Or sphere on sphere in widening waves expand, And glad with genial warmth the incumbent land. CANTO I. l. 143. A certain quantity of heat seems to be combined with all bodies besides the sensible quantity which gravitates like the electric fluid amongst them. This combined heat or latent heat of Dr. Black, when set at liberty by fermentation, inflammation, crystallization, freezing, or other chemical attractions producing new combinations, passes as a fluid element into the surrounding bodies. And by thawing, diffusion of neutral salts in water, melting, and other chemical solutions, a portion of heat is attracted from the bodies in vicinity and enters into or becomes combined with the new solutions. Hence a combination of metals with acids, of essential oils and acids, of alcohol and water, of acids and water, give out heat; whilst a solution of snow in water or in acids, and of neutral salts in water, attract heat from the surrounding bodies. So the acid of nitre mixed with oil of cloves unites with it and produces a most violent flame; the same acid of nitre poured on snow instantly dissolves it and produces the greatest degree of cold yet known, by which at Petersburgh quicksilver was first frozen in 1760. Water may be cooled below 32° without being frozen, if it be placed on a solid floor and secured from agitation, but when thus cooled below the freezing point the least agitation turns part of it suddenly into ice, and when this sudden freezing takes place a thermometer placed in it instantly rises as some heat is given out in the act of congelation, and the ice is thus left with the same sensible degree of cold as the water had possessed before it was agitated, but is nevertheless now combined with less latent heat. A cubic inch of water thus cooled down to 32° mixed with an equal quantity of boiling water at 212° will cool it to the middle number between these two, or to 122. But a cubic inch of ice whose sensible cold also is but 32, mixed with an equal quantity of boiling water, will cool it six times as much as the cubic inch of cold water above-mentioned, as the ice not only gains its share of the sensible or gravitating heat of the boiling water but attracts to itself also and combines with the quantity of latent heat which it had lost at the time of its congelation. So boiling water will acquire but 212° of heat under the common pressure of the atmosphere, but the steam raised from it by its expansion or by its solution in the atmosphere combines with and carries away a prodigious quantity of heat which it again parts with on its condensation; as is seen in common distillation where the large quantity of water in the worm-tub is so soon heated. Hence the evaporation of ether on a thermometer soon sinks the mercury below freezing, and hence a warmth of the air in winter frequently succeeds a shower. When the matter of heat or calorique is set at liberty from its combinations, as by inflammation, it passes into the surrounding bodies, which possess different capacities of acquiring their share of the loose or sensible heat; thus a pint measure of cold water at 48° mixed with a pint of boiling water at 212° will cool it to the degree between these two numbers, or to 154°, but it requires two pint measures of quicksilver at 48° of heat to cool one pint of water as above. These and other curious experiments are adduced by Dr. Black to evince the existance of combined or latent heat in bodies, as has been explained by some of his pupils, and well illustrated by Dr. Crawford. The world has long been in expectation of an account of his discoveries on this subject by the celebrated author himself. As this doctrine of elementary heat in its fluid and combined state is not yet universally received, I shall here add two arguments in support of it drawn from different sources, viz. from the heat given out or absorbed by the mechanical condensation or expansion of the air, and perhaps of other bodies, and from the analogy of the various phenomena of heat with those of electricity. I. If a thermometer be placed in the receiver of an air-pump, and the air hastily exhausted, the thermometer will sink some degrees, and the glass become steamy; the same occurs in hastily admitting a part of the air again. This I suppose to be produced by the expansion of part of the air, both during the exhaustion and re-admission of it; and that the air so expanded becomes capable of attracting from the bodies in its vicinity a part of their heat, hence the vapours contained in it and the glass receiver are for a time colder and the steam is precipitated. That the air thus parts with its moisture from the cold occasioned by its rarefaction and not simply by the rarefaction itself is evident, because in a minute or two the same rarefied air will again take up the dew deposited on the receiver; and because water will evaporate sooner in rare than in dense air. There is a curious phenomenon similar to this observed in the fountain of Hiero constructed on a large scale at the Chemnicensian mines in Hungary. In this machine the air in a large vessel is compressed by a column of water 260 feet