XIII LIGHTHOUSES

Previous

At the present time thousands of lighthouses, light-ships, and light-buoys guide the navigator along the waterways and into harbors and warn him of dangerous shoals. Many wonderful feats of engineering are involved in their construction and in no field of artificial lighting has more ingenuity been displayed in devising powerful beams of light. Many of these beacons of safety are automatic in operation and require little attention. It has been said that nothing indicates the liberality, prosperity, or intelligence of a nation more clearly than the facilities which it affords for the safe approach of the mariner to its shores. Surely these marine lights are important factors in modern navigation.

The first "lighthouses" were beacon-fires of burning wood maintained by priests for the benefit of the early commerce in the eastern part of the Mediterranean Sea. As early as the seventh century before Christ these beacon-fires were mentioned in writings. In the third century before the Christian era a tower said to be of a great height was built on a small island near Alexandria during the reign of Ptolemy II. The tower was named Pharos, which is the origin of the term "pharology" applied to the science of lighthouse construction. CÆsar, who visited Alexandria two centuries later, described the Pharos as a "tower of great height, of wonderful construction." Fire was kept burning in it night and day and Pliny said of it, "During the night it appears as bright as a star, and during the day it is distinguished by the smoke." Apparently this tower served as a lighthouse for more than a thousand years. It was found in ruins in 1349. Throughout succeeding centuries many towers were built, but little attention was given to the development of light-sources and optical apparatus.

The first lighthouse in the United States and perhaps on the Western continents was the Boston Light, which was completed in 1716. A few days after it was put into operation a news item in a Boston paper heralded the noteworthy event as follows:

By virtue of an Act of Assembly made in the First Year of His Majesty's Reign, For Building and Maintaining a Light House upon the Great Brewster (called Beacon-Island) at the Entrance of the Harbour of Boston, in order to prevent the loss of the Lives and Estates of His Majesty's Subjects; the said Light House has been built; and on Fryday last the 14th Currant the Light was kindled, which will be very useful for all Vessels going out and coming in to the Harbour of Boston, or any other Harbours in the Massachusetts Bay, for which all Masters shall pay to the Receiver of Impost, one Penny per Ton Inwards, and another Penny Outwards, except Coasters, who are to pay Two Shillings each, at their clearance Out, And all Fishing Vessels, Wood Sloops, etc. Five Shillings each by the Year.

This was the practical result of a petition of Boston merchants made three years before. The tower was built of stone, at a cost of about ten thousand dollars. Two years later the keeper and his family were drowned and the catastrophe so affected Benjamin Franklin, a boy of thirteen, that he wrote a poem concerning it. The lighthouse was badly damaged during the Revolution, by raiding-parties, and in 1776, when the British fleet left the harbor, a squad of sailors blew it up. It was rebuilt in 1783 and has since been increased in height.

Apparently oil-lamps were used in it from the beginning, notwithstanding the fact that candles and coal fires served for years in many lighthouses of Europe. In 1789 sixteen lamps were used and in 1811 Argand lamps and reflectors were installed, with a revolving mechanism. It now ceased to be a fixed light and the day of flashing lights had arrived. At the present time the Boston Light emits a beam of 100,000 candle-power directed by modern lenses.

When the United States Government was organized in 1789 there were ten lighthouses owned by the Colonies, but the Boston Light was in operation thirty years before the others. Sandy Hook Light, New York Harbor, was established in 1764 and its original masonry tower is still standing and in use. It is the oldest surviving lighthouse in this country. It was built with funds raised by means of two lotteries authorized by the New York Assembly. A few days after it was lighted for the first time the following news item appeared in a New York paper:

On Monday evening last the New York Light-house erected at Sandy Hook was lighted for the first time. The House is of an Octagon Figure, having eight equal Sides; the Diameter at the Base 29 Feet; and at the top of the Wall, 15 Feet. The Lanthorn is 7 feet high; the Circumference 33 feet. The whole Construction of the Lanthorn is Iron; the Top covered with Copper. There are 48 Oil Blazes. The Building from the Surface is Nine Stories; the whole from Bottom to Top is 103 Feet.

