bottom, and suffers two refractions and two reflections, by which means the colours become reversed, that is, the violet is lowest in the exterior bow, and the red is lowest in the interior one, and the other colours are reversed accordingly. The ray T is refracted at R: a part of it is reflected from S to T, and at T it suffers another reflection from T to U. At the points S and T part of the ray passes through the drop on account of its transparency, towards W and X, and therefore we say that part only of the ray is reflected. By these losses and reflections the exterior bow becomes faint and ill-defined in comparison of the interior or primary bow. In this case the upper part of the secondary bow will not be seen when the sun is above 54° 10´ above the horizon; and the lower part of the bow will not be seen when the sun is 60° 58´ above the horizon.

figure 36.

For the further illustrations of this subject, we may introduce the following section of a bow, (fig. 36.) and, in order to prevent confusion in attempting to represent all the different colours—let us suppose only three drops of rain, and three different colours, as shown in the figure. The spectator O being in the centre of the two bows, here represented,—the planes of which must be considered as perpendicular to his view—the drops A,B, and C produce part of the interior bow by two refractions and one reflection as stated above, and the drops D,E,F will produce the exterior bow by two refractions and two reflections, the sun’s rays being represented by 3,3. It is evident that the angle COP is less than the angle BOP, and that the angle AOP is the greatest of the three. The largest angle, then, is formed by the red rays, the middle one consists of the green, and the smallest the purple or violet. All the drops of rain, therefore, that happen to be in a certain position with respect to the spectator’s eye, will reflect the red rays, and form a band or semicircle of red, and so of the other colours from drops in other positions. If the spectator alters his station, he will see a bow, but not the same as before; and if there be many spectators, they will each see a different bow, though it appears to be the same.

The rainbow assumes a semicircular appearance, because it is only at certain angles that the refracted rays are visible to our eyes, as is evident from the experiment of the glass globe formerly alluded to, which will refract the rays only in a certain position. We have already stated that the red rays make an angle of 42° 2´, and the violet an angle of 40° 17´. Now, if a line be drawn horizontally from the spectator’s eye, it is evident that angles formed with this line, of a certain dimension, in every direction, will produce a circle, as will appear by attaching a cord of a given length to a certain point, round which it may turn as round its axis; and, in every point will describe an angle with the horizontal line of a certain and determinate extent.

Sometimes it happens that three or more bows are visible, though with different degrees of distinctness. I have more than once observed this phenomenon, particularly in Edinburgh, in the month of August, 1825, when three rainbows were distinctly seen in the same quarter of the sky; and, if I recollect right, a fragment of a fourth made its appearance. This happens when the rays suffer a third or fourth reflection; but, on account of the light lost by so many reflections, such bows are, for the most part, altogether imperceptible.

If there were no ground to intercept the rain and the view of the observer, the rainbow would form a complete circle, the centre of which is diametrically opposite to the sun. Such circles are sometimes seen in the spray of the sea or of a cascade, or from the tops of lofty mountains, when the showers happen in the vales below. Rainbows of various descriptions are frequently observed rising amidst the spray and exhalations of waterfalls, and among the waves of the sea whose tops are blown by the wind into small drops. There is one regularly seen, when the sun is shining, and the spectator in a proper position, at the fall of Staubbach, in the bosom of the Alps; one near Schaffhausen; one at the cascade of Lauffen; and one at the cataract of Niagara in North America. A still more beautiful one is said to be seen at Terni, where the whole current of the river Velino, rushing from a steep precipice of nearly 200 feet high, presents to the spectator below, a variegated circle, over-arching the fall, and two other bows suddenly reflected on the right and left. Don Ulloa, in the account of his journeys in South America, relates that circular rainbows are frequently seen on the mountains above Quito in Peru. It is said that a rainbow was once seen near London, caused by the exhalations of that city, after the sun had been below the horizon more than twenty minutes.14 A naval friend, says Mr. Bucke, informed me, that, as he was one day watching the sun’s effect upon the exhalations near Juan Fernandez, he saw upwards of five-and-twenty ires marinÆ animate the sea at the same time. In these marine bows the concave sides were turned upwards, the drops of water rising from below, and not falling from above, as in the instances of the aerial arches. Rainbows are also occasionally seen on the grass, in the morning dew, and likewise when the hoar-frost is descending. Dr. Langwith once saw a bow lying on the ground, the colours of which were almost as lively as those of a common rainbow. It was not round but oblong, and was extended several hundred yards. The colours took up less space, and were much more lively in those parts of the bow which were near him than in those which were at a distance. When M. Labillardiere was on Mount Teneriffe, he saw the contours of his body traced on the clouds beneath him in all the colours of the solar bow. He had previously witnessed this phenomenon on the Kesrouan in Asia Minor. The rainbows of Greenland are said to be frequently of a pale white, fringed with a brownish yellow, arising from the rays of the sun being reflected from a frozen cloud.

