POISONS AND THEIR ANTIDOTES

Previous

1028. Poisoning, either from accident or design, is of such frequency and danger, that it is of the greatest importance that every person should know the proper mode of procedure in such cases, in order to render immediate assistance when within his power.

1029. Poisons are divided into two classes—mineral (which include the acids) and vegetable.

1030. The first thing, usually, to be done, when it is ascertained that a poison has been swallowed, is to evacuate the stomach, unless vomiting takes place spontaneously. Emetics of the sulphate of zinc, (white vitriol,) or ipecacuanha, (ipecac,) or ground mustard seed, should be given.

1031. When vomiting has commenced, it should be aided by large and frequent draughts of the following drinks: flaxseed tea, gum-water, slippery-elm tea, barley water, sugar and water, or any thing of a mucilaginous or diluent character.

MINERAL POISONS.

1032. Ammonia.—The water of ammonia, if taken in an over-dose, and in an undiluted state, acts as a violent corrosive poison.

1033. The best and most effectual antidote is vinegar. It should be administered in water, without delay. It neutralizes the ammonia, and renders it inactive. Emetics should not be given.

1034. Antimony.—The wine of antimony and tartar emetic, if taken in over-doses, cause distressing vomiting. In addition to the diluent, mucilaginous drinks, give a tea-spoonful of the sirup of poppies, paregoric, or 440 twenty drops of laudanum, every twenty minutes, until five or six doses have been taken, or the vomiting ceases.

1025. Is it useful to know the antidotes or remedies for poison? 1029. Into how many classes are poisons divided? 1030. What is the first thing to be done when it is ascertained that poison has been swallowed? 1031. What should be taken after the vomiting has commenced? 1032. What effect has an over-dose of ammonia? 1033. The antidote? Should an emetic be given for this poison? 1034. What effect has an over-dose of the wine of antimony or tartar emetic?

1035. The antidotes are nutgalls and oak bark, which may be administered in infusion, or by steeping in water.

1036. Arsenic.—When this has been taken, administer an emetic of ipecac, speedily, in mucilaginous teas, and use the stomach-pump as soon as possible.

1037. The antidote is the hydrated peroxide of iron. It should be kept constantly on hand at the apothecaries’ shops. It may be given in any quantity, without injurious results.

1038. Copper.—The most common cause of poisoning from this metal, is through the careless use of cooking utensils made of it, on which the acetate of copper (verdigris) has been allowed to form. When this has been taken, immediately induce vomiting, give mucilaginous drinks, or the white of eggs, diffused in water.

1039. The antidote is the carbonate of soda, which should be administered without delay.

1040. Lead.—The acetate (sugar) of lead is the preparation of this metal, which is liable to be taken accidentally, in poisonous doses. Induce immediate vomiting, by emetics of ground mustard seed, sulphate of zinc, and diluent drinks.

1041. The antidote is diluted sulphuric acid. When this acid is not to be obtained, either the sulphate of magnesia, (epsom salts,) or the sulphate of soda, (glauber’s salts,) will answer every purpose.

1042. Mercury.—The preparation of this mineral by which poisoning is commonly produced, is corrosive sublimate. The mode of treatment to be pursued when this poison has been swallowed, is as follows: The whites of a dozen eggs should be beaten in two quarts of cold water, and a tumbler-full given every two minutes, to induce vomiting. When the whites of eggs are not to be obtained, soap and water should be mixed with wheat flour, and given in copious draughts, and the stomach-pump introduced as soon as possible. Emetics or irritating substances should not be given.

1043. NitreSaltpetre.—This, in over-doses, produces violent poisonous symptoms. Vomiting should be immediately induced by large doses 441 of mucilaginous, diluent drinks; but emetics which irritate the stomach should not be given.