high, a stop-cock is then opened, and as the air issues out with great vehemence, and thus becomes immediately greatly expanded, so much cold is produced that the moisture from this stream of air is precipitated in the form of snow, and ice is formed adhering to the nosel of the cock. This remarkable circumstance is described at large with a plate of the machine in Philos. Trans. Vol. LII. for 1761. The following experiment is related by Dr. Darwin in the Philos. Trans. Vol. LXXVIII. Having charged an air-gun as forcibly as he well could the air-cell and syringe became exceedingly hot, much more so than could be ascribed to the friction in working it; it was then left about half an hour to cool down to the temperature of the air, and a thermometer having been previously fixed against a wall, the air was discharged in a continual stream on its bulb, and it sunk many degrees. From these three experiments of the steam in the exhausted receiver being deposited and re-absorbed, when a part of the air is exhausted or re-admitted, and the snow produced by the fountain of Hiero, and the extraordinary heat given out in charging, and the cold produced in discharging an air-gun, there is reason to conclude that when air is mechanically compressed the elementary fluid heat is pressed out of it, and that when it is mechanically expanded the same fluid heat is re-absorbed from the common mass. It is probable all other bodies as well as air attract heat from their neighbours when they are mechanically expanded, and give it out when they are mechanically condensed. Thus when a vibration of the particles of hard bodies is excited by friction or by percussion, these particles mutually recede from and approach each other reciprocally; at the times of their recession from each other, the body becomes enlarged in bulk, and is then in a condition to attract heat from those in its vicinity with great and sudden power; at the times of their approach to each other this heat is again given out, but the bodies in contact having in the mean while received the heat they had thus lost, from other bodies behind them, do not so suddenly or so forcibly re-absorb the heat again from the body in vibration; hence it remains on its surface like the electric fluid on a rubbed glass globe, and for the same reason, because there is no good conductor to take it up again. Hence at every vibration more and more heat is acquired and stands loose upon the surface; as in filing metals or rubbing glass tubes; and thus a smith with a few strokes on a nail on his anvil can make it hot enough to light a brimstone-match; and hence in striking flint and steel together heat enough is produced to vitrify the parts thus strucken off, the quantity of which heat is again probably increased by the new chemical combination. II. The analogy between the phenomena of the electric fluid and of heat furnishes another argument in support of the existence of heat as a gravitating fluid. 1. They are both accumulated by friction on the excited body. 2. They are propagated easily or with difficalty along the same classes of bodies; with ease by metals, with less ease by water; and with difficulty by resins, bees-wax, silk, air, and glass. Thus glass canes or canes of sealing-wax may be melted by a blow-pipe or a candle within a quarter of an inch of the fingers which hold them, without any inconvenient heat, while a pin or other metallic substance applyed to the flame of a candle so readily conducts the heat as immediately to burn the fingers. Hence clothes of silk keep the body warmer than clothes of linen of equal thickness, by confining the heat upon the body. And hence plains are so much warmer than the summits of mountains by the greater density of the air confining the acquired heat upon them. 3. They both give out light in their passage through air, perhaps not in their passage through a vacuum. 4. They both of them fuse or vitrify metals. 5. Bodies after being electrized if they are mechanically extended will receive a greater quantity of electricity, as in Dr. Franklin's experiment of the chain in the tankard; the same seems true in respect to heat as explained above. 6. Both heat and electricity contribute to suspend steam in the atmosphere by producing or increasing the repulsion of its particles. 7. They both gravitate, when they have been accumulated, till they find their equilibrium. If we add to the above the many chemical experiments which receive an easy and elegant explanation from the supposed matter of heat, as employed in the works of Bergman and Lavoisier, I think we may reasonably allow of its existence as an element, occasionally combined with other bodies, and occasionally existing as a fluid, like the electric fluid gravitating amongst them, and that hence it may be propagated from the central fires of the earth to the whole mass, and contribute to preserve the mean heat of the earth, which in this country is about 48 degrees but variable from the greater or less effect of the sun's heat in different climates, so well explained in Mr. Kirwan's Treatise on the Temperature of different Latitudes. 1787, Elmsly. London. |