T The microscope has long been a recognised and valued aid of the geological observer, and is perhaps now in danger of being somewhat overrated by enthusiastic specialists. To the present writer its use is no novelty. When, as a very young geologist, collecting fossil plants in the coal fields of Novia Scotia, I obtained access to the then recently published work of Witham on the "Internal Structure of Fossil Vegetables." Perhaps nothing excites more scepticism as to the animal nature of Eozoon than the prejudice existing among geologists that no organism can be preserved in rocks so highly crystalline as those of the Laurentian series. I call this a prejudice, because any one who makes the microscopic structure of rocks and fossils a special study, soon learns that fossils and the rocks containing them may undergo the most remarkable and complete mechanical and chemical changes without losing their minute structure, and that limestones, if once fossiliferous, are hardly ever so much altered as to lose all traces of the organisms which they contained, while it is a most common occurrence to find highly crystalline rocks of this kind abounding in fossils preserved as to their minute structure. Let us, however, look at the precise conditions under which this takes place. When calcareous fossils of irregular surface and porous or cellular texture, such as Eozoon may have been, or corals were A further stage of mineralisation occurs when the substance of the organism is altogether removed and replaced by foreign matter, either little by little, or by being entirely dissolved or decomposed, leaving a cavity to be filled by infiltration. In this state are some silicified woods, and those corals which have been not filled with but replaced by silica, and can thus sometimes be obtained entire and perfect by the solution in an acid of the containing limestone, or by its removal in weathering. In this state are the beautiful silicified corals obtained from the corniferous limestone of Lake Erie, which are so perfectly replaced by flinty matter that when weathered out of the limestone, or treated with acid till the latter is removed, we find the coral as perfect as when recent. It may be well to present to the eye these different stages of fossilization. I have attempted to do this in Fig. 13, taking a tabulate coral of the genus Favosites for an example, and supposing the material employed to be calcite and silica. Precisely the same illustration would apply to a piece of wood, except that the cell wall would be carbonaceous matter instead of carbonate of lime. In this figure the dotted parts represent carbonate of lime, the diagonally shaded parts silica or a silicate. Thus we have in the natural state the walls of carbonate of lime and the cavities empty (a). When fossilized the cavities may be merely filled with carbonate of lime, or they may be filled with silica (b, c); or the walls themselves may be replaced by silica, and the cavities may remain filled with carbonate of lime (d); or both the walls and cavities may be represented by or filled with silica or silicates (e). The ordinary specimens of Eozoon are supposed to be in the third of these stages, though some exist in the second, and I have reason to believe that some have reached to the fifth. I have not met with any in the With regard, then, to the calcareous organisms with which we have now more especially to do, when these are embedded in pure limestone and filled with the same, so that the whole rock, fossils and cavities, is one in composition, and when metamorphic action has caused the whole to become crystalline, and has perhaps removed the remains of carbonaceous matter, it may be very difficult to detect any traces of structure. But In the case of recent and fossil Foraminifers, these very frequently have their chambers filled solid with calcareous matter, and as Dr. Carpenter well remarks, even well-preserved Tertiary Nummulites in this state often fail greatly in showing their structures, though in the same condition they occasionally show these in great perfection. Among the finest I have seen are specimens from the Mount of Olives, and Dr. Carpenter mentions as equally good those of the London clay at Bracklesham. But in no condition do modern Foraminifera, or those of the Tertiary and Mesozoic rocks appear in greater perfection than when filled with the hydrous silicate of iron and potash called glauconite or green earth, a substance now forming in some parts of the ocean, and which gives, by the abundance of its little bottle-green concretions the name of "greensand" to formations of the Cretaceous age both in Europe and America. However this may be, the infiltration of the pores of Eozoon with serpentine and other silicates has evidently been one main means of its preservation. When so infiltrated no metamorphism short of the complete fusion of the containing rock Let us now look more minutely at the nature of the typical specimens of Eozoon as originally observed and described, and then turn to those preserved in other ways, or more or less destroyed or defaced. Taking a polished specimen from Petite Nation, we find the shell represented by white limestone, and the chambers by light green serpentine. By acting on the surface with a dilute acid we etch out the calcareous part, leaving a cast in serpentine of the cavities originally occupied