The term “pyrometer”—formerly applied to instruments designed to measure the expansion of solids—is now used to describe any device for determining temperatures beyond the upper limit of a mercury thermometer. This limit, in the common form, is the boiling point of mercury: 357° C. or 672° F. By leaving the bore of the tube full of nitrogen or carbon dioxide prior to sealing, the pressure exerted by the enclosed gas when the mercury expands prevents boiling; and with a strong bulb of hard glass the readings may be extended to 550° C. or 1020° F. Above this temperature the hardest glass is distorted by the high internal pressure, but, by substituting silica for glass, readings as high as 700° C. or 1290° F. may be secured. Whilst such thermometers are useful in laboratory processes they are too fragile for workshop use; and if made of the length necessary in many cases in which the temperature of furnaces is sought, the cost would be as great as that of more durable and convenient appliances. No other instrument, however, The origin and development of the science of pyrometry furnish a notable example of the value of the application of scientific principles to industry. Sir Isaac Newton was the first to attempt to measure the temperature of a fire by observing the time taken to cool by a bar of iron withdrawn from the fire; but, although Newton’s results were published in 1701, it was not until 1782 that a practical instrument for measuring high temperatures was designed. In that year Josiah Wedgwood, the famous potter, introduced an instrument based on the progressive contraction undergone by clay when baked at increasing temperatures, which he used in controlling his furnaces, finding it much more reliable than the eye of the most experienced workman. This apparatus (described on page 211) remained without a serious rival for forty years, and its use has not yet been entirely abandoned. The next step in advance was the introduction of the expansion pyrometer by John Daniell in 1822. The elongation of a platinum rod, encased in plumbago, was made to operate a magnifying device, which moved a pointer over a scale divided so as to read temperatures The year 1822 was also marked by Seebeck’s discovery of thermo-electricity. The generation of a current of electricity by a heated junction of two metals, increasing with the temperature, appeared to afford a simple and satisfactory basis for a pyrometer, and Becquerel constructed an instrument on these lines in 1826. Pouillet and others also endeavoured to measure temperatures by the thermo-electric method, but partly owing to the use of unsuitable junctions, and partly to the lack of reliable galvanometers, these workers failed to obtain concordant results. The method was for all practical purposes abandoned until 1886, when its revival in reliable form led to the enormous extension of the use of pyrometers witnessed during recent years. In 1828 Prinsep initiated the use of gas pyrometers, and enclosed the gas in a gold bulb. Later workers used porcelain bulbs, on account of greater infusibility, but modern research has shown that porcelain is quite unsuitable for accurate measurements, being porous to certain gases at high temperatures, even when glazed. Gas pyrometers are of little use industrially, but are now used as standards for the calibration of other pyrometers, the bulb being made of an alloy of platinum and rhodium. Calorimetric pyrometers, based on Regnault’s “method of mixtures,” were first made for industrial purposes by BystrÖm, who patented an instrument of this type in 1862. This method has been widely applied, and a simplified form of “water” pyrometer, made by Siemens, is at present in daily use for industrial purposes. It is not capable, however, of giving results of the degree of accuracy demanded by many modern processes. The resistance pyrometer was first described by Sir W. Siemens in 1871, and was made by him for everyday use in furnaces. Many difficulties were encountered before this method was placed on a satisfactory footing, but continuous investigation by the firm of Siemens & Co., and also the valuable researches of Callendar and Griffiths, have resulted in the production of reliable resistance pyrometers, which are extensively used at the present time. In 1872 Sir William Barrett made a discovery which indirectly led to the present development of the science of pyrometry. Barrett observed that iron and steel, on cooling down from a white heat, suddenly became hotter at a definite point, owing to an internal molecular change; and gave the name of “recalescence” to the phenomenon. Workers in steel subsequently discovered that this property was intimately connected with the hardening of the metal; thus Hadfield noticed that a sample of steel containing 1·16 per cent. of carbon, when quenched just below the change-point was not hardened, but when treated similarly at 15° C. The researches of Le Chatelier, published in 1886, marked a great advance in the progress of pyrometry. He discovered that a thermo-electric pyrometer, satisfactory in all respects, could be made by using a junction of pure platinum with a rhodioplatinum alloy, containing 10 per cent. of rhodium; a d’Arsonval moving-coil galvanometer being used as indicator. This type of galvanometer, which permits of an evenly-divided scale, is now universally employed for this purpose, and has made thermo-electric pyrometers not only practicable, but more convenient for general purposes than any other type. Continuous progress has since been made in connection with this method, which is now more extensively used than any other. Attempts to deduce temperature from the luminosity of the heated body were first made by Ed. Becquerel in 1863, but the method was not successfully developed until 1892, when Le Chatelier introduced his optical pyrometer. This instrument, being entirely external to the hot source, enabled readings to be taken at temperatures far beyond the The invention of the total-radiation pyrometer by FÉry in 1902 added another valuable instrument to those already available. Based on the fourth-power radiation law, discovered by Stefan and confirmed by the mathematical investigations of Boltzmann, this pyrometer is of great service in industrial operations at very high temperatures, being entirely external, and capable of giving permanent records. Modifications have been introduced by Foster and others, and the method is now widely applied. Recorders, for obtaining permanent evidence of the temperature of a furnace at any time, were first made for thermo-electric pyrometers by Holden and Roberts-Austen, and for resistance pyrometers by Callendar. Numerous forms are now in use, and the value of the records obtained has been abundantly proved. For scientific purposes, all pyrometers are made to indicate Centigrade degrees, 100 of which represent the temperature interval between the melting-point of ice and the boiling point of water at 760 mm. pressure, the ice-point being marked 0° and the steam-point 100°. In industrial life, however, the Fahrenheit scale is often used in English-speaking countries, the ice-point in this case being numbered 32° and the steam-point 212°; the interval being 180°. A single degree on the Centigrade scale is therefore 1·8 times as large as a Fahrenheit degree, but in finding the numbers on each scale which designate a given temperature, the difference in the zero position on the two scales must be taken into account. When it is desired to translate readings on one scale into the corresponding numbers on the other, the following formula may be used:—
Thus by substituting in the above expression, 660° C. will be found to correspond to 1220° F. and 1530° F. to 832° C. It is greatly to be regretted that all pyrometers are not made to indicate in Centigrade degrees, as confusion often arises through the use of the two scales. An agreement on this point between instrument makers would overcome the difficulty at once, as the Centigrade scale is now so widely used that few purchasers would insist on Fahrenheit markings. It may be pointed out here that no single pyrometer is suited to every purpose, and the choice of an instrument must be decided by the nature of the work in hand. A pyrometer requiring skilled attention should not be entrusted to an untrained man; and it may be taken for granted that to obtain the most useful results intelligent supervision is necessary. In the ensuing pages the advantages and drawbacks of each type will be considered; but in all cases it is desirable, before making any large outlay on pyrometers, to obtain a competent and impartial opinion as to the kind best suited to the processes to be controlled. Catalogue descriptions are not always trustworthy, and instances are not wanting in which a large sum has been expended on instruments which, owing to wrong choice, have proved practically useless. An instrument suited to laboratory measurements is often a failure in the workshop, and all possibilities of this kind should be considered before deciding upon the type of pyrometer to be used. |