From these early years the number of lighthouses has steadily grown, until now the United States maintains lights along 50,000 miles of coast-line and river channels, a distance equal to twice the circumference of the earth. It maintains at the present time about 15,000 aids to navigation at an annual cost of about $5,000,000. In 1916 this country was operating 1706 major lights, 53 light-ships, and 512 light-buoys—a total of 5323.

The earliest lighthouses were equipped with braziers or grates in which coal or wood was burned. These crude light-sources were used until after the advent of the nineteenth century and in one case until 1846. In the famous Eddystone tower off Plymouth, England, candles were used for the first time. The first Eddystone tower was completed in 1698, but it was swept away in 1703. Another was built and destroyed by fire in 1755. Smeaton then built another in 1759. Inasmuch as Smeaton is credited with having introduced the use of candles, this must have occurred in the eighteenth century; still it appears that, as we have said, the Boston Light, built in 1716, used oil-lamps from its beginning. However, Smeaton installed twenty-four candles of rather large size each credited with an intensity of 2.8 candles. The total luminous intensity of the light-source in this tower was about 67 candles. Inasmuch as this was before the use of efficient reflectors and lenses, it is obvious that the early lighthouses were rather feeble beacons.

According to British records, oil-lamps with flat wicks were first used in the Liverpool lighthouses in 1763. The Argand lamp, introduced in about 1784, became widely used. The better combustion obtained with this lamp having a cylindrical wick and a glass chimney greatly increased the luminous intensity and general satisfactoriness of the oil-lamp. Later Lange added an improvement by providing a contraction toward the upper part of the chimney. Rumford and also Fresnel devised multiple-wick burners, thus increasing the luminous intensity. In these early lamps sperm-oil and colza-oil were burned and they continued to be until the middle of the nineteenth century. Cocoanut-oil, lard-oil, and olive-oil have also been used in lighthouses.

Naturally, mineral oil was introduced as soon as it was available, owing to its lower cost; but it was not until nearly 1870 that a satisfactory mineral-oil lamp was in operation in lighthouses. Doty is credited with the invention of the first successful multiple-wick lighthouse lamp using mineral oil, and his lamp and modifications of it were very generally used until the latter part of the nineteenth century. These lamps are of two types—one in which oil is supplied to the burner under pressure and the other in which oil is maintained at a constant level. In some of the smallest lamps the ordinary capillarity of the wick is depended on to supply oil to the flame.Coal-gas was introduced into lighthouses in about the middle of the nineteenth century. Inasmuch as the gas-mantle had not yet appeared, the gas was burned in jets. Various arrangements of the jets, such as concentric rings forming a stepped cone, were devised. The gas-mantle was a great boon to the mariner as well as to civilized beings in general. It greatly increases the intensity of light obtainable from a given amount of fuel and it is a fairly compact bright source which makes it possible to direct the light to some degree by means of optical systems. Owing to the elaborate apparatus necessary for making coal-gas, several other gases have been more desirable fuels for lighthouse lamps. Various simple gas-generators have been devised. Some of the high-flash mineral-oils are vaporized and burned under a mantle. Acetylene, which is so simply made by means of calcium carbide and water, has been a great factor in lighting for navigation. By the latter part of the nineteenth century lighthouses employing incandescent gas-burners were emitting beams of light having luminous intensities as great as several hundred thousand candles. These special gas-mantle light-sources have brightness as high as several hundred candles per square inch.

Electric arc-lamps were first introduced into lighthouse service in about 1860, but these lamps cannot be considered to have been really practicable until about 1875. In 1883 the British lighthouse authorities carried out an extensive investigation of arc-lamps. It was found that the whiter light from these lamps suffered a greater absorption by the atmosphere than the yellower light from oils, but the much greater luminous intensity of the arc-lamp more than compensated for this disadvantage. The final result of the investigation was the conclusion that for ordinary lighthouse purposes the oil-and gas-lamps were more suitable and economical than arc-lamps; but where great range was desired, the latter were much more advantageous, owing to their great luminous intensity. Electric incandescent filament lamps have been used for the less important lights, and recently there has been some application of the modern high-efficiency filament lamps.