1035. What is the antidote? 1036. What should immediately be done when arsenic is swallowed? 1037. What is the antidote? Can any quantity of this preparation of iron be given without injurious results? 1038. What should be given when verdigris has been taken into the stomach? 1039. What is the antidote? 1040. What should immediately be given when sugar of lead is taken? 1041. What is the antidote? 1042. Give the treatment when corrosive sublimate has been swallowed. 1043. What effect has an over-dose of saltpetre? What treatment should be adopted?

1044. Zinc.—Poisoning is sometimes caused by the sulphate of zinc, (white vitriol.) When this takes place, vomiting should be induced, and aided by large draughts of mucilaginous and diluent drinks. Use the stomach-pump as soon as possible.

1045. The antidote is the carbonate, or super-carbonate of soda.

1046. Nitric, (aqua fortis,) MURIATIC, (MARINE ACID,) OR SULPHURIC (OIL OF VITRIOL,) ACIDS, may be taken by accident, and produce poisonous effects.

1047. The antidote is calcined magnesia, which should be freely administered, to neutralize the acid and induce vomiting. When magnesia cannot be obtained, the carbonate of potash (salÆratus) may be given. Chalk, powdered and given in solution, or strong soap suds, will answer a good purpose, when the other articles are not at hand. It is of very great importance that something be given speedily, to neutralize the acid. One of the substances before mentioned should be taken freely, in diluent and mucilaginous drinks, as gum-water, milk, flaxseed, or slippery-elm tea. Emetics ought to be avoided.

1048. Oxalic Acid.—This acid resembles the sulphate of magnesia, (epsom salts,) which renders it liable to be taken, by mistake, in poisonous doses. Many accidents have occurred from this circumstance. They can easily be distinguished by tasting a small quantity. Epsom salts, when applied to the tongue, have a very bitter taste, while oxalic acid is intensely sour.

1049. The antidote is magnesia, between which and the acid a chemical action takes place, producing the oxalate of magnesia, which is inert. When magnesia is not at hand, chalk, lime, or carbonate of potash, (salÆratus,) will answer as a substitute. Give the antidote in some of the mucilaginous drinks before mentioned. No time should be lost in introducing the stomach-pump as soon as a surgeon can be obtained.

1050. Ley.—The ley obtained by the leaching of ashes may be taken by a child accidentally. The antidote is vinegar, or oil of any kind. The vinegar neutralizes the alkali by uniting with it, forming the acetate of potash. The oil unites with the alkali, and forms soap, which is less caustic than the ley. Give, at the same time, large draughts of mucilaginous drinks, as flaxseed tea, &c.

1044. What is the antidote for white vitriol? 1047. What is the antidote for aqua fortis and oil of vitriol? Should emetics be avoided? 1048. How can oxalic acid be distinguished from epsom salts? 1049. What is the antidote for an over-dose of oxalic acid? When magnesia cannot be obtained, what will answer as a substitute? 1050. What is the antidote when ley is swallowed?

442

VEGETABLE POISONS.

1051. The vegetable poisons are quite as numerous, and many of them equally as virulent, as any in the mineral kingdom. We shall describe the most common, and which, therefore, are most liable to be taken.

1052. Opium.—This is the article most frequently resorted to by those wishing to commit suicide, and, being used as a common medicine, is easily obtained. From this cause, also, mistakes are very liable to be made, and accidents result from it. Two of its preparations, laudanum and paregoric, are frequently mistaken for each other; the former being given when the latter is intended.

1053. Morphia, in solution, or morphine, as it is more commonly called by the public, is a preparation of the drug under consideration, with which many cases of poisoning are produced. It is the active narcotic principle of the opium; and one grain is equal to six of this drug in its usual form.

1054. When an over-dose of opium, or any of its preparations, has been swallowed, the stomach should be evacuated as speedily as possible. To effect this, a teaspoonful of ground mustard seed, or as much tartar emetic as can be held on a five cent piece, or as much ipecacuanha as can be held on a twenty-five cent piece, should be mixed in a tumbler of warm water, and one half given at once, and the remainder in twenty minutes, if the first has not, in the mean time, operated. In the interval, copious draughts of warm water, or warm sugar and water, should be drank.

