I I had the pleasure of being present at the meeting of the British Association at Birmingham, in 1865: a meeting attended by an unusually large number of eminent geologists, under the presidency of my friend Phillips. I had the further pleasure of being his successor at the meeting in the same place, in 1886; and the subject of this chapter is that to which I directed the attention of the Association in my Presidential address. I fear it is a feeble and imperfect utterance compared with that which might have been given forth by any of the great men present in 1865, and who have since left us, could they have spoken with the added knowledge of the intervening twenty years. The geological history of the Atlantic appeared to be a suitable subject for a trans-Atlantic president, and to a Society which had vindicated its claim to be British in the widest sense by holding a meeting in Canada, while it was also meditating a visit to Australia—a visit not yet accomplished, but in which it may now meet with a worthy daughter in the Australian Association formed since the meeting of 1886. The subject is also one carrying our thoughts very far back in geological time, and connecting itself with some of the latest and most important discussions and discoveries in the science of the earth, furnishing, indeed, too many salient points to be profitably occupied in a single chapter. If we imagine an observer contemplating the earth from a If our imaginary observer had the means of knowing anything of the rock formations of the continents, he would notice that those bounding the North Atlantic are, in general, of great age some belonging to the Laurentian system. On the other hand, he would see that many of the mountain ranges along the Pacific are comparatively new, and that modern igneous action occurs in connection with them. Thus he might see in the Atlantic, though comparatively narrow, a more ancient feature of the earth's surface; while the Pacific belongs to more modern times. But he would note, in connection with this, that the oldest rocks of the great continental masses are mostly toward their northern ends; and that the borders of the northern ring of land, and certain ridges extending southward from it, constitute the most ancient and permanent elevations of the earth's crust, though now greatly surpassed by mountains of more recent age nearer the equator, so that the continents of the northern hemisphere seem to have grown progressively from north to south. If the attention of our observer were directed to more modern processes, he might notice that while the antarctic continent freely discharges its burden of ice to the ocean north of it, the arctic ice has fewer outlets, and that it mainly discharges itself through the North Atlantic, where also the great mass of Greenland stands as a huge condenser and cooler, Further, such an observer would not fail to notice that the ridges which lie along the edges of the oceans and the ebullitions of igneous matter which proceed, or have proceeded from them, are consequences of the settling downward of the great oceanic depressions, a settling ever intensified by their receiving more and more of deposit on their surfaces; and that this squeezing upward of the borders of these depressions into folds has been followed or alternated with elevations and depressions without any such folding, and proceeding from other causes. On the whole, it would be apparent that these actions are more vigorous now at the margins of the Pacific area, while the Atlantic is backed by very old foldings, or by plains and slopes from which it has, so to speak, dried away without any internal movement. Thus it would appear that the Pacific is the great centre of earth-movement, while the Atlantic trench is the more potent regulator of temperature, and the ocean most likely to be severely affected in this respect by small changes of its neighbouring land. Last of all, an observer, such as I have supposed, would see that the oceans are the producers of moisture and the conveyors of heat to the northern regions of the world, and that in this respect and in the immense condensation and delivery of ice at its north end, the Atlantic is by far the more active, though the smaller of the two. So much could be learned by an extra-mundane observer; Before leaving this broad survey, we may make one further remark. An observer, looking at the earth from without, would notice that the margins of the Atlantic and the main lines of direction of its mountain chains are north-east and south-west, and north-west and south-east, as if some early causes had determined the occurrence of elevations along great circles of the earth's surface tangent to the polar circles. We are invited by the preceding general glance at the surface of the earth to ask certain questions respecting the Atlantic, (1) What has at first determined its position and form? (2) What changes has it experienced in the lapse of geological time? (3) What relations have these changes borne to the development of life on the land and in the water? (4) What is its probable future? Before attempting to answer these questions, which I shall not take up formally in succession, but rather in connection with each other, it is necessary to state, as briefly as possible, certain general conclusions respecting the interior of the earth. It is popularly supposed that