Besides the high towers there are many minor beacons, light-ships, and light-buoys in use. Many of these are untended and therefore must operate automatically. The light-ship is used where it is impracticable or too expensive to build a lighthouse. Inasmuch as it is anchored in fairly deep water, it is safe in foggy weather to steer almost directly toward its position as indicated by the fog-signal. Light-ships are more expensive to maintain than lighthouses, but they have the advantages of smaller cost and of mobility; for sometimes it may be desired to move them. The first light-ship was established in 1732 near the mouth of the Thames, and the first in this country was anchored in Chesapeake Bay near Norfolk in 1820. The early ships had no mode of self-propulsion, but the modern ones are being provided with their own power. Oil and gas have been used as fuel for the light-sources and in 1892 the U.S. Lighthouse Board constructed a light-ship with a powerful electric light. Since that time several have been equipped with electric lights supplied by electric generators and batteries.

Untended lights were not developed until about 1880, when Pintsch introduced his welded buoys filled with compressed gas and thereby provided a complete lighting-plant. With improvements in lamps and controls the untended light-buoys became a success. The lights burn for several months, and even for a year continuously; and the oil-gas used appears to be very satisfactory. Recently some experiments have been made with devices which would be actuated by sunlight in such a manner that the light would be extinguished during the day excepting a small pilot-flame. By this means a longer period of burning without attention may be obtained. Electric filament lamps supplied by batteries or by cables from the shore have been used, but the oil-gas buoy still remains in favor. Acetylene has been employed as a fuel for light-buoys. Automatic generators have been devised, but the high-pressure system is more simple. In the latter case purified acetylene is held in solution under high pressure in a reservoir containing an asbestos composition saturated with acetone.

The light-sources of beacons have had the same history as those of other navigation lights. Many of these are automatic in operation, sometimes being controlled by clockwork. During the last twenty years the gas-mantle has been very generally applied to beacon-lights. In the latter part of the nineteenth century a mineral-oil lamp was devised with a permanent wick made by forming upon a thick wick a coating of carbon. The operation is such that this is not consumed and it prevents further burning of the wick.

The optical apparatus of navigation lights has undergone many improvements in the past century. The early lights were not equipped with either reflecting or refracting apparatus. In 1824 Drummond devised a scheme for reflecting light in order that a distant observer might make a reading upon the point where the apparatus was being operated by another person. He was led by his experiments to suggest the application of mirrors to lighthouses. His device was essentially a parabolic mirror similar to the reflectors now widely used in automobile head-lamps, search-lights, etc. He employed the lime-light as a source of light and was enthusiastic over the results obtained. His discussion published in 1826 indicates that little practical work had been done up to that time toward obtaining beams or belts of light by means of optical apparatus. However, lighthouse records show that as early as 1763 small silvered plane glasses were set in plaster of Paris in such a manner as to form a partially enveloping reflector. Spherical reflectors were introduced in about 1780 and parabolic reflectors about ten years later.

All the earlier lights were "fixed," but as it is desirable that the mariner be able to distinguish one light from another, the revolving mechanism evolved. By its agency characteristic flashes are obtained and from the time interval the light is recognized. The first revolving mechanism was installed in 1783. The early flashing lights were obtained by means of revolving reflectors which gathered the light and directed it in the form of a beam or pencil. The type of parabolic reflector now in use does not differ essentially from that of an automobile head-lamp, excepting that it is larger.