1055. The use of the stomach-pump, in these cases, is of the greatest importance, and should be resorted to without delay. After most of the poison has been evacuated from the stomach, a strong infusion of coffee ought to be given; or some one of the vegetable acids, such as vinegar, or lemon-juice, should be administered.

1056. The patient should be kept in motion, and salutary effects will often be produced by dashing a bucket of cold water on the head. Artificial respiration ought to be established, and kept up for some time. If the extremities are cold, apply warmth and friction to them. After the poison has been evacuated from the stomach, stimulants, as warm wine and water, or warm brandy and water, should be given, to keep up and sustain vital action.

1057. StramoniumThorn-Apple.—This is one of the most active narcotic poisons, and, when taken in over-doses, has, in numerous instances, caused death.

1051. Are vegetable poisons as numerous and as virulent in their effects as mineral? 1052. What is said of opium and its preparations? 1054, 1055, 1056. What treatment should be adopted when an over-dose of opium or any of its preparations is taken? 1057. What is said of stramonium?

443

1058. HyosciamusHenbane.—This article, which is used as a medicine, if taken in improper doses, acts as a virulent irritating and narcotic poison.

1059. The treatment for the two above-mentioned articles is similar to that of poisoning from over-doses of opium.

1060. ConiumHemlock.—Hemlock, improperly called, by many, cicuta, when taken in an over-dose, acts as a narcotic poison. It was by this narcotic that the Athenians used to destroy the lives of individuals condemned to death by their laws. Socrates is said to have been put to death by this poison. When swallowed in over-doses, the treatment is similar to that of opium, stramonium, and henbane, when over-doses are taken.

1061. BelladonnaDeadly Nightshade.Camphor. AconiteMonkshood, Wolfsbane. BryoniaBryony. DigitalisFoxglove. DulcamaraBittersweet. Gamboge. LobeliaIndian Tobacco. SanguinariaBloodroot. Oil of Savin. SpigeliaPinkroot. StrychnineNux vomica. Tobacco.—All of these, when taken in over-doses, are poisons of greater or less activity. The treatment of poisoning, by the use of any of these articles, is similar to that pursued in over-doses of opium. (See Opium, page 442.)

1062. In all cases of poisoning, call a physician as soon as possible.

1058. Of henbane? 1059. What should be the treatment when an over-dose of stramonium or henbane is taken? 1060. What name is sometimes improperly given to conium, or hemlock? How was this narcotic poison used by the Athenians? How are the effects of an over-dose counteracted? 1061. What is the treatment when an over-dose of deadly nightshade, monkshood, foxglove, bittersweet, gamboge, lobelia, bloodroot, tobacco, &c., is taken? 1062. Should a physician be called in all cases when poison is swallowed? 444

A.

The essential parts of every secretory apparatus are a simple membrane, apparently textureless, named the primary, or basement membrane, certain cells and blood-vessels. The serous and mucous membrane are examples.

B.

The division and description of the different membranes and tissues are not well defined and settled by anatomical writers. This is not a material defect, as a clear description of the different parts of the system can be given by adopting the arrangement of almost any writer.

C.

Fat is one of the non-nitrogenous substances. It forms the essential part of the adipose tissue. Chemical analysis shows that all fatty substances are compounds of carbon, hydrogen, and oxygen. They are lighter than water, generally fluid at the natural temperature of the body, and burn with a bright flame, forming water and carbonic acid.

Caseine is abundantly found in milk. When dried, it constitutes cheese. Alcohol, acids, and the stomach of any of the mammalia coagulate it; and it is also soluble in water. It is found in the blood, bile, saliva, and the lens of the eye.

Chondrine is a variety of gelatin. It is obtained from cartilage. It is soluble in warm water, but solidifies on cooling.