we know nothing of this beyond a superficial crust perhaps averaging 50,000 to 100,000 feet in (1) Since the dawn of geological science, it has been evident that the crust on which we live must be supported on a plastic or partially liquid mass of heated rock, approximately uniform in quality under the whole of its area. This is a legitimate conclusion from the wide distribution of volcanic phenomena, and from the fact that the ejections of volcanoes, while locally of various kinds, are similar in every part of the world. It led to the old idea of a fluid interior of the earth, but this seems now generally abandoned, and this interior heated and plastic layer is regarded as merely an under-crust, resting on a solid nucleus. (2) We have reason to believe, as the result of astronomical investigations, (3) The plastic sub-crust is not in a state of dry igneous fusion, but in that condition of aqueo-igneous or hydrothermic fusion which arises from the action of heat on moist substances, and which may either be regarded as a fusion or as a species of solution at a very high temperature. This we learn from the phenomena of volcanic action, and from the composition of the volcanic and plutonic rocks, as well as from such chemical experiments as those of DaubrÉe, and of Tilden, and Shenstone. (4) The interior sub-crust is not perfectly homogeneous, but may be roughly divided into two layers or magmas, as they have been called; an upper, highly silicious or acidic, of low specific gravity and light-coloured, and corresponding to such kinds of plutonic and volcanic rocks as granite and trachyte; and a lower, less silicious or more basic, more dense, and more highly charged with iron, and corresponding to such igneous rocks as the dolerites, basalts, and kindred lavas. It is interesting here to note that this conclusion, elaborated by Durocher and Von Waltershausen, and usually connected with their names, appears to have been first announced by John Phillips, in his "Geological Manual," and as a mere common sense deduction from the observed phenomena of volcanic action and the probable results of the gradual cooling of the earth. It receives striking confirmation from the observed succession of acidic and basic volcanic rocks of all geological periods and in all localities. It would even seem, from recent spectroscopic investigations of Lockyer, that there is evidence of a similar succession of magmas in the heavenly bodies, and the discovery by NordenskiÖld of native iron in Greenland (5) Where rents or fissures form in the upper crust, the material of the lower crust is forced upward by the pressure of the less supported portions of the former, giving rise to volcanic phenomena either of an explosive or quiet character, as may be determined by contact with water. The underlying material may also be carried to the surface by the agency of heated water, producing those quiet discharges which Hunt has named crenitic. It is to be observed here that explosive volcanic phenomena, and the formation of cones, are, as Prestwich has well remarked, characteristic of an old and thickened crust; quiet ejection from fissures and hydro-thermal action may have been more common in earlier periods and with a thinner over-crust This is an important consideration with reference to those earlier ages referred to in chapter second. (6) The contraction of the earth's interior by cooling and by the emission of material from below the over-crust, has caused this crust to press downward, and therefore laterally, and so to effect great bends, folds, and plications; and these, modified subsequently by surface denudation, and the piling of sediments on portions of the crust, constitute mountain chains and continental plateaus. As Hall long ago pointed out, (7) The crushing and sliding of the over-crust implied in these movements raise some serious questions of a physical character. One of these relates to the rapidity or slowness of such movements, and the consequent degree of intensity of the heat developed, as a possible cause of metamorphism of rocks. Another has reference to the possibility of changes in the equilibrium of the earth itself, as resulting from local collapse and ridging. These questions in connection with the (8) It appears from the above that mountains and continental elevations may be of three kinds, (a) They may consist of material thrown out of volcanic rents, like earth out of a mole burrow. Mountains like Vesuvius and Ætna are of this kind. (b) They may be parts of wide ridges or chains variously cut and modified by rains and rivers. The Lebanon and the Catskill Mountains are cases in point, (c) They may be lines of crumpling by lateral pressure. The greatest mountains, like the Cordillera, the Alps, and the Appalachians are of this kind, and such mountains may represent lateral pressure occurring at various times, and whose results have been greatly modified subsequently. I wish to formulate these principles as distinctly as possible, and as the result of all the long series of observations, calculations, and discussions since the time of Werner and Hutton, and in which a vast number of able physicists and naturalists have borne a part, because they may be considered as certain deductions from our actual knowledge, and because they lie at the foundation of a rational physical geology. We may roughly popularise these deductions