by the soft animal substance, and when this is done in polished slices, these may be made to print their own characters on paper, as has actually been done in the plate prefixed, which is an electrotype from an etched specimen, and shows both the laminated and acervuline parts of the fossil. If the process of decalcification has been carefully executed, we find in the excavated spaces delicate ramifying processes of opaque serpentine or transparent dolomite, which were originally imbedded in the calcareous substance, and which are often of extreme fineness and complexity. Taking the specimens preserved by serpentine as typical, we now turn to certain other and, in some respects, less characteristic specimens, which are nevertheless very instructive. At the Calumet some of the masses are partly filled with serpentine and partly with white pyroxene, an anhydrous silicate of lime and magnesia. The two minerals can readily be distinguished when viewed with polarized light; and in some slices I have seen part of a chamber or group of canals filled with serpentine and part with pyroxene. In this case the pyroxene, or the materials which now compose it, must have been introduced by infiltration, as well as the serpentine. This is the more remarkable as pyroxene is most usually found as an ingredient of igneous rocks; but Dr. Hunt has shown that in the Laurentian limestones, and also in veins traversing them, it In many parts of the skeleton of Eozoon, and even in the best infiltrated serpentine specimens, there are portions of the cell wall and canal system which have been filled with calcareous spar or with dolomite, so similar to the skeleton that it can be detected only under the most favourable lights and with great care (Fig. 15, supra). It is further to be remarked that in all the specimens of true Eozoon, as well as in many other calcareous fossils preserved in ancient rocks, the calcareous matter, even when its minute structures are not preserved, or are obscured, presents a minutely granular or curdled appearance, arising, no doubt, from the original presence of organic matter, and not recognised in purely inorganic calcite. Other specimens of fragmental Eozoon from the Petite Nation localities have their canals filled with dolomite, which probably penetrated them after they were broken up and imbedded in the rock. I have ascertained, with respect to these fragments of Eozoon, that they occur abundantly in certain layers of the Laurentian limestone, beds of some thickness being in great part made up of them, and coarse and fine fragments Finally, on this part of the subject, careful observation of many specimens of Laurentian limestone which present no trace of Eozoon when viewed by the naked eye, and no evidence of structure when acted on with acids, are nevertheless organic, and consist of fragments of Eozoon, and possibly of other organisms, not infiltrated with silicates, but only with carbonate of lime, and consequently revealing only obscure indications of their minute structure. I have satisfied myself of this by long and patient investigations, which scarcely admit of any adequate representation, either by words or figures. Every worker in those applications of the microscope to geological specimens which have been termed micro-geology, is familiar with the fact that crystalline forces and mechanical movements of material often play the most fantastic tricks with fossilized organic matter. In fossil woods, for example, we often have the tissues disorganized, with radiating crystallizations of calcite and little spherical concretions of quartz, or disseminated cubes and grains of pyrite, or little veins filled with sulphate of barium or other minerals. We need not, therefore, be surprised to find that in the venerable rocks containing Eozoon, such things occur in the highly crystalline Laurentian limestones, and even in some still showing the traces of Eozoon. We find many disseminated crystals of magnetite, pyrite, spinel, mica and other minerals, curiously curved prisms of vermicular mica, bundles of aciculi of tremolite and similar substances, veins of calcite and crysotile or fibrous serpentine, which often traverse the best specimens. Where these occur abundantly, we usually find no organic structures remaining, or if they exist, they are in a very defective state of preservation. Even in specimens presenting the lamination of Eozoon to the naked eye, these crystalline actions have often destroyed the minute structure; and I fear that some microscopists have The above considerations as to mode of preservation of Eozoon concur with those in the previous chapter in showing its oceanic character, if really a fossil; but the ocean of the Eozoic period may not have been so deep as at present, and its waters were probably warm and well stocked with mineral matters derived from the newly formed land, or from hot springs in its own bottom. On this point the interesting investigations of Dr. Hunt with reference to the chemical conditions of the Silurian seas allow us to suppose that the Laurentian ocean may have been much more richly stored, more especially with salts of lime and magnesia, than that of subsequent times. Hence the conditions of warmth, light, and nutriment required by such gigantic Protozoans would all be present, and hence, also, no doubt, some of the peculiarities of their mineralization. I