Lactic acid is common to all the solids and fluids of the system. It is found united with potash, soda, lime, or magnesia.

D.

The word duodenum is derived from the Latin, signifying “twelve,” since the intestine, of which this is the name, is usually about twelve fingers’ breadth in length. The jejunum is also from the Latin jejunum, empty, since it is usually found in that condition after death, as the food seems to pass rapidly through this part of the intestine. The term ileum is from the Greek, signifying “to twist,” since it always appears in a contorted condition. The name cÆcum is derived from the fact of its being a blind or short sack, perforated by the extremity of the ileum. The name of the next division of the intestine—colon—is from the Greek, “to prohibit,” as the contents of the alimentary canal pass slowly through this portion. The rectum is named from the straight direction that it assumes in the latter part of its course.

445

E.

The food is forced through the alimentary canal by contractions of its muscular coat, produced by the nervous filaments of the sympathetic system, not being at all dependent on the cerebro-spinal centre. This is called the peristaltic, or vermicular motion. The great length of intestine in all animals, and especially in the herbivorous ones, is owing to the necessity of exposing the food to a large number of the lacteals, that the nourishment may all be taken from it.

F.

The different processes through which the food passes before assimilation are of considerable interest. The mastication and mixture of the saliva with the food are purely of a mechanical nature. When any solid or fluid substance is placed upon the tongue, or in contact with the inner surface of the cheeks, by an involuntary act, the salivary glands are stimulated to activity, and commence pouring the saliva into the mouth through the salivary ducts. As soon as mastication commences, the contraction of the masseter and other muscles employed in mastication stimulates the salivary glands to increased action, and a still greater quantity of saliva is secreted and forced upon the food, which is constantly being ground to a finer condition, until it is sufficiently reduced for deglutition.

Whether the salivary fluid acts any other part than simply that of a demulcent to assist the gastric juice in still further dissolving the food, is yet a matter of some doubt, although it is found that no other liquid will equally well subserve the process of digestion and promote health.

After the food is in the condition ready to be swallowed, by an apparently involuntary motion, it is placed upon the back of the tongue, which carries it backwards to the top of the pharynx, where the constrictions of the pharynx, aided by the muscles of the tongue and floor of the mouth, with a sudden and violent movement thrust it beyond the epiglottis, in order to allow the least necessary time to the closure of the glottis, after which, by the compression of the oesophagus, it is forced into the stomach.

Here it is that the true business of digestion commences. For as soon as any substance except water enters the stomach, this organ, with involuntary movements, that seem almost like instinct, commences the secretion of the gastric juice, and by long-continued contractions of its muscular coat, succeeds in effecting a most perfect mixture of the food with this juice, by which the contents of the stomach are reduced to the softest pulp.

The gastric juice, in its pure state, is a colorless, transparent fluid; “inodorous, a little saltish, and perceptibly acid. It possesses the property of coagulating albumen, and separating the whey of milk from its curd, and afterwards completely dissolving the curd. Its taste, when applied to the 446 tongue, is similar to that of mucilaginous water, slightly acidulated with muriatic acid.” The organs of its secretion are an immense number of tubes or glands, of a diameter varying from one five hundredth to one three hundredth of an inch, situated in the mucous coat of the stomach, and receiving their blood from the gastric arteries. A chemical analysis shows it to consist of water, mucilage, and the several free acids—muriatic, acetic, lactic, and butyric, together with a peculiar organic matter called pepsin, which acts after the manner of ferments between the temperature of 50° and 104° F.

The true process of digestion is probably owing to the action of pepsin and the acids, especially if the presence of the chloro-hydric or muriatic be admitted; since we know, by experiments out of the body, that chlorine, one of its elements, is a powerful solvent of all organic substances.

The antiseptic properties of the gastric juice, as discovered by experiments made on Alexis St. Martin, doubtless have much influence on digestion, although their true uses are probably not yet known.