by comparing the earth to a drupe or stone-fruit, such as a plum or peach Here a most important feature demands attention. The rain, the streams, and the sea are constantly cutting down the land and depositing it in the bed of the waters. Thus weight is taken from the land, and added to the sea bed. Geological facts, such as the great thickness of the coal measures, in which we find thousands of feet of sediment, all of which must have been deposited in shallow water, and the accumulation of hundreds of feet of superficial material in deltas at the mouth of great rivers, show that the crust of the earth is so mobile as to yield downward to every pressure, however slight. Keeping in view these general conclusions, let us now turn to their bearing on the origin and history of the North Atlantic. Though the Atlantic is a deep ocean, its basin does not constitute so much a depression of the crust of the earth as a flattening of it, and this, as recent soundings have shown, with a slight ridge or elevation along its middle, and banks or terraces fringing the edges, so that its form is not so much If we now inquire as to the cause of the Atlantic depression, we must go back to the time when the areas occupied by the Atlantic and its bounding coasts were parts of the shoreless sea in which the earliest gneisses or stratified granites of the Laurentian age were being laid down in vastly extended beds. These ancient crystalline rocks have been the subject of much discussion and controversy, to which reference has been made in a previous chapter. It will be observed, in regard to these theories, that they do Let us suppose, then, the floor of old ocean covered with a flat pavement of gneiss, or of that material which is now gneiss, the next question is, How and when did this original bed become converted into sea and land? Here we have some things certain, others most debatable. That the cooling mass, especially if it was sending out volumes of softened rocky material, either in the form of volcanic ejections or in that of matter dissolved in heated water, and piling this on the surface, must soon become too small for its shell, is apparent; but when and where would the collapse, crushing and wrinkling inevitable from this cause begin? The date is indicated by the lines of old mountain chains which traverse the Laurentian districts; but the reason why is less apparent. The more or less unequal cooling, hardening and conductive power of the outer crust we may readily assume. The driftage unequally of water-borne detritus to the south-west by the From this time dates the introduction of that dominance of existing causes which forms the basis of uniformitarianism in geology, and which had to go on with various and great modifications of detail, through the successive stages of the geological history, till the land and water of the northern hemisphere attained to their present complex structure. So soon as we have a circumpolar belt or patches of Eozoic Thus, in the later Eozoic and early PalÆozoic times, which succeeded the first foldings of the oldest Laurentian, great ridges were thrown up, along the edges of which were beds of limestone, and on their summits and sides, thick masses of ejected igneous rocks. In the bed of the central Atlantic there are no such accumulations. It must have been a flat, or slightly ridged, plate of the ancient gneiss, hard and resisting, though perhaps with a few cracks, through which igneous matter welled up, as in Iceland and the Azores in more modern times. In this condition of things we have causes tending to perpetuate and extend the distinctions of ocean and continent, We are indebted to a French physicist, M. Faye, for an important suggestion on this subject. It is that the sediment accumulated along the shores of the ocean presented an obstacle to radiation, and consequently to cooling of the crust, while the ocean floor, unprotected and unweighted, and constantly bathed with currents of cold water having great power of convection of heat, would be more rapidly cooled, and so would become thicker and stronger. This suggestion is complementary to the theory of Professor Hall, that the areas of greatest deposit on the margins of the ocean are necessarily those of greatest folding and consequent elevation. We have thus a hard, thick, resisting ocean bottom, which, as it settles down toward the interior, under the influence of gravity, squeezes upwards and folds and plicates all the soft sediments deposited on its edges. The Atlantic area is almost an unbroken cake of this kind. The Pacific area has cracked in many places, allowing the interior fluid matter to exude in volcanic ejections. It may be said that all this supposes a permanent continuance of the ocean basins, whereas many geologists postulate a mid-Atlantic continent to give the thick masses of detritus found in the older formations both in Eastern America and Western Europe, and which thin off in proceeding into the But the permanence of the Atlantic depression does not exclude the idea of successive submergences of the continental plateaus and marginal slopes, alternating with periods of elevation, when the ocean retreated from the continents and contracted its limits. In this respect the Atlantic of to-day is much smaller than it was in those times when it spread widely over the continental plains and slopes, and much