Quick moves the balanced beam, of giant-birth, Wields his large limbs, and nodding shakes the earth. CANTO I. l. 261. The expansive force of steam was known in some degree to the antients, Hero of Alexandria describes an application of it to produce a rotative motion by the re-action of steam issuing from a sphere mounted upon an axis, through two small tubes bent into tangents, and issuing from the opposite sides of the equatorial diameter of the sphere, the sphere was supplied with steam by a pipe communicating with a pan of boiling water, and entering the sphere at one of its poles. A french writer about the year 1630 describes a method of raising water to the upper part of a house by filling a chamber with steam, and suffering it to condense of itself, but it seems to have been mere theory, as his method was scarcely practicable as he describes it. In 1655 the Marquis of Worcester mentions a method of raising water by fire in his Century of Inventions, but he seems only to have availed himself of the expansive force and not to have known the advantages arising from condensing the steam by an injection of cold water. This latter and most important improvement seems to have been made by Capt. Savery sometime prior to 1698, for in that year his patent for the use of that invention was confirmed by act of parliament. This gentleman appears to have been the first who reduced the machine to practice and exhibited it in an useful form. This method consisted only in expelling the air from a vessel by steam and condensing the steam by an injection of cold water, which making a vacuum, the pressure of the atmosphere forced the water to ascend into the steam-vessel through a pipe of 24 to 26 feet high, and by the admission of dense steam from the boiler, forcing the water in the steam-vessel to ascend to the height desired. This construction was defective because it required very strong vessels to resist the force of the steam, and because an enormous quantity of steam was condensed by coming in contact with the cold water in the steam-vessel. About or soon after that time M. Papin attempted a steam-engine on similar principles but rather more defective in its construction. The next improvement was made very soon afterwards by Messrs. Newcomen and Cawley of Dartmouth, it consisted in employing for the steam-vessel a hollow cylinder, shut at bottom and open at top, furnished with a piston sliding easily up and down in it, and made tight by oakum or hemp, and covered with water. This piston is suspended by chains from one end of a beam, moveable upon an axis in the middle of its length, to the other end of this beam are suspended the pump-rods. The danger of bursting the vessels was avoided in this machine, as however high the water was to be raised it was not necessary to increase the density of the steam but only to enlarge the diameter of the cylinder. Another advantage was, that the cylinder not being made so cold as in Savary's method, much less steam was lost in filling it after each condensation. The machine however still remained imperfect, for the cold water thrown into the cylinder acquired heat from the steam it condensed, and being in a vessel exhausted of air it produced steam itself, which in part resisted the action of the atmosphere on the piston; were this remedied by throwing in more cold water the destruction of steam in the next filling of the cylinder would be proportionally increased. It has therefore in practice been found adviseable not to load these engines with columns of water weighing more than seven pounds for each square inch of the area of the piston. The bulk of water when converted into steam remained unknown until Mr. J. Watt, then of Glasgow, in 1764, determined it to be about 1800 times more rare than water. It soon occurred to Mr. Watt that a perfect engine would be that in which no steam should be condensed in filling the cylinder, and in which the steam should be so perfectly cooled as to produce nearly a perfect vacuum. Mr. Watt having ascertained the degree of heat in which water boiled in vacuo, and under progressive degrees of pressure, and instructed by Dr. Black's discovery of latent heat, having calculated the quantity of cold water necessary to condense certain quantities of steam so far as to produce the exhaustion required, he made a communication from the cylinder to a cold vessel previously exhausted of air and water, into which the steam rushed by its elasticity, and became immediately condensed. He then adapted a cover to the cylinder and admitted steam above the piston to press it down instead of air, and instead of applying water he used oil or grease to fill the pores of the oakum and to lubricate the cylinder. He next applied a pump to extract the injection water, the condensed steam, and the air, from the condensing vessel, every stroke of the engine. To prevent the cooling of the cylinder by the contact of the external air, he surrounded it with a case containing steam, which he again protected by a covering of matters which conduct heat slowly. This construction presented an easy means of regulating the power of the engine, for the steam being the acting power, as the pipe which admits it from the boiler is more or less opened, a greater or smaller quantity can enter during the time of a stroke, and consequently the engine can act with exactly the necessary degree of energy. Mr. Watt gained a patent for his engine in 1768, but the further persecution of his designs were delayed by other avocations till 1775, when in conjunction with Mr. Boulton of Soho near Birmingham, numerous experiments were made on a large scale by their united ingenuity, and great improvements added to the machinery, and an act of parliament obtained for the prolongation of their patent for twenty-five years, they have since that time drained many of the deep mines in Cornwall, which but for the happy union of such genius must immediately have ceased to work. One of these engines works a pump of eighteen inches diameter, and upwards of 100 fathom or 600 feet high, at the rate of ten to twelve strokes of seven feet long each, in a minute, and that with one fifth part of the coals which a common engine would have taken to do the same work. The power of this engine may be easier comprehended by saying that it raised a weight equal to 81000 pounds 80 feet high in a minute, which is equal to the combined action of 200 good horses. In Newcomen's engine this would have required a cylinder of the enormous diameter of 120 inches or ten feet, but as in this engine of Mr. Watt and Mr. Boulton the steam acts, and a vacuum is made, alternately above and below the piston, the power exerted is double to what the same cylinder would otherways produce, and is further augmented by an inequality in the length of the two ends of the lever. These gentlemen have also by other contrivances applied their engines to the turning of mills for almost every purpose, of which that great pile of machinery the Albion Mill is a well known instance. Forges, slitting mills, and other great works are erected where nature has furnished no running water, and future times may boast that this grand and useful engine was invented and perfected in our own country. Since the above article went to the press the Albion Mill is no more; it is supposed to have been set on fire by interested or malicious incendaries, and is burnt to the ground. Whence London has lost the credit and the advantage of possessing the most powerful machine in the world! |