VIII MODERN GAS-LIGHTING

Previous

As has been seen, the lighting industry, as a public service, was born in London about a century ago and companies to serve the public were organized on the Continent shortly after. From this early beginning gas-light remained for a long time the only illuminant supplied by a public-service company. It has been seen that throughout the ages little advance was made in lighting until oil-lamps were improved by Argand in the eighteenth century. Candles and open-flame oil-lamps were in use when the Pyramids were built and these were common until the approach of the nineteenth century. In fact, several decades passed after the first gas-lighting was installed before this form of lighting began to displace the improved oil-lamps and candles. It was not until about 1850 that it began to invade the homes of the middle and poorer classes. During the first half of the nineteenth century the total light in an average home was less than is now obtained from a single light-source used in residences; still, the total cost of lighting a residence has decreased considerably. If the social and industrial activities of mankind are visualized for these various periods in parallel with the development of artificial lighting, a close relation is evident. Did artificial light advance merely hand in hand with science, invention, commerce, and industry, or did it illuminate the pathway?Although gas-lighting was born in England it soon began to receive attention elsewhere. In 1815 the first attempt to provide a gas-works in America was made in Philadelphia; but progress was slow, with the result that Baltimore and New York led in the erection of gas-works. There are on record many protests against proposals which meant progress in lighting. These are amusing now, but they indicate the inertia of the people in such matters. When Bollman was projecting a plan for lighting Philadelphia by means of piped gas, a group of prominent citizens submitted a protest in 1833 which aimed to show that the consequences of the use of gas were appalling. But this protest failed and in 1835 a gas-plant was founded in Philadelphia. Thus gas-lighting, which to Sir Walter Scott was a "pestilential innovation" projected by a madman, weathered its early difficulties and grew to be a mighty industry. Continued improvements and increasing output not only altered the course of civilization by increased and adequate lighting but they reduced the cost of lighting over the span of the nineteenth century to a small fraction of its initial cost.

Think of the city of Philadelphia in 1800, with a population of about fifty thousand, dependent for its lighting wholly upon candles and oil-lamps! Washington's birthday anniversary was celebrated in 1817 with a grand ball attended by five hundred of the Élite. An old report of the occasion states that the room was lighted by two thousand wax-candles. The cost of this lighting was a hundred times the cost of as much light for a similar occasion at the present time. Can one imagine the present complex activities of a city like Philadelphia with nearly two million inhabitants to exist under the lighting conditions of a century ago? To-day there are more than fifty thousand street lamps in the city—one for each inhabitant of a century ago. Of these street lamps about twenty-five thousand burn gas. This single instance is representative of gas-lighting which initiated the "light age" and nursed it through the vicissitudes of youth. The consumption of gas has grown in the United States during this time to three billion cubic feet per day. For strictly illuminating purposes in 1910 nearly one hundred billion cubic feet were used. This country has been blessed with large supplies of natural gas; but as this fails new oil-fields are constantly being discovered, so that as far as raw materials are concerned the future of gas-lighting is assured for a long time to come.

The advent of the gas-mantle is responsible for the survival of gas-lighting, because when it appeared electric lamps had already been invented. These were destined to become the formidable light-sources of the approaching century and without the gas-mantle gas-lighting would not have prospered. Auer von Welsbach was conducting a spectroscopic study of the rare-earths when he was confronted with the problem of heating these substances. He immersed cotton in solutions of these salts as a variation of the regular means for studying elements by injecting them into flames. After burning the cotton he found that he had a replica of the original fabric composed of the oxide of the metal, and this glowed brilliantly when left in the flame.

This gave him the idea of producing a mantle for illuminating purposes and in 1885 he placed such a mantle in commercial use. His first mantles were unsatisfactory, but they were improved in 1886 by the use of thoria, an oxide of thorium, in conjunction with other rare-earth oxides. His mantle was now not only stronger but it gave more light. Later he greatly improved the mantles by purifying the oxides and finally achieved his great triumph by adding a slight amount of ceria, an oxide of cerium. Welsbach is deserving of a great deal of credit for his extensive work, which overcame many difficulties and finally gave to the world a durable mantle that greatly increased the amount of light previously obtainable from gas.