The following is a summary view of the principal facts which have been ascertained respecting the rainbow:—1. The rainbow can only be seen when it rains, and in that point of the heavens which is opposite to the sun. 2. Both the primary and secondary bows are variegated with all the prismatic colours—the red being the highest colour in the primary, or brightest bow, and the violet the highest in the exterior. 3. The primary rainbow can never be a greater arc than a semicircle; and when the sun is set, no bow, in ordinary circumstances, can be seen. 4. The breadth of the inner or primary bow—supposing the sun but a point—is 1° 45´; and the breadth of the exterior bow 3° 12´, which is nearly twice as great as that of the other; and the distance between the bows is 8° 55´. But since the body of the sun subtends an angle of about half a degree, by so much will each bow be increased, and their distance diminished; and therefore the breadth of the interior bow will be 2° 15´, and that of the exterior, 3° 42´, and their distance 8° 25´. The greatest semidiameter of the interior bow, on the same grounds, will be 42° 17´, and the least of the exterior bow 50° 43´. 5. When the sun is in the horizon, either in the morning or evening, the bows will appear complete semicircles. On the other hand, when the sun’s altitude is equal to 42° 2´ or to 54° 10´, the summits of the bows will be depressed below the horizon. Hence, during the days of summer, within a certain interval each day, no visible rainbows can be formed, on account of the sun’s high altitude above the horizon. 6. The altitude of the bows above the horizon, or surface of the earth, varies, according to the elevation of the sun. The altitude, at any time, may be taken by a common quadrant, or other angular instrument; but, if the sun’s altitude at any particular time be known, the height of the summit of any of the bows may be found, by subtracting the sun’s altitude from 42° 2´ for the inner bow, and from 54° 10´, for the outer. Thus, if the sun’s altitude were 26°, the height of the primary bow would 16° 2´, and of the secondary, 28° 10´. It follows, that the height and the size of the bows diminish as the altitude of the sun increases. 7. If the sun’s altitude is more than 42 degrees, and less than 54°, the exterior bow may be seen though the interior bow is invisible. 8. Sometimes only a portion of an arch will be visible while all the other parts of the bow are invisible. This happens when the rain does not occupy a space of sufficient extent to complete the bow; and the appearance of this position, and even of the bow itself, will be various, according to the nature of the situation, and the space occupied by the rain.

The appearance of the rainbow may be produced by artificial means, at any time when the sun is shining and not too highly elevated above the horizon. This is effected by means of artificial fountains or Jet d’eaus, which are intended to throw up streams of water to a great height. These streams, when they spread very wide, and blend together in their upper parts, form, when falling, a shower of artificial rain. If, then, when the fountain is playing, we move between it and the sun, at a proper distance from the fountain, till our shadow point directly towards it, and look at the shower,—we shall observe the colours of the rainbow, strong and vivid; and, what is particularly worthy of notice, the bow appears, notwithstanding the nearness of the shower, to be as large, and as far off, as the rainbow which we see in a natural shower of rain. The same experiment may be made by candle-light, and with any instrument that will form an artificial shower.