larger than it has been in times of continental elevation. This leads us to the further consideration that, while the ocean beds have been sinking, other areas have been better supported, and constitute the continental plateaus; and that it has been at or near the junctions of these sinking and rising areas that the thickest deposits of detritus, the most extensive foldings, and the greatest ejections of volcanic matter have occurred. There has thus We are thus compelled, as already stated, to believe in the contemporaneous existence in all geological periods, except perhaps the earliest of them, of the three distinct conditions of areas on the surface of the earth, defined in chapter second oceanic areas of deep sea, continental plateaus and marginal shelves, and lines of plication and folding. In the successive geological periods the continental plateaus, when submerged, owing to their vast extent of warm and shallow sea, have been the great theatres of the development of marine life and of the deposition of organic limestones, and when elevated, they have furnished the abodes of the noblest land faunas and floras. The mountain belts, especially in the north, have been the refuge and stronghold of land life in periods of submergence; and the deep ocean basins have So much space has been occupied with these general views, that it would be impossible to trace the history of the Atlantic in detail through the ages of the PalÆozoic, Mesozoic, and Tertiary. We may, however, shortly glance at the changes of the three kinds of surface already referred to. The bed of the ocean seems to have remained, on the whole, abyssal; but there were probably periods when those shallow reaches of the Atlantic which stretch across its most northern portion, and partly separate it from the Arctic basin, presented connecting coasts or continuous chains of islands sufficient to permit animals and plants to pass over. In the PalÆozoic period, the distinctions already referred to, into continental plateaus, mountain ridges, and ocean depths, were first developed, and we find, already, great masses of sediment accumulating on the seaward sides of the old Laurentian ridges, and internal deposits thinning away from these ridges over the submerged continental areas, and presenting dissimilar In the coal formation age its characteristic swampy flats stretched in some places far into the shallower parts of the ocean. We may also note a fact which I have long ago insisted on, In referring to the ocean basins we should bear in mind that there are three of these in the northern hemisphere the Arctic, the Pacific, and the Atlantic. De Ranee has ably We may pause here for a moment to notice some of the effects of Atlantic growth on modern geography. It has given us rugged and broken shores, composed of old rocks in the north, and newer formations and softer features toward the south. It has given us marginal mountain ridges and internal plateaus on both sides of the sea. It has produced certain curious and by no means accidental correspondences of the eastern and western sides. Thus the solid basis on which the British Islands stand may be compared with Newfoundland and Labrador, the English Channel with the Gulf of St. Lawrence, the Bay of Biscay with the Bay of Maine, Spain with the projection of the American land at Cape Hatteras, the Mediterranean with the Gulf of Mexico. The special conditions of deposition and plication necessary to these results, and their bearing on the character and productions of the Atlantic basin, would require a volume for their detailed elucidation. Thus far our discussion has been limited almost entirely to physical causes and effects. If we now turn to the life history of the Atlantic, we are met at the threshold with the question of climate, not as a thing fixed and immutable, but as changing from age to age in harmony with geographical mutations, and producing long cosmic summers and winters of alternate warmth and refrigeration. We can scarcely doubt that the close connection of the Atlantic and Arctic oceans is one factor in those remarkable vicissitudes of climate experienced by the former, and in which the Pacific area has also shared in connection with the The ocean is a great equalizer of extremes of temperature. It does this by its great capacity for heat, and by its cooling and heating power when passing from the solid into the liquid and gaseous states, and the reverse. It also acts by its mobility, its currents serving to convey heat to great distances, or to cool the air by the movement of cold icy waters. The land, on the other hand, cools or warms rapidly, and can transmit its influence to a distance only by the winds, and the influence so transmitted is rather in the nature of a disturbing than of an equalizing cause. It follows that any change in the distribution of land and water must affect climate, more especially if it changes the character or course of the ocean currents. Turning to the Atlantic, in this connection we perceive that its present condition is peculiar and exceptional. On the one hand it is widely open to the Arctic Sea and the influence of its cold currents, and on the other it is supplied with a heating apparatus of enormous power to give a special elevation of temperature, more particularly to its eastern coasts. The great equatorial current running across from Africa is on its