desire by the above statement of facts to show, on the one hand, that the study of Eozoon, regarded as probably an ancient form of marine life, aids us in understanding other ancient fossils, and their manner of preservation; and on the other hand, that those who deny the organic origin of Eozoon place us in the position of being unable, in any rational manner, to account for these forms, so characteristic of the Laurentian limestones, and set at naught the fair conclusions deducible from the mode of preservation of fossils in the later formations. The evidence of organic origin is perhaps not conclusive, and in the present state of knowledge it is certain to be met with much scepticism, more especially by certain classes of specialists, whose grasp of knowledge is not sufficiently wide to cover, on the one hand, fossilization and metamorphism, and on the other, to understand the lower forms of life. It may, however, be sufficient to qualify us in turning our thoughts for a few moments to considerations Looking down from the elevation of our physiological and mental superiority, it is difficult to realize the exact conditions in which life exists in creatures so simple as the Protozoa. There may perhaps be higher intelligences, that find it equally difficult to realize how life and reason can manifest themselves in such poor houses of clay as those we inhabit. But placing ourselves near to these creatures, and entering, as it were, into sympathy with them, we can understand something of their powers and feelings. In the first place it is plain that they can vigorously, if roughly, exercise those mechanical, chemical, and vegetative powers of life which are characteristic of the animal. They can seize, swallow, digest, and assimilate food; and, employing its albuminous parts in nourishing their tissues, can burn away the rest in processes akin to our respiration, or reject it from their system. Like us, they can subsist only on food which the plant has previously produced; for in this world, from the beginning of time, the plant has been the only organism which could use the solar light and heat as forces to enable it to turn the dead elements of matter into living, growing tissues, and into organic compounds capable of nourishing the animal. Like us, the Protozoa expend the food which they have assimilated in the production of animal force, and in doing so cause it to be oxidized, or burnt away, and resolved again into dead matter. It is true that we have much more complicated apparatus for performing these functions, but it does not follow that these give us much real superiority, except relatively to the more difficult conditions of our existence. The gourmand who enjoys his dinner may have no more pleasure in the act than the Amoeba which swallows a Diatom; and for all that the man knows of the subsequent processes to which the food is subjected, his interior might be a mass of jelly, with extemporised vacuoles, In order that we may feel, a complicated apparatus of nerves and brain cells has to be constructed and set to work; but the Protozoon, without any distinct brain, is all brain, and its sensation is simply direct. Thus vision in these creatures is probably performed in a rough way by any part of their transparent bodies, and taste and smell are no doubt in the same case. Whether they have any perception of sound as distinct from the mere vibrations ascertained by touch, we do not know. Here, also, we are not far removed above the Protozoa, especially those of us to whom touch, seeing and hearing are direct acts, without any thought or knowledge of the apparatus employed. We might, so far, as well be Amoebas. As we rise higher we meet with more differences. Yet it is evident that our gelatinous fellow being can feel pain, dread danger, desire possessions, enjoy pleasure, and in a direct unconscious way entertain many of the appetites and passions that affect ourselves. The wonder is that with so little of organization it can do so much. Yet, perhaps, life can manifest itself in a broader and more intense way where there is little organization, and a highly strung and complex organism is not so much a necessary condition of a higher life as a mere means of better adapting it to its present surroundings. A similar lesson is taught by the complexity of their skeletons. We speak in a crude, unscientific way of these animals accumulating calcareous matter, and building up reefs of limestone. We must, however, bear in mind that they are as dependent on their food for the materials of their skeletons as we are, and that their crusts grow in the interior of the sarcode just as our bones do within our bodies. The provision even for nourishing the interior of the skeleton by Another phenomenon of animality forced upon our notice by the Protozoa is that of the conditions of life in animals not individual, as we are, but aggregative and cumulative in indefinite masses. What, for instance, the relations to each other of the Polyps, growing together in a coral mass, or the separate parts of a Sponge, or the separate lobes of a Foraminifer. In the case of the Polyps we may believe that there is special sensation in the tentacles and oral opening of each individual, and that each may experience hunger when in want, or satisfaction when it is filled with food, and that injuries to one part of the mass may