A comparison of the civilization of the present with that of a century ago reveals a startling difference in the standards of living. To-day mankind enjoys conveniences and luxuries that were undreamed of by the past generations. For example, a certain town in Iowa, a score of years ago, was appraised for a bond-issue and it was necessary to extend its limits considerably in order to include a valuation of one half million dollars required by the underwriters. On a summer's evening at the present time a thousand "pleasure" automobiles may be found parked along its streets and these exceed in valuation that of the entire town only twenty years ago and equal it to-day. There are economists who would argue that the automobile has paid for itself by its usefulness, but the fact still exists that a great amount of labor has been diverted from producing food, clothing, and fuel to the production of "pleasure" automobiles. And this is the case with many other conveniences and luxuries. It is admitted that mankind deserves these refinements of modern civilization, but he must expect the cost of living to increase unless counteracting measures are taken. The economics of the increasing cost of living and the analysis of the relations of necessities, conveniences, and luxuries are too complex to be thoroughly When the first industrial plant was lighted by gas, early in the nineteenth century, the aim was merely to reinforce daylight toward the end of the day. Continuous operation of industrial plants was not practised in those days, excepting in a very few cases where it was essential. To-day some industries operate continuously, but most of them do not. In the latter case the consumer pays more for the product because the percentage of fixed or overhead charge is greater. Investment in ground, buildings, and equipment exacts its toll continuously and it is obvious that three successive shifts producing three times as much as a single day shift, or as much as a trebled day shift, will produce the less costly product. In the former case the fixed charge is distributed over the production of continuous operation, but in the latter case the production of a single day shift assumes the entire burden. Of course, there are many factors which enter into such a consideration and an important one is the desirability of working at night. It is not the intention to touch upon the psychological and sociological aspects but merely to look coldly upon the facts pertaining to artificial light and production. Although it is difficult to present figures in a brief discussion of this character, it may be stated that, in general, the cost of adequate artificial light is about 2 per cent. of the pay-roll of the workers; about 10 per cent. of the rental charges; and only a fraction of 1 per cent. of the cost of the manufactured products. These figures vary considerably, but they represent In a certain plant it was determined that the workmen each lost an appreciable part of an hour per day because of inadequate lighting. A properly designed and maintained lighting-system was installed and the saving in the wages previously lost, more than covered the operating-expense of the artificial lighting. Besides really costing the manufacturer less than nothing, the new artificial lighting system was responsible for better products, decreased spoilage, minimized accidents, and generally elevated spirits of the workmen. In some cases it is only necessary to save one minute per hour per workman to offset entirely the cost of lighting. The foregoing and many other examples illustrate the insignificance of the cost of lighting. The effectiveness of artificial lighting in reducing the cost of living is easily demonstrated by comparing the output of a factory operating on one and two shifts per day respectively. In a well-lighted factory which operated day and night shifts, the cost of adequate lighting was 7 cents per square foot per year. If this factory, operating only in the daytime, were to maintain the same output, it would be necessary to double its size. In order to show the economic value of artificial lighting it is only necessary to compare the In a discussion of light and safety presented in another chapter the startling industrial losses due to accidents are shown to be due partially to inadequate or improper lighting. About one fourth of the total number of accidents may be charged to defective lighting. The consumer bears the burden of the support of an unproducing army of idle men. According to some experts an average of about 150,000 men are contin This is an appreciable factor in the cost of living, but the greatest effectiveness of artificial lighting in curtailing costs is to be found in reducing the fixed charges borne by the product through the operation of two shifts and by directly increasing production owing to improved lighting. The standard of artificial-lighting intensity possessed by the average person at the present time is an inheritance from the past. In those days when artificial light was much more costly than at present the tendency naturally was to use just as little light as necessary. That attitude could not have been severely criticized in those early days of artificial lighting, but it is inexcusable to-day. Eyesight and greater safety from accidents are in themselves valuable enough to warrant adequate lighting, but besides