Lunar Rainbows.—A lunar bow is sometimes formed at night by the rays of the moon striking on a rain-cloud, especially when she is about the full. But such a phenomenon is very rare. Aristotle is said to have considered himself the first who had seen a lunar rainbow. For more than a hundred years prior to the middle of the last century, we find only two or three instances recorded in which such phenomena are described with accuracy. In the philosophical transactions for 1783, however, we have an account of three having been seen in one year, and all in the same place, but they are by no means common phenomena. I have had an opportunity within the last twenty years of witnessing two phenomena of this description—one of which was seen at Perth, on a sabbath evening, in the autumn of 1825, and the other at Edinburgh, on Wednesday, the 9th of September 1840, about eight o’clock in the evening—of both which I gave a detailed description in some of the public journals. The Moon, in both cases, was within a day or two of the full; the arches were seen in the northern quarter of the heavens, and extended nearly from east to west, the moon being not far from the southern meridian. The bows appeared distinct and well defined, but no distinct traces of the prismatic colours could be perceived on any of them. That which appeared in 1825 was the most distinctly formed, and continued visible for more than an hour. The other was much fainter, and lasted little more than half an hour, dark clouds having obscured the face of the moon. These bows bore a certain resemblance to some of the luminous arches which sometimes accompany the Aurora Borealis, and this latter phenomenon has not unfrequently been mistaken for a Lunar rainbow; but they may be always distinguished by attending to the phases and position of the moon. If the moon be not visible above the horizon, if she be in her first or last quarter, or if any observed phenomenon be not in a direction opposite to the moon, we may conclude with certainty that, whatever appearance is presented, there is no lunar rainbow.

The rainbow is an object which has engaged universal attention, and its beautiful colours and form have excited universal admiration. The poets have embellished their writings with many beautiful allusions to this splendid meteor; and the playful school-boy, while viewing the ‘bright enchantment,’ has frequently run ‘to catch the falling glory.’ When its arch rests on the opposite sides of a narrow valley, or on the summits of two adjacent mountains, its appearance is both beautiful and grand. In all probability, its figure first suggested the idea of arches, which are now found of so much utility in forming aqueducts and bridges, and for adorning the architecture of palaces and temples. It is scarcely possible seriously to contemplate this splendid phenomenon, without feeling admiration and gratitude towards that wise and beneficent Being, whose hands have bent it into so graceful and majestic a form, and decked it with all the pride of colours. “Look upon the rainbow,” says the son of Sirach,15 and praise Him that made it: very beautiful it is in the brightness thereof. It compasseth the heaven about with a glorious circle, and the hands of the Most High have bended it." To this grand etherial bow, the inspired writers frequently allude as one of the emblems of the majesty and splendour of the Almighty. In the prophecies of Ezekiel, the throne of Deity is represented as adorned with a brightness “like the appearance of the bow that is in the cloud in the day of rain—the appearance of the likeness of the glory of Jehovah.” And, in the visions recorded in the Book of the Revelations, where the Most High is represented as sitting upon a throne; “there was a rainbow round about the throne, in sight like unto an emerald,” as an emblem of his propitious character and of his faithfulness and mercy. After the deluge, this bow was appointed as a sign and memorial of the covenant which God made with Noah and his sons, that a flood of waters should never again be permitted to deluge the earth and its inhabitants;—and as a pledge of inviolable fidelity and Divine benignity. When, therefore, we at any time behold “the bow in the cloud,” we have not only a beautiful and sublime phenomenon presented to the eye of sense, but also a memorial exhibited to the mental eye, assuring us, that, “While the earth remaineth, seed-time and harvest, and cold and heat, and summer and winter, and day and night, shall not cease.”16

——On the broad sky is seen
“A dewy cloud, and in the cloud a bow
Conspicuous, with seven listed colours gay
Betokening peace with God and covenant new.—
He gives a promise never to destroy
The earth again by flood, nor let the sea
Surpass his bounds, nor rain to drown the world.”
Milton. Par. Lost, Book XI.

SECT. 4.—REFLECTIONS ON THE BEAUTY AND UTILITY OF COLOURS.