northern side embayed in the Gulf of Mexico, as in a great I am old enough to remember the sensation caused by the delightful revelations of Edward Forbes respecting the zones of animal life in the sea, and the vast insight which they gave into the significance of the work on minute organisms previously done by Ehrenberg, Lonsdale and Williamson, and into the meaning of fossil remains. A little later the soundings for the Atlantic cable revealed the chalky foraminiferal ooze of the abyssal ocean. Still more recently, the wealth of facts disclosed by the Challenger voyage, which naturalists have scarcely yet had time to digest, have opened up to us new worlds of deep-sea life. The bed of the deep Atlantic is covered, for the most part, by a mud or ooze, largely made up of the dÉbris of foraminifera and other minute organisms mixed with fine clay. In the North Atlantic the Norwegian naturalists call this the Biloculina mud. Farther south, the Challenger naturalists speak of it as Globigerina ooze. In point of fact it contains different species of foraminiferal shells, Globigerina and Orbulina being in some localities dominant, and in others, other species; and these changes are more apparent in the shallower portions of the ocean. On the other hand, there are means for disseminating coarse material over parts of the ocean beds. There are, in the line of the Arctic current, on the American coast, great sand banks, and off the coast of Norway, sand constitutes a considerable part of the bottom material. Soundings and dredgings off Great Britain, and also off the American coast, have shown that fragments of stone referable to Arctic lands are abundantly strewn over the bottom, along certain lines, and the Antarctic continent, otherwise almost unknown, makes its presence felt to the dredge by the abundant masses of crystalline rock drifted far from it to the north. These are not altogether new discoveries. I had inferred, many years ago, from stones taken up by the hooks of fishermen on the banks of Newfoundland, that rocky material from the north is dropped on these banks by the heavy ice which drifts over them every spring, that these are glaciated, and that after they fall to the bottom sand is drifted over them with sufficient velocity to polish the stones, and to erode the shelly coverings of Arctic animals attached to them. A remarkable fact in this connection is that the great depths of the sea are as impassable to the majority of marine animals as the land itself. According to Murray, while twelve of the Challenger's dredgings, taken in depths greater than 2,000 fathoms, gave 92 species, mostly new to science, a similar number of dredgings in shallower water near the land, give no less than 1,000 species. Hence arises another apparent paradox relating to the distribution of organic beings. While at first sight it might seem that the chances of wide distribution are exceptionally great for marine species, this is not so. Except in the case of those which enjoy a period of free locomotion when young, or are floating and pelagic, the deep ocean sets bounds to their migrations. On the other hand, the spores of cryptogamic plants may be carried for vast distances by the wind, and the growth of volcanic islands may effect connections which, though only temporary, may afford opportunity for land animals and plants to pass over. With reference to the transmission of living beings across the Atlantic, we have before us the remarkable fact that from In so far as plants are concerned, it is to be observed that the early forests were largely composed of cryptogamous plants, and the spores of these in modern times have proved capable of transmission from great distances. In considering this, we cannot fail to conclude, that the union of simple cryptogamous fructification with arboreal stems of high complexity, so well illustrated by Dr. Williamson, had a direct relation to the necessity for a rapid and wide distribution of these ancient trees. It seems also certain that some spores, as, for example, those of the Rhizocarps, The same remark applies to northern forms of marine invertebrates, which are much more widely distributed in longitude than those farther south. The late Mr. Gywn Jeffreys, in one of his latest communications on this subject, stated that 54 per cent, of the shallow-water mollusks of New England and Canada are also European, and of the deep-sea forms, 30 out of 35; these last, of course, enjoying greater facilities for migration than those which have to travel slowly along the shallows of the coast in order to cross the ocean and settle themselves on both sides. Many of these animals, like the common mussel and sand clam, are old settlers which came over in the Pleistocene period, or even earlier. Others, like the common periwinkle, seem to have been slowly extending themselves in modern times, perhaps even by the agency of man. The older immigrants may possibly have taken advantage of lines of coast now submerged, or of warm periods, when they could creep round the Arctic shores. Mr. Herbert Carpenter and other naturalists employed on the Challenger collections have made similar statements respecting other marine invertebrates, as, for instance, the Echinoderms, of which the deep-sea crinoids present many common species, and my own collections prove that many of the shallow-water forms are common. Dall