As soon as the food is reduced to a state of fluidity, the pyloric orifice of the stomach is unclosed, and it is thrust onwards through the alimentary canal, receiving in the duodenum the secretions of the liver and pancreas, after which it yields to the lacteals its nutrient portion, and the residuum is expelled from the body.

There have been many hypotheses in regard to the nature of the digestive process. Some have supposed that digestion is a mere mechanical process, produced by the motion of the walls of the stomach; while others, in later times, have considered it as under the influence of a spirit separate from the individual, who took up his residence in the stomach and regulated the whole affair; while others still would make it out to be a chemical operation, and thus constitute the stomach a sort of laboratory. But to all these ridiculous hypotheses Sir John Hunter has applied the following playful language: “Some will have it that the stomach is a mill; others that it is a fermenting vat; and others that it is a stewpan; but in my view of the matter, it is neither a mill, a fermenting vat, nor a stewpan, but a stomach, a stomach!”

At the present day this process is regarded as a complex, and not a simple operation. It seems to be a process in which the mechanical, chemical, and vital agencies must all act in harmony and order; for if one of these be withdrawn, the function cannot be sustained for any considerable length of time; and of the chemical and mechanical parts of the process, since the former is much more important, and, as a matter of course, the vital powers are indispensable, therefore digestion may be considered as a chemical operation, directly dependent on the laws of vitality, or of life; since the proper consistency of the food depends, in a great measure, upon the character of the solvents, while the secretion of these fluids, their proper amount, 447 together with the peculiar instinct—as it almost seems to be—necessary to direct the stomach in its many functions, are exclusively and entirely dependent on the laws and conditions of life.

G.

As food is necessary to supply the waste and promote the growth of the body, it follows that that will be the best adapted to the system which contains the same chemical elements of which the body is composed; viz., oxygen, hydrogen, carbon, and nitrogen. These elements are found in greater or less quantity in all animal food, and in many vegetable products. Hence, that article of food which contains all these elements in a proper proportion will tend much more to the growth and strength of the body than those kinds which are deficient in one or more of them. Much experience on this point, and scientific research, seem to show that a reasonable amount of animal food in health tends to give greater strength of muscle, and a more general sense of fulness, than in ordinary cases a vegetable diet is able to do, owing to the presence of nitrogen in animal tissues. Yet there are examples of the healthiest and strongest men, who live years without a morsel of animal food; and the fact can only be accounted for, by supposing that the system has the power to make the most economical use of the little nitrogen offered to it in the food; or else that it has by some means the power to abstract it from the atmosphere, and transform it to the living animal substance.

H.

The proximate principles, which are the most important in nourishing the body, are albumen and fibrin. These constitute the greater part of all the softer animal tissues, and are also found in certain classes of vegetables, such as peas, beans, lentils, and many seeds. Hence, in many cases, a vegetable diet, especially if embracing any of those articles, would be sufficient to sustain life, even if no animal food should be eaten. But no animal can exist for a long time if permitted only to eat substances destitute of nitrogen, as in the case of a dog fed entirely on sugar, which lived but thirty days. And owing to this fact, Baron Liebig proposes to call substances used for food, containing nitrogen, “elements of nutrition,” and those containing an excess of carbon, “elements of respiration;” since, according to his view, the food is necessary to support the growth of the body by replacing the effete and worn-out particles with new matter, and also to keep up the supply of fuel, in order to promote a sufficient degree of heat in the system. Accordingly, under the first division would be included all lean meats and vegetables, such as peas, &c.; while the fat of animals, vegetable oils, sugars, tubers, (as the potato,) and all other substances containing starch, would be included under the latter division.

This definition of exhalants is from the theory of Haller and others. It is now believed that the fluids exude through the thin coats of the blood vessels. This process is called exosmose, and is the exhalation of old physiologists.

J.

It is a well-established fact, in animal and vegetable physiology, that membranes possess the property of allowing fluids and gases to pass through them in either direction, and also