Colour is one of the properties of light which constitutes, chiefly, the beauty and sublimity of the universe. It is colour, in all its diversified shades, which presents to our view that almost infinite variety of aspect which appears on the scene of nature, which gives delight to the eye and the imagination, and which adds a fresh pleasure to every new landscape we behold. Every flower which decks our fields and gardens is compounded of different hues; every plain is covered with shrubs and trees of different degrees of verdure; and almost every mountain is clothed with herbs and grass of different shade from those which appear on the hills and landscape with which it is surrounded. In the country, during summer, nature is every day, and almost every hour, varying her appearance, by the multitude and variety of her hues and decorations, so that the eye wanders with pleasure over objects continually diversified, and extending as far as the sight can reach. In the flowers with which every landscape is adorned, what a lovely assemblage of colours, and what a wonderful art in the disposition of their shades! Here, a light pencil seems to have laid on the delicate tints; there, they are blended according to the nicest rules of art. Although green is the general colour which prevails over the scene of sublunary nature, yet it is diversified by a thousand different shades, so that every species of tree, shrub and herb, is clothed with its own peculiar verdure. The dark green of the forests is thus easily distinguished from the lighter shades of cornfields and the verdure of the lawns. The system of animated nature likewise, displays a diversified assemblage of beautiful colours. The plumage of birds, the brilliant feathers of the peacock, the ruby and emerald hues which adorn the little humming-bird, and the various embellishments of many species of the insect tribe, present to the eye, in every region of the globe, a scene of diversified beauty and embellishment. Nor is the mineral kingdom destitute of such embellishments. For some of the darkest and most unshapely stones and pebbles, when polished by the hand of art, display a mixture of the most delicate and variegated colours. All which beauties and varieties in the scene around us are entirely owing to that property, in every ray of light, by which it is capable of being separated into the primitive colours.

To the same cause, likewise, are to be ascribed those beautiful and diversified appearances, which frequently adorn the face of the sky,—the yellow, orange and ruby hues which embellish the firmament at the rising of the sun, and when he is about to descend below the western horizon; and those aerial landscapes, so frequently beheld in tropical climes, where rivers, castles and mountains, are depicted rolling over each other along the circle of the horizon. The clouds, especially in some countries, reflect almost every colour in nature. Sometimes they wear the modest blush of the rose; sometimes they appear like stripes of deep vermillion, and sometimes as large brilliant masses tinged with various hues; now they are white as ivory, and now as yellow as native gold. In some tropical countries, according to St. Pierre, the clouds roll themselves up into enormous masses as white as snow, and are piled upon each other, like the Cordeliers of Peru, and are moulded into the shape of mountains, of caverns and of rocks. When the sun sets behind this magnificent aËrial net-work, a multitude of luminous rays are transmitted through each particular interstice, which produce such an effect, that the two sides of the lozenge illuminated by them, have the appearance of being begirt with a fillet of gold; and the other two which are in the shade, seem tinged with a superb ruddy orange. Four or five divergent streams of light, emanating from the setting sun up to the zenith, clothe with fringes of gold the undeterminate summits of this celestial barrier, and proceed to strike with the reflexes of their fires the pyramids of the collateral aerial mountains, which then appear to consist of silver and vermilion.—In short, colour diversifies every sublunary scene, whether on the earth or in the atmosphere, it imparts a beauty to the phenomena of falling stars, of luminous arches, and the coruscations of the Aurora Borealis, and gives a splendour and sublimity to the spacious vault of heaven.

Let us now consider for a moment, what would be the aspect of nature, if, instead of the beautiful variety of embellishments which now appear on every landscape, and on the concave of the sky,—one uniform colour had been thrown over the scenery of the universe. Let us conceive the whole of terrestrial nature to be covered with snow, so that not an object on earth should appear with any other hue, and that the vast expanse of the firmament presented precisely the same uniform aspect. What would be the consequence? The light of the sun would be strongly reflected from all the objects within the bounds of our horizon, and would produce a lustre which would dazzle every eye. The day would acquire a greater brightness than it now exhibits, and our eyes might, after some time, be enabled freely to expatiate over the surrounding landscape; but every thing, though enlightened, would appear confused, and particular objects would scarcely be distinguishable. A tree, a house or a church, near at hand, might possibly be distinguished, on account of its elevation above the general surface of the ground, and the bed of a river by reason of its being depressed below it. But we should be obliged rather to guess, and to form a conjecture as to the particular object we wished to distinguish, than to arrive at any certain conclusion respecting it; and if it lay at a considerable distance, it would be impossible, with any degree of probability, to discriminate any one object from another. Notwithstanding the universal brightness of the scene, the uniformity of colour thrown on every object, would most certainly prevent us from distinguishing a church from a palace, a cottage from a knoll or a heap of rubbish, a splendid mansion from rugged rocks, the trees from the hills on which they grow, or a barren desert from rich and fertile plains. In such a case, human beings would be confounded, and even friends and neighbours be at a loss to recognize one another.