The physical characteristics of a mantle depend upon the fabric and upon the rare-earths used. It must not shrink unduly when burned, and the ash should remain porous. It has been found that a mantle in which thoria is used alone is a poor light-source, but that when a small amount of ceria is added the mantle glows brilliantly. By experiment it was determined that the best proportions for the rare-earth content are one part of ceria and ninety-nine parts of thoria. Greater or less proportions of ceria decreased the light-output. The actual percentage of these oxides in the ash of the mantle is about 10 per cent., making the content of ceria about one part in one thousand.

Mantles are made by knitting cylinders of cotton or of other fiber and soaking these in a solution of the nitrates of cerium and thorium. One end of the cylinder is then sewed together with asbestos thread, which also provides the loop for supporting the mantle over the burner. After the mantle has dried in proper form, it is burned; the organic matter disappears and the nitrates are converted into oxides. After this "burning off" has been accomplished and any residual blackening is removed, the mantle is dipped into collodion, which strengthens it for shipping and handling. The collodion is a solution of gun-cotton in alcohol and ether to which an oil such as castor-oil has been added to prevent excessive shrinkage on drying.

The materials and structure of the fabric of mantles have been subjected to much study. Cotton was first used; then ramie fibers were introduced. The ramie mantle was found to possess a greater life than the cotton mantle. Later the mantles were mercerized by immersion in ammonia-water and this process yielded a stronger material. The latest development is the use of an artificial silk as the base fabric, which results in a mantle superior to previous mantles in strength, flexibility, permanence of form, and permanence of luminous property. This artificial silk mantle will permit of handling even after it has been in use for several hundred hours. This great advance appears to be due to the fact that after the artificial-silk fibers have been burned off, the fibers are solid and continuous instead of porous as in previous mantles.

The color-value of the light from mantles may be varied considerably by altering the proportions of the rare-earths. The yellowness of the light has been traced to ceria, so by varying the proportions of ceria, the color of the light may be influenced.

The inverted mantle introduced greater possibilities into gas-lighting. The light could be directed downward with ease and many units such as inverted bowls were developed. In fact, the lighting-fixtures and the lighting-effects obtainable kept pace with those of electric lighting, notwithstanding the greater difficulties encountered by the designer of gas-lighting fixtures. Many problems were encountered in designing an inverted burner operating on the Bunsen principle, but they were finally satisfactorily solved. In recent years a great deal of study has been given to the efficiency of gas-burners, with the result that a high level of development has been reached.

Several methods of electrical ignition have been evolved which in general employ the electric spark. Electrical ignition and developments of remote control have added great improvements especially to street-lighting by means of gas. Gas-valves for remote control are actuated by gas pressure and by electromagnets. In general, the gas-lighting engineers have kept pace marvelously with electric lighting, when their handicaps are considered.

Various types of burners have appeared which aimed to burn more gas in a given time under a mantle and thereby to increase the output of light. These led to the development of the pressure system in which the pressure of gas was at first several times greater than usual. The gas is fed into the mixing tube under this higher pressure in a manner which also draws in an adequate amount of air. In this way the combustion at the burner is forced beyond the point reached with the usual pressure. Ordinary gas pressure is equal to that of a few inches of water, but high-pressure systems employ pressures as great as sixty inches of water. Under this high-pressure system, mantle-burners yield as high as 500 lumens per cubic foot of gas per hour.

The fuels for gas-lighting are natural gas, carbureted water-gas, and coal-gas obtained by distilling coal, but there are different methods of producing the artificial gases. Coal-gas is produced analytically by distilling certain kinds of coal, but water-gas and producer-gas are made synthetically by the action of several constituents upon one another. Carbureted water-gas is made from fixed carbon, steam, and oil and also from steam and oil. Producer-gas is made by the action of steam or air or both upon fixed carbon. Water-gas made from steam and oil is usually limited to those places where the raw materials are readily available. The composition of a gas determines its heating and illuminating values, and constituents favorable to one are not necessarily favorable to the other. Coal-gas usually is of lower illuminating value than carbureted water-gas. It contains more hydrogen, for example, than water-gas and it is well known that hydrogen gives little light on burning.