Lenses appear to have been introduced in the latter part of the nineteenth century. They were at first ground from a solid piece of glass, in concentric zones, in order to reduce the thickness. They were similar in principle to some of the tail-light lenses used at present on automobiles. Later the lenses were built up by means of separate annular rings. The name of Fresnel is permanently associated with lighthouse lenses because in 1822 he developed an elaborate built-up lens of annular rings. The centers of curvature of the different rings receded from the axis as their distance from the center increased, in such a manner as to overcome a serious optical defect known as spherical aberration. Fresnel devised many improvements in which he used refracting and reflecting prisms for the outer elements.

The optical apparatus of lighthouses usually aims (1) to concentrate the rays of light into a pencil of light, (2) to concentrate them into a belt of light, or (3) to concentrate the rays over a limited azimuth. In the first case a single lens or a parabolic reflector suffices, but in the second case a cylindrical lens which condenses the light vertically into a horizontal sheet of light is essential. The third case is a combination of the first two. The modern lighthouse lenses are very elaborate in construction, being built up by means of many elements into several sections. For example, the central section may consist of a spherical lens ground with annular rings. In the next section refracting prisms may be used and in the outer section reflecting glass prisms are employed. The various elements are carefully designed according to the laws of geometrical optics.The flashing light has such advantages over the fixed that it is generally used for important beacons. A variety of methods of obtaining intermittent light have been employed, but they are not of particular interest. Sometimes the lens or reflector is revolved and in other types an opaque screen containing slits is revolved. In the larger lighthouses the optical apparatus and its structure sometimes weigh several tons. When it is necessary to revolve apparatus of this weight, the whole mechanism is floated upon mercury contained in a cast-iron vessel of suitable size, and by an ingenious arrangement only a small portion of mercury is required.

The characteristics of navigation lights are varied considerably in order to enable the mariner to distinguish them and thereby to learn exactly where he is. The fixed light is liable to be confused with others, so it has now become a minor light. Flashes of short duration followed by longer periods of darkness are extensively used. The mariner by timing the intervals is able to recognize the light. This method is extended to groups of short flashes followed by longer intervals of darkness. In fact, short flashes have been employed to indicate a certain number so that a mariner could recognize the light by a number rather than by means of his watch. However, a time element is generally used. A combination of fixed light upon which is superposed a flash or a group of flashes of white or of colored light has been used, but it is in disrepute as being unreliable. A type known as "occulating lights" consists of a fixed light which is momentarily eclipsed, but the duration of the eclipse is usually less than that of the light. Obviously, groups of eclipses may be used. Sometimes lights of different colors are alternated without any dark intervals. The colored ones used are generally red and green, but these are short-range lights at best. Colored sectors are sometimes used over portions of the field, in order to indicate dangers, and white light shows in the fairway. These are usually fixed lights for marking the channel.

The distance at which a light may be seen at sea depends upon its luminous intensity, upon its color or spectral composition, upon its height and that of the observer's eyes above the sea-level, and upon the atmospheric conditions. Assuming a perfectly clear atmosphere, the visibility of a light-source apparently depends directly upon its candle-power. The atmosphere ordinarily absorbs the red, orange, and yellow rays less than the green, blue, and violet rays. This is demonstrated by the setting sun, which as it approaches closer to the horizon changes from yellow to orange and finally to red as the amount of atmosphere between it and the eye increases. For this reason a red light would have a greater range than a blue light of the same luminous intensity.

Under ordinary atmospheric conditions the range of the more powerful light-sources used in lighthouses is greater than the range as limited by the curvature of the earth. For the uncolored illuminants the range in nautical miles appears to be at least equal to the square root of the candle-power. A real practical limitation which still exists is the curvature of the earth, and the distance an object may be seen by the eye at sea-level depends upon the height of the object. The relation is approximately expressed thus,—

A. A COMPLETED LIGHTHOUSE LENS B. TORRO POINT LIGHTHOUSE, PANAMA CANAL

A. A COMPLETED LIGHTHOUSE LENS
B. TORRO POINT LIGHTHOUSE, PANAMA CANAL

Range in nautical miles = 8/7 Height of object in feet. For example, the top of a tower 100 feet high is visible to an eye at sea-level a distance of 8/7 100 = 80/7 = 11.43 miles. Now if the eye is 49 feet above sea-level, a similar computation will show how far away it may be seen by the original eye at sea-level. This is 8/7 49 = 8 miles. Hence an eye 49 feet above sea-level will be able to see the top of the 100-foot tower at a distance of 11.43 + 8 or 19.43 nautical miles. Under these conditions an imaginary line drawn from the top of the tower to the eye will be just tangent to the spherical surface of the sea at a distance of 8 miles from the eye and 11.43 miles from the tower.