The vault of heaven, too, would wear a uniform aspect. Neither planets nor comets would be visible to any eye, nor those millions of stars which now shine forth with so much brilliancy, and diversify the nocturnal sky. For, it is by the contrast produced by the deep azure of the heavens and the white radiance of the stars, that those bodies are rendered visible. Were they depicted on a pure white ground, they would not be distinguished from that ground, and would consequently be invisible, unless any of them occasionally assumed a different colour. Of course, all that beautiful variety of aspect which now appears on the face of sublunary nature—the rich verdure of the fields, the stately port of the forest, the rivers meandering through the valleys, the splendid hues that diversify and adorn our gardens and meadows, the gay colouring of the morning and evening clouds, and all that variety which distinguishes the different seasons, would entirely disappear. As every landscape would exhibit nearly the same aspect, there would be no inducement to the poet and the philosopher to visit distant countries to investigate the scenes of nature, and journeyings from one region to another would scarcely be productive of enjoyment. Were any other single colour to prevail, nearly the same results would ensue. Were a deep ruddy hue to be uniformly spread over the scene of creation, it would not only be offensive to the eye, but would likewise prevent all distinction of objects. Were a dark blue or a deep violet to prevail, it would produce a similar effect, and at the same time, present the scene of nature as covered with a dismal gloom. Even if creation were arrayed in a robe of green, which is a more pleasant colour to the eye—were it not diversified with the different shades it now exhibits, every object would be equally undistinguishable.

Such would have been the aspect of creation, and the inconveniences to which we should have been subjected, had the Creator afforded us light without that intermixture of colours which now appears over all nature, and which serves to discriminate one object from another. Even our very apartments would have been tame and insipid, incapable of the least degree of ornament, and the articles with which they are furnished, almost undistinguishable, so that in discriminating one object from another, we should have been as much indebted to the sense of touch as to the sense of vision. Our friends and fellow men would have presented no objects of interest in our daily associations. The sparkling eye, the benignant smile, the modest blush, the blended hues of white and vermillion in the human face, and the beauty of the female countenance, would all have vanished, and we should have appeared to one another as so many moving marble statues cast nearly in the same mould. But, what would have been worst of all, the numerous delays, uncertainties and perplexities to which we should have been subjected, had we been under the necessity, every moment, of distinguishing objects by trains of reasoning, and by circumstances of time, place, and relative position? An artist, when commencing his work in the morning, with a hundred tools of nearly the same size and shape around him, would have spent a considerable portion of his time before he could have selected those proper for his purpose, or the objects to which they were to be applied; and in every department of society, and in all our excursions from one place to another, similar difficulties and perplexities would have occurred. The one half of our time must thus have been employed in uncertain guesses, and perplexing reasonings, respecting the real nature and individuality of objects, rather than in a regular train of thinking and of employment; and after all our perplexities and conjectures, we must have remained in the utmost uncertainty, as to the thousands of scenes and objects, which are now obvious to us, through the instrumentality of colours, as soon as we open our eyes.

In short, without colour, we could have had no books nor writings: we could neither have corresponded with our friends by letters, nor have known any thing with certainty, of the events which happened in former ages. No written revelation of the will of God, and of his character, such as we now enjoy, could have been handed down to us from remote periods and generations. The discoveries of science, and the improvements of art, would have remained unrecorded. Universal ignorance would have prevailed throughout the world, and the human mind have remained in a state of demoralization and debasement. All these, and many other inconveniences and evils would have inevitably followed, had not God painted the rays of light with a diversity of colours, And hence we may learn, that the most important scenes and events in the universe, may depend upon the existence of a single principle in nature, and even upon the most minute circumstances, which we may be apt to overlook, in the arrangements of the material world.