these there is the appeal of increased production. Outdoors on a clear summer day at noon the intensity of daylight illumination at the earth's surface is about 10,000 foot-candles; in other words, it is equal to the illumination on a surface produced by a light-source equivalent to 10,000 candles at a distance of one foot from the surface. This will be recognized as an enormous intensity of illumination. On a cloudy day the intensity of illumination at the earth's surface may be as high as 3000 foot-candles and on a "gloomy" day the illumination at the earth's surface may be 1000 foot-candles. When it is considered that mankind works under artificial light with an intensity of only For extremely low brightnesses another set of physiological processes come into play. Based purely upon the physiological laws of vision it seems reasonable to conclude that mankind should not work under artificial illumination as low as has been considered necessary owing to the cost in the past. With this principle of vision as a foundation, experiments have been made with greater intensities of illumination in the industries and elsewhere and increased production has been the result. In a test in a factory where an adequate record of production was in effect it was found that an increase in the intensity of illumination from 4 to 12 foot-candles increased the production in various operations. The lowest increase in production was 8 per cent., the highest was 27 per cent., and the average was 15 per cent. The original lighting in this case was better than that of the typical industrial conditions, so that it seems reasonable to expect a greater increase in production when a change is made from the average inadequate lighting of a factory to a In another test the production under a poor system of lighting by means of bare lamps on drop-cords was compared with that of an excellent system in which well-designed reflectors were used. The intensity of illumination in the latter case was twenty-five times that of the former and the production was increased in various operations from 30 per cent. for the least increase to 100 per cent. for the greatest increase. Inasmuch as the energy consumption in the latter case was increased seven times and the illumination twenty-five times, it is seen that the increase in intensity of illumination was due largely to the use of proper reflectors and to the general layout of the new lighting-system. In another case a 10 per cent. increase in production was obtained by increasing the intensity of illumination from 3 foot-candles to about 12 foot-candles. This increase of four times in the intensity of illumination involved an increase in consumption of electrical energy of three times the original amount at an increase in cost equal to 1.2 per cent. of the pay-roll. In another test an increase of 10 per cent. in production was obtained at an increase in cost equal to less than 1 per cent. of the payroll. The efficiency of well-designed lighting installations is illustrated in this case, for the illumination intensity was increased six times by doubling the consumption of electrical energy. Various other tests could be cited, but these would merely emphasize the same results. However, it may Industrial superintendents are just beginning to see the advantage of adequate artificial lighting, but the low standards of lighting which were inaugurated when artificial light was much more costly than it is to-day persist tenaciously. When high intensities of proper illumination are once tried, they invariably prove successful in the industries. Not only does the worker see all his operations better, but there appears to be an enlivening effect upon individuals under the higher intensities of illumination. Mankind chooses a dimly lighted room in which to rest and to dream. A room intensely lighted by means of well-designed units which are not glaring is comfortable but not conducive to quiet contemplation. It is a place in which to be active. This is perhaps one of the factors which makes for increased production under adequate lighting. Civilization has just passed the threshold of the age There are many other ways in which artificial light may serve in increasing production. Man has found that eight hours of sleep is sufficient to keep him fit for work if he has a sufficient amount of recreation. Before the advent of artificial light the activities of the primitive savage were halted by darkness. This may have been Nature's intention, but civilized man has adapted himself to the changed conditions brought about by efficient and adequate artificial light. There appears to be no fundamental reason for not imposing an artificial day upon plants, animals, chemical processes, etc.; and, in fact, experiments are being prosecuted in these directions. The hen, when permitted to follow her natural Experiments conducted recently by the agricultural department of a large university indicate that in poultry husbandry, when artificial light is applied to the right kind of stock with correct methods of feeding, the distribution of egg-production throughout the whole year can be radically changed. The supply of eggs may be increased in autumn and winter and decreased in spring and summer. Data on the amount of illumination have not been published, but it is said that the most satisfactory results have been obtained when the artificial