It has been seen in a previous chapter that the distillation of gas from coal for illuminating purposes began in the latter part of the eighteenth century. From this beginning the manufacture of coal-gas has been developed to a great and complex industry. The method is essentially destructive distillation. The coal is placed in a retort and when it reaches a temperature of about 700°F. through heating by an outside fire, the coal begins to fuse and hydrocarbon vapors begin to emanate. These are generally paraffins and olefins. As the temperature increases, these hydrocarbons begin to be affected. The chemical combinations which have long existed are broken up and there are rearrangements of the atoms of carbon and hydrogen. The actual chemical reactions become very complex and are somewhat shrouded in uncertainty. In this last stage the illuminating and heating values of the gas are determined. Usually about four hours are allowed for the complete distillation of the gaseous and liquid products from a charge of coal. Many interesting chemical problems arise in this process and the influences of temperature and time cannot be discussed within the scope of this book. Besides the coal-gas, various by-products are obtained depending upon the raw materials, upon the procedure, and upon the market.

After the coal-gas is produced it must be purified and the sulphureted hydrogen at least must be removed. One method of accomplishing this is by washing the gas with water and ammonia, which also removes some of the carbon dioxide and hydrocyanic acid. Various other undesirable constituents are removed by chemical means, depending upon the conditions. The purified gas is now delivered to the gas-holder; but, of course, all this time the pressure is governed, in order that the pressure in the mains will be maintained constant.

Much attention has been given to the enrichment of gas for illuminating purposes; that is, to produce a gas of high illuminating value from cheap fuel or by inexpensive processes. This has been done by decomposing the tar obtained during the distillation of coal and adding these gases to the coal-gas; by mixing carbureted water-gas with coal-gas; by carbureting inferior coal-gases; and by mixing oil-gas with inferior coal-gas.

Water-gas is of low illuminating value, but after it is carbureted it burns with a brilliant flame. The water-gas is made by raising the temperature of the fuel bed of hard coal or coke by forced air, which is then cut off, while steam is passed through the incandescent fuel. This yields hydrogen and carbon monoxide. To make carbureted water-gas, oil-gas is mixed with it, the latter being made by heating oil in retorts.

A great many kinds of gas are made which are determined by the requirements and the raw materials available. The amount of illuminating gas yielded by a ton of fuel, of course, varies with the method of manufacture, with the raw material, and with the use to which the fuel is to be put. The production of coal-gas per ton of coal is of the order of magnitude of 10,000 cubic feet. A typical yield by weight of a coal-gas retort is,

10,000 cubic feet of gas 17 per cent.
coke 70 " "
tar 5 " "
ammoniacal liquid 8 " "

The coke is not pure carbon but contains the non-volatile minerals which will remain as ash when the coke is burned, just as if the original coal had been burned. On the crown of the retort used in coal-gas production, pure carbon is deposited. This is used for electric-arc carbons and for other purposes. From the tar many products are derived such as aniline dyes, benzene, carbolic acid, picric acid, napthalene, pitch, anthracene, and saccharin.

A typical analysis of the gas distilled from coal is very approximately as follows,

Hydrocarbons 40 per cent.
Hydrogen 50 " "
Carbon monoxide 4 " "
Nitrogen 4 " "
Carbon dioxide 1 " "
Various other gases 1 " "

It is seen that illuminating gas is not a definite compound but a mixture of a number of gases. The proportion of these is controlled in so far as possible in order to obtain illuminating value and some of them are reduced to very small percentages because they are valueless as illuminants or even harmful. The constituents are seen to consist of light-giving hydrocarbons, of gases which yield chiefly heat, and of impurities. The chief hydrocarbons found in illuminating gas are,

ethylene C2H4 crotonylene C4H6
propylene C3H6 benzene C6H6
butylene C4H8 toluene C7H8
amylene C5H10 xylene C8H10
acetylene C2H2 methane C H4
allylene C3H4 ethane C2H6

A gas which has played a prominent part in lighting is acetylene, produced by the interaction of water and calcium carbide. No other gas easily produced upon a commercial scale yields as much light, volume for volume, as acetylene. It has the great advantage of being easily prepared from raw material whose yield of gas is considerably greater for a given amount than the raw materials which are used in making other illuminating gases. The simplicity of the manufacture of acetylene from calcium carbide and water gives to this gas a great advantage in some cases. It has served for individual lighting in houses and in other places where gas or electric service was unavailable. Where space is limited it also had an advantage and was adopted to some extent on automobiles, motor-boats, ships, lighthouses, and railway cars before electric lighting was developed for these purposes.