The luminous intensity of a light-source or of the beam of light is directly responsible for the range. The luminous intensity of the early beacon-fires and oil-lamps was equivalent to a few candles. The improvements in light-sources and also in reflecting and refracting optical systems have steadily increased the candle-power of the beams, until to-day the beams from gas-lamps have intensities as high as several hundred thousand candle-power. The beams sent forth by modern lighthouses equipped with electric lamps and enormous light-gathering devices are rated in millions of candle-power. In fact, Navesink Light at the entrance of New York Bay is rated as high as 60,000,000 candle-power.Of course, light-production has increased enormously in efficiency in the past century, but without optical devices for gathering the light, the enormous beam intensity would not be obtained. For example, consider a small source of light possessing a luminous intensity of one candle in all directions. If all this light which is emitted in all directions is gathered and sent forth in a beam of small angle, say one thousandth of the total angle surrounding a point, the intensity of this beam would be 1000 candles. It is in this manner that the enormous beam intensities are built up.

There is an interesting point pertaining to short flashes of light. To the dark-adapted eye a brief flash is registered as of considerably higher intensity than if the light remained constant. In other words, the lookout on a vessel is adapted to darkness and a flash from a beam of light is much brighter than if the same beam were shining steadily. This is a physiological phenomenon which operates in favor of the flashing light.

AMERICAN SEARCH-LIGHT POSITION ON WESTERN FRONT IN 1919

AMERICAN SEARCH-LIGHT POSITION ON WESTERN FRONT IN 1919

Doubtless, the reader has noted that reliability, simplicity, and low cost of operation are the primary considerations for light-sources used as aids to navigation. This accounts for the continued use of oil and gas. From an optical standpoint the electric arc-lamps and concentrated-filament lamps are usually superior to the earlier sources of light, but the complexity of a plant for generating electricity is usually a disadvantage in isolated places. The larger light-ships are now using electricity generated by apparatus installed in the vessels. There seems to be a tendency toward the use of more buoys and fewer lighthouses, but the beam-intensities of the latter are increasing.

AMERICAN STANDARD FIELD SEARCH-LIGHT AND POWER UNIT

AMERICAN STANDARD FIELD SEARCH-LIGHT AND POWER UNIT

In the hundred years since the Boston Light was built the same great changes wrought by the development of artificial light in other activities of civilization have appeared in the beacons of the mariner. The development of these aids to navigation has been wonderful, but it must go on and on. The surface of the earth comprises 51,886,000 square statute miles of land and 145,054,000 square miles of water. Three fourths of the earth's surface is water and the oceans will always be highways of world commerce. All the dangers cannot be overcome, but human ingenuity is capable of great achievements. Wreckage will appear along the shore-lines despite the lights, but the harvest of the shoals has been much reduced since the time described by Robert Louis Stevenson, when the coast people in the Orkneys looked upon wrecks as a source of gain. He states:

It had become proverbial with some of the inhabitants to observe that "if wrecks were to happen, they might as well be sent to the poor island of Sanday as anywhere else." On this and the neighboring island, the inhabitants have certainly had their share of wrecked goods. On complaining to one of the pilots of the badness of his boat's sails, he replied with some degree of pleasantry, "Had it been His [God's] will that you come na here wi these lights, we might a' had better sails to our boats and more o' other things."

In the leasing of farms, a location with a greater probability of shipwreck on the shore brought a much higher rent.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page