illumination is used from sunset until about 9 P.M. throughout the year. An increase of 30 to 40 per cent. in the number of eggs laid on a poultry-farm in England as the result of installing electric lamps in the hen-houses was reported in 1913. On this farm there were nearly 200 yards of hen-houses containing about 6000 hens, and the runs were lighted on dark mornings and early nights of the year preceding the report. About 300 small lamps varying from 8 to 32 candle-power were used in the houses. It was found that an imitation of sunset was necessary by switching off the 32 candle-power lamps at 6 P.M. and the 16 candle-power lamps Many fishermen will testify that artificial light seems to attract fish, and various reports have been circulated regarding the efficacy of using artificial light for this purpose on a commercial scale. One report which bears the earmarks of authenticity is from Italy, where it is said that electric lights were successfully used as "bait" to augment the supply of fish during the war. The lamps were submerged to a considerable depth and the fish were attracted in such large numbers that the use of artificial light was profitable. The claims made were that the supply of fish was not only increased by night fishing but that a number of fishermen were thereby released for national service during the war. An interesting incident pertaining to fish, but perhaps not an important factor in production, is the use of electric lights in the summer over the reservoirs of a fish hatchery. These lights, which hang low, attract myriads of bugs, many of which fall in the water and furnish natural and inexpensive food for the fish. Many experiments have been carried out in the forc
These are encouraging conclusions, considering the fact that the cost of light from incandescent lamps at the present time is only a small fraction of its cost at that time. In an experiment conducted in England in 1913 mercury glass-tube arcs were used in one part of a hothouse and the other part was reserved for a control test. The same kind of seeds were planted in the two parts of the hothouse and all conditions were maintained the same, excepting that a mercury-vapor lamp was operated a few hours in the evening in one of them. Miss Dudgeon, who conducted the test, was enthusiastic over the results obtained. Ordinary vegetable seeds and grains germinated in eight to thirteen days in the hothouse in which the artificial light was used
Unfortunately there is much confusion amid the results of experiments pertaining to the effects of different rays, including ultra-violet, visible and infra-red, upon plant growth. If this aspect was thoroughly established, investigations could be outlined to greater advantage and efficient light-sources could be chosen with certainty. There is the discouraging feature that the average intensity of daylight illumination from sunrise to sunset in the summer-time is several thousand foot-candles. The cost of obtaining this great intensity by means of artificial light would be prohibitive. However, the daylight illumination in a green Recently Hayden and Steinmetz experimented with a plot of ground 5 feet by 9 feet, over which were hung five 500-watt gas-filled tungsten lamps 3 feet above the ground and 17 inches apart. The lamps were equipped with reflectors and the resulting illumination was 700 foot-candles. This is an extremely high intensity of artificial illumination and is comparable with daylight in greenhouses. The only seeds planted were those of string beans and two beds were carried through to maturity, one lighted by daylight only and the other by daylight and artificial light, the latter being in operation twenty-fours hours per day. The plants under the additional artificial light grew more rapidly than the others, and of the various records kept the gain in time was in all cases about 50 per cent. From the standpoint of profitableness the artificial lighting was not justified. However, there are several points to be brought out before considering this conclusion too seriously. First, it appears unwise to use the artificial light during the day; second, it appears possible that a few hours of artificial light in the evening would suffice for considerable forcing; third, it is possible that a much lower intensity of artificial light might be more Many other instances could be cited in which artificial light is very closely associated with the cost of living. Overseas shipment of fruit from the Canadian Northwest is responsible for a decided innovation in fruit-picking. In searching for a cause of rotting during shipment it was finally concluded that the temperature at the time of picking was the controlling factor. As a consequence, daytime was considered undesirable for picking and an electric company supplied electric lighting for the orchards in order that the picking might be done during the cool of night. This change is said to have remedied the situation. Cases of threshing and other agricultural operations being carried on at night are becoming more numerous. These are just the beginnings of artificial light in a new field or in a new relation to civilization. Its economic value has been demonstrated in the ordinary fields of lighting and these new applications are merely the initial skirmishes which precede the conquest of new territory. The modern illuminants have been developed |