The color of the acetylene flame is satisfactory and it is extremely brilliant compared with most flames. An interesting experiment is found in placing a spark-gap in the flame and sending a series of sparks across it. If the conditions are proper the flame will became very much brighter. When the gas issues from a proper jet under sufficient pressure, the flame is quite steady. Its luminous efficiency gives it an advantage over other open gas-flames in lighting rooms, because for the same amount of light it vitiates the air and exhausts the oxygen to a less degree than the others. Of course, in these respects the gas-mantle is superior.

The reaction which takes place when water and calcium carbide are brought together is a double decomposition and is represented by,

CaC2 + H2O = C2H2 + CaO

It will be seen that the products are acetylene gas and calcium oxide or lime. The lime, being hydroscopic and being in the presence of water or water-vapor in the acetylene generator, really becomes calcium hydroxide Ca(OH)2, commonly called slaked lime. If there are impurities in the calcium carbide, it is sometimes necessary to purify the gas before it may be safely used for interior lighting.

The burners and mantles used in acetylene lighting are essentially the same as those for other gas-lighting, excepting, of course, that they are especially adapted for it in minor details.

The chief source of calcium carbide in this country is the electric furnace. Cheap electrical energy from hydro-electric developments, such as the Niagara plants, have done much to make the earth yield its elements. Aluminum is very prevalent in the soil of the earth's surface, because its oxide, alumina, is a chief constituent of ordinary clay. But the elements, aluminum and oxygen, cling tenaciously to each other and only the electric furnace with its excessively high temperatures has been able to separate them on a large commercial scale. Similarly, calcium is found in various compounds over the earth's surface. Limestone abounds widely, hence the oxide and carbonate of lime are wide-spread. But calcium clings tightly to the other elements of its compounds and it has taken the electric furnace to bring it to submission. The cheapness of calcium carbide is due to the development of cheap electric power. It is said that calcium carbide was discovered as a by-product of the electric furnace by accidentally throwing water upon the waste materials of a furnace process. The discovery of a commercial scale of manufacture of calcium carbide has been a boon to isolated lighting. Electric lighting has usurped its place on the automobile and is making inroads in country-home lighting. Doubtless, acetylene will continue to serve for many years, but its future does not appear as bright as it did many years ago.

The Pintsch gas, used to some extent in railroad passenger-cars in this country, is an oil-gas produced by the destructive distillation of petroleum or other mineral oil in retorts heated externally. The product consists chiefly of methane and heavy hydrocarbons with a small amount of hydrogen. In the early days of railways, some trains were not run after dark and those which were operated were not always lighted. At first attempts were made at lighting railway cars with compressed coal-gas, but the disadvantage of this was the large tank required. Obviously, a gas of higher illuminating-value per volume was desired where limited storage space was available, and Pintsch turned his attention to oil-gas. Gas suffers in illuminating-value upon being compressed, but oil-gas suffers only about half the loss that coal-gas does. In about 1880 Pintsch developed a method of welding cylinders and buoys which satisfied lighthouse authorities and he was enabled to furnish these filled with compressed gas. Thus the buoy was its own gas-tank. He devised lanterns which would remain lighted regardless of wind and waves and thus gained a start with his compressed-gas systems. He compressed the gas to a pressure of about one hundred and fifty pounds per square inch and was obliged to devise a reducer which would deliver the gas to the burner at about one pound per square inch. This regulator served well throughout many years of exacting service. The system began to be adopted on ships and railroads in 1880 and for many years it has served well.

Although gas-lighting has affected the activities of mankind considerably by intensifying commerce and industry and by advancing social progress, the illuminants which eventually took the lead have extended the possibilities and influences of artificial light. In the brief span of a century civilized man is almost totally independent of natural light in those fields over which he has control. What another century will bring can be predicted only from the accomplishments of the past. These indicate possibilities beyond the powers of imagination.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page