indirectly affect other parts, but that the nutrition of the whole mass may be as much unfelt by the individual Polyps as the processes going on in our own liver are by us. So in the case of a large Sponge, or Foraminifer, there may be some special sensation in individual cells, pseudopods, or segments, and the general sensation may be very limited, while unconscious living powers pervade the It is this composite sort of life which is connected with the main geological function of the Foraminifer. While active sensation, appetite, and enjoyment pervade the pseudopods and external sarcode of the mass, the hard skeleton common to the whole is growing within; and in this way the calcareous matter is gradually removed from the sea water, and built up in solid reefs, or in piles of loose foraminiferal shells. Thus it is the aggregative or common life, alike in Foraminifers as in Corals, that tends most powerfully to the accumulation of calcareous matter; and those creatures whose life is of this complex character are best suited to be world builders, since the result of their growth is not merely a cemetery of their osseous remains, but a huge communistic edifice, to which multitudes of lives have contributed, and in which successive generations take up their abode on the remains of their ancestors. This process, so potent in the progress of the earth's geological history, began, as far as we know, with Eozoon. Whether, then, in questioning our proto-foraminifer, we have reference to the vital functions of its gelatinous sarcode, to the complexity and beauty of its calcareous test, or to its capacity If we imagine a world altogether destitute of life, we still might have geological formations in progress. Not only would volcanoes belch forth their liquid lavas and their stones and ashes, but the waves and currents of the ocean and the rains and streams on the land, with the ceaseless decomposing action of the carbonic acid of the atmosphere, would be piling up mud, sand, and pebbles in the sea. There might even be some formation of limestone taking place where springs charged with bicarbonate of lime were oozing out on the land or the bottom of the waters. But in such a world all the carbon would be in the state of carbon dioxide, and all the limestone would either be diffused in small quantities through various rocks or in limited local beds, or in solution, perhaps as chloride of calcium, in the sea. Dr. Hunt has given chemical grounds for supposing that the most ancient seas were largely supplied with this very soluble salt, instead of the chloride of sodium, or common salt, which now prevails in the sea water. Where in such a world would life be introduced? on the land or in the waters? All scientific probability would say in the latter. Let humble plants, then, be introduced in the waters, and they would at once begin to use the solar light for the purpose of decomposing carbonic acid, and forming carbon compounds which had not before existed, and which, independently of vegetable life, would never have existed. At the same time lime and other mineral substances present in the sea water would be fixed in the tissues of these plants, either in a minute state of division, as little grains or Coccoliths, or in more solid masses like those of the Corallines and Nullipores. In this way a beginning of limestone formation might be made, and quantities of carbonaceous and bituminous matter, resulting from the decay of vegetable substances might accumulate on the sea bottom. Now arises the opportunity for animal life. The plants have collected stores of organic matter, and their minute germs, along with microscopic species, are floating everywhere in the sea. The plant has fulfilled its function as far as the waters are concerned, and now a place is prepared for the animal. In what form shall it appear? Many of its higher forms, those which depend upon animal food or on the more complex plants for subsistence, would obviously be unsuitable. Further, the sea water is still too much saturated with saline matter to be fit for the higher animals of the waters. Still further, there may be a residue of internal heat forbidding coolness, and that solution of free oxygen which is an essential condition of existence to the higher forms of life. Something must be found suitable for this saline, imperfectly oxygenated, tepid sea. Something, too, is wanted that can aid in introducing But what are we to say of the cause of this new series of facts, so wonderfully superimposed upon the merely vegetable and mineral? Must it remain to us as an act of creation, or was it derived from some pre-existing matter in which it had been potentially present? Science fails to inform us, but conjectural "phylogeny" steps in and takes its place. Haeckel, the prophet of this new philosophy, waves his magic wand, and simple masses of sarcode spring from inorganic matter, and form diffused sheets of sea slime, from which are in time separated distinct amoeboid and foraminiferal forms. Experience, however, gives us no facts whereon to build this supposition, and it remains neither more nor less scientific or certain than that old fancy of the Egyptians, which derived animals from the fertile mud of the Nile. If we fail to learn anything of the origin of Eozoon, and if its life processes are just as inscrutable as those of higher creatures, we can at least