and Whiteaves But it is to be remarked that while many plants and marine invertebrates are common to the two sides of the Atlantic, it is different with land animals, and especially vertebrates. I do not know that any palÆozoic insects or land snails or millipedes of Europe and America are specifically identical, and of the numerous species of batrachians of the Carboniferous and reptiles of the Mesozoic, all seem to be distinct on the two sides. The same appears to be the case with the Tertiary mammals, until in the later stages of that great period we find such genera as the horse, the camel, and the elephant appearing on the two sides of the Atlantic; but even then the species seem different, except in the case of a few northern forms. Some of the longer-lived mollusks of the Atlantic furnish suggestions which remarkably illustrate the biological aspect of these questions. Our familiar friend the oyster is one of these. The first-known oysters appear in the Carboniferous in Belgium and in the United States of America. In the Carboniferous and Permian they are few and small, and they do not culminate till the Cretaceous, in which there are no less than ninety-one so-called species in America alone; but some of the largest known species are found in the Eocene. The oyster, though I have collected fossil oysters in the Cretaceous clays of the coulÉes of Western Canada, in the Lias shales of England, in the Eocene and the Cretaceous beds of the Alps, of Egypt, of the Red Sea coast, of Judea, and the heights of Lebanon. Everywhere and in all formations they present forms which are so variable and yet so similar that one might suppose all the so-called species to be mere varieties. Did the oyster originate separately on the two sides of the Atlantic, or did it cross over so promptly that its appearance seems to be identical on the two sides? Are all the oysters of a common ancestry, or did the causes, whatever they were, which introduced the oyster in the Carboniferous act over again in later periods? Who can tell? This is one of the cases where causation and development—the two scientific factors which constitute the basis of what is called evolution—cannot easily be isolated. I would recommend to those biologists who discuss these questions to devote themselves to the oyster. This familiar mollusk has successfully, pursued its course, and has overcome all its enemies, from the flat-toothed selachians of the Carboniferous to the oyster dredges of the present day, has varied almost indefinitely, and yet has continued to be an oyster, unless, indeed, it may at certain portions of its career have temporarily assumed the guise of a GryphÆa or an Exogyra. The history of such an animal deserves to be traced with care, and much curious information respecting it will be found in the report which I have cited in the note. But in these respects the oyster, is merely an example of many forms. Similar considerations apply to all those Pliocene and Pleistocene mollusks which are found in the raised sea The question remains: Has the Atlantic achieved its destiny and finished its course, or are there other changes in store for it in the future? The earth's crust is now thicker and stronger than ever before, and its great ribs of crushed and folded rock are more firm and rigid than in any previous period. The stupendous volcanic phenomena manifested in Mesozoic and early Tertiary times along the borders of the Atlantic have apparently died out. These facts are in so far guarantees of permanence. On the other hand, it is known that movements of elevation, along with local depression, are in progress It is possible, on the other hand, that after the long period of quiescence which has elapsed, there may be a new settlement of the ocean bed, accompanied with foldings of the crust, especially on the western side of the Atlantic, and possibly with renewed volcanic activity on its eastern margin. In either case, a long time relatively to our limited human chronology may intervene before the occurrence of any marked change. On the whole, the experience of the past would lead us to expect movements and eruptive discharges in the Pacific rather than in the Atlantic area. It is therefore not unlikely that the Atlantic may remain undisturbed, unless secondarily and indirectly, until after the Pacific area shall have attained to a greater degree of quiescence than at present. But this subject is one too much involved in uncertainty to warrant us in following it farther. In the meantime the Atlantic is to us a practically permanent ocean, varying only in its tides, its currents, and its winds, which science has already reduced to definite laws, so that we can use if we cannot regulate them. It is ours to take advantage of this precious time of quietude, and to extend the blessings of science and of our Christian civilisation from shore to shore, until there shall be no more sea, not in the sense of that final drying-up of old ocean to which some physicists look forward, but in the higher sense of its ceasing to be the emblem of unrest and disturbance, and the cause of isolation. I must now close this chapter with a short statement of some References:—Presidential Address to the British Association for the Advancement of Science, Birmingham, 1886. "Geology of Nova Scotia, New Brunswick, and Prince Edward Island." Fourth Edition, London, 1891.
|