In the existing state of things in the visible creation, we cannot but admire the Wisdom and Beneficence of the Deity, in thus enabling us to distinguish objects by so easy and expeditious a mode as that of colour, which in a moment, discriminates every object and its several relations. We rise in the morning to our respective employments, and our food, our drink, our tools, our books, and whatever is requisite for our comfort, are at once discriminated. Without the least hesitation or uncertainty, and without any perplexing process of reasoning, we can lay our hands on whatever articles we require. Colour clothes every object with its peculiar livery, and infallibly directs the hand in its movements, and the eye in its surveys and contemplations. But, this is not the only end which the Divine Being had in view, in impressing on the rays of light a diversity of colours. It is evident, that he likewise intended to minister to our pleasures, as well as to our wants. To every man of taste, and almost to every human being, the combination of colours in flowers, the delicate tints with which they are painted, the diversified shades of green with which the hills and dales, the mountains and the vales are arrayed; and that beautiful variety which appears in a bright summer day, on all the objects of this lower creation—are sources of the purest enjoyment and delight. It is colour, too, as well as magnitude, that adds to the sublimity of objects. Were the canopy of heaven of one uniform hue, it would fail in producing those lofty conceptions, and those delightful and transporting emotions, which a contemplation of its august scenery is calculated to inspire. Colours are likewise of considerable utility in the intercourse of general society. They serve both for ornaments, and for distinguishing the different ranks and conditions of the community: they add to the beauty and gracefulness of our furniture and clothing. At a glance, they enable us at once to distinguish the noble from the ignoble, the prince from his subjects, the master from his servant, and the widow clothed with sable weeds from the bride adorned with her nuptial ornaments.

Since colours, then, are of so much value and importance, they may be reckoned as holding a rank among the noblest natural gifts of the Creator. As they are of such essential service to the inhabitants of our globe, there can be no doubt that they serve similar or analogous purposes throughout all the worlds in the universe. The colours displayed in the solar beams are common to all the globes which compose the planetary system, and must necessarily be reflected, in all their diversified hues, from objects on their surfaces. The light which radiates from the fixed stars displays a similar diversity of colours. Some of the double stars are found to emit light of different hues;—the larger star exhibiting light of a ruddy or orange hue, and the smaller one a radiance which approaches to blue or green. There is therefore reason to conclude, that the objects connected with the planets which revolve round such stars—being occasionally enlightened by suns of different hues—will display a more variegated and splendid scenery of colouring than is ever beheld in the world on which we dwell; and that one of the distinguishing characteristics of different worlds, in regard to their embellishments, may consist in the splendour and variety of colours with which the objects on their surfaces are adorned. In the metaphorical description of the glories of the New Jerusalem, recorded in the Book of Revelation, one of the chief characteristics of that city is said to consist in the splendour and diversity of hues with which it is adorned. It is represented as “coming down from heaven, prepared as a bride adorned for her husband,” and as reflecting all the beautiful and variegated colours which the finest gems on earth can exhibit; evidently indicating, that splendour and variety of colouring are some of the grandest features of celestial scenery.

On the whole, the subject of colours, when seriously considered, is calculated to excite us to the adoration of the goodness and intelligence of that Almighty Being whose wisdom planned all the arrangements of the universe, and to inspire us with gratitude for the numerous conveniences and pleasures we derive from those properties and laws he has impressed on the material system. He might have afforded us light, and even splendid illumination, without the pleasures and advantages which diversified colours now produce, and man and other animated beings might have existed in such a state. But, what a very different scene would the world have presented from what it now exhibits! Of how many thousands of pleasures should we have been deprived! and to what numerous inconveniences and perplexities should we have been subjected! The sublimity and glories of the firmament, and the endless beauties and varieties which now embellish our terrestrial system, would have been for ever unknown, and man could have had little or no incitement to study and investigate the works of his Creator. In this, as well as in many other arrangements in nature, we have a sensible proof of the presence and agency of that Almighty Intelligence “in whom we live, and move, and have our being.” None but an infinitely Wise and Beneficent Being, intimately present in all places, could thus so regularly create in us by means of colour, those exquisite sensations which afford so much delight, and which unite us, as it were, with every thing around us. In the diversity of hues spread over the face of creation, we have as real a display of the Divine presence as Moses enjoyed at the burning bush. The only difference is, that the one was out of the common order of Divine procedure, and the other in accordance with those permanent laws which regulate the economy of the universe. In every colour, then, which we contemplate, we have a sensible memorial of the presence of that Being “whose Spirit garnished the heavens and laid the foundations of the earth,” and whose “merciful visitation” sustains us every moment in existence. But the revelation of God to our senses, through the various objects of the material world, has become so familiar, that we are apt to forget the Author of all our enjoyments, even at the moment when we are investigating his works and participating of his benefits. “O that men would praise Jehovah for his goodness, and for his wonderful works towards the children of men.”

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page