enquire as to its history in geological time. In this respect we find, in the first place, that Originated by Eozoon in the old Laurentian time, this process has been proceeding throughout the geological ages; and while Protozoa, equally simple with the great prototype of the race, have been and are continuing its function, and producing new limestones in every geological period, and so adding to the volume of the successive formations, new workers of higher grades have been introduced, capable of enjoying higher forms of animal activity, and equally of labouring at the great task of continent building; of existing, too, in seas less rich in mineral substances than those of the Eozoic time, and for that very reason better suited to higher and more skilled artists. It is to be observed in connection with this, that as the work of the Foraminifers has thus been assumed by others, their size and importance have diminished, and the larger forms of more recent times have some of them been fain to build up their hard parts of cemented sand instead of limestone. When the marvellous results of recent deep-sea dredgings were first made known, and it was found that chalky foraminiferal earth is yet accumulating in the Atlantic, with sponges and sea urchins, resembling in many respects those whose remains exist in the chalk, the fact was expressed by the statement that we still live in the chalk period. Thus stated the conclusion is scarcely correct. We do not live in the chalk period, but the conditions of the chalk period still exist in the deeper portions of the sea. We may say more than this. To some extent the conditions of the Laurentian period still exist in the sea, except in so far as they have been removed by the action of the Foraminifera and other limestone builders. To those who can realize the enormous lapse of time involved in the geological history of the earth, this conveys an impression almost of eternity in the existence of this oldest of all the families of the animal kingdom. We are still more deeply impressed with this when we bring into view the great physical changes which have occurred since the dawn of life. When we consider that the skeletons of Eozoon contribute to form the oldest hills of our continents; that they have been sealed up in solid marble, and that they are associated with hard crystalline rocks contorted in the most fantastic manner; that these rocks have almost from the beginning of geological time been undergoing waste to supply the material of new formations; that they have witnessed innumerable subsidences and elevations of the continents; and that the greatest mountain chains of the earth have been built up from the sea since Eozoon began to exist,—we acquire a most profound impression of the persistence of the lower forms of animal life, and know that mountains may be removed and continents swept away and replaced, before the least of the humble gelatinous Protozoa can finally perish. Life may be a fleeting thing in the individual, but as handed down through successive generations of beings, and as a constant animating power in successive organisms, it appears, like its Creator, eternal. This leads to another and very serious question. How long did lineal descendants of Eozoon exist, and do they still exist? We may for the present consider this question apart from ideas of derivation and elevation into higher planes of existence. Eozoon as a species, and even as a genus, may cease to exist with the Eozoic age, and we have no evidence whatever that any succeeding creatures are its modified descendants. As far as their structures inform us, they may as much claim to be original creations as Eozoon itself. Still descendants of Eozoon may have continued to exist, though we have not yet met with them. I should not be surprised to hear of a veritable specimen being some day dredged alive in the Atlantic or the Pacific. It is also to be observed that in animals so simple as this many varieties may appear, widely different from the There is no link in geological fact to connect Eozoon with any of the Mollusks, Radiates, or Crustaceans of the succeeding Cambrian. What may be discovered in the future we cannot conjecture; but at present these stand before us as distinct creations. It would of course be more probable that Eozoon should be the ancestor of some of the Foraminifera of the Primordial age, but strangely enough it is very dissimilar from all these, except Cryptozoum and some forms of Stromatopora; and here, as already stated, the evidence of minute structure fails to a great extent. Of actual facts, therefore, we have none; and those evolutionists who have regarded the dawn animal as an evidence in their favour have been obliged to have recourse to supposition and assumption. We may imagine Eozoon itself, however, to state its experience as follows:—"I, Eozoon Canadense, being a creature of low organization and intelligence, and of practical turn, am no theorist, but have a lively appreciation of such facts as I am able to perceive. I found myself growing upon the sea bottom, and know not whence I came. I grew and flourished for ages, and found no let or hindrance to my expansion, and abundance of food was always floated to me without my having to go in search of it. At length a change came. Certain creatures with hard snouts and jaws began to prey on me. Whence they came I know not; I cannot think that they came from the germs which I had dispersed so abundantly throughout the ocean. Unfortunately, just at the same time lime became a little less abundant in the waters, perhaps because of the great demands I myself had made, and thus it was not so easy as before to produce a thick supplemental skeleton for defence. Thus our dawn animal has positively no story to tell as to its own introduction or its transmutation into other forms of existence. It leaves the mystery of creation where it was, but in connection with the subsequent history of life we can learn from it a little as to the laws which have governed the succession of animals in geological time. First, we may learn that the plan of creation has been progressive, that there has been an advance from the few low and generalized types of the primÆval ocean to the more numerous, higher, and more specialized types of more recent times. Secondly, we learn that the lower types, when first introduced, and before they were subordinated to higher forms of life, existed in some of their grandest modifications as to form and complexity, and that in succeeding ages, when higher types were replacing them, they were subjected to decay and degeneracy. Thirdly, we learn that while the species has a limited term of existence in geological time, any large type of animal existence, like that of the Foraminifera or Sponges, for example, once introduced, continues and finds throughout all the vicissitudes of the earth some appropriate residence. Fourthly, as to the mode of introduction of new types, or whether such creatures as Eozoon had any direct connection with the subsequent introduction of Mollusks, Worms, or Crustaceans, it is altogether silent, nor Had we been permitted to visit the Laurentian seas, and to study Eozoon and its contemporary Protozoa when alive, it is plain that we could not have foreseen or predicted from the consideration of such organisms the future development of life. No amount of study of the prototypal Foraminifer could have led us distinctly to the conception of even a Sponge or a Polyp, much less of any of the higher animals. Why is this? The answer is that the improvement into such higher types does not take place by any change of the elementary sarcode, either in those chemical, mechanical, or vital properties which we can study, but in the adding to it of new structures. In the Sponge, which is perhaps the nearest type of all, we have the movable pulsating cilium and true animal cellular tissue, and along with this the spicular or fibrous skeleton, these structures leading to an entire change in the mode of life and subsistence. In the higher types of animals it is the same. Even in the highest we have white blood corpuscles and germinal matter, which, in so far as we know, carry on no higher forms of life than those of an Amoeba; but they are now made subordinate to other kinds of tissues, of great variety and complexity, which never have been observed to arise out of the growth of any Protozoon. There would be only a few conceivable inferences which the highest finite intelligence could deduce as to the development of future and higher animals. He might infer that the Foraminiferal sarcode, once introduced, might be the substratum or foundation of other but unknown tissues in the higher animals, and that the Protozoon type might continue to subsist side by side with higher forms of living things, as they were successively introduced. He might also infer that the elevation of the animal kingdom would take place with reference to those new properties of sensation and voluntary motion in which the humblest animals diverge from the life of the plant. It is important that these points should be clearly before our minds, because there has been current of late among naturalists a loose way of writing with reference to them, which seems to have imposed on many who are not naturalists. It has been said, for example, that such an organism as Eozoon may include potentially all the structures and functions of the higher animals, and that it is possible that we might be able to infer or calculate all these with as much certainty as we can calculate an eclipse or any other physical phenomenon. Now, there is not only no foundation in fact for these assertions, but it is, from our present standpoint, not conceivable that they can ever be realized. The laws of inorganic matter give no data whence any À priori deductions or calculations could be made as to the structure and vital forces of the plant. The plant gives no data from which we can calculate the functions of the animal. The Protozoon gives no data from which we can calculate the specialties of the Mollusk, the Articulate, or the Vertebrate. Nor, unhappily, do the present conditions of life of themselves give us any sure grounds for predicting the new creations that may be in store for our old planet. Those who think to build a philosophy and even a religion on such data are mere dreamers, and have no scientific basis for their dogmas. They are as blind guides as our primÆval Protozoon himself would be in matters whose real solution lies in the harmony of our own higher and immaterial nature with the Being who is the Author of all life—the Father "from whom every family in heaven and earth is named." References:—"Life's Dawn on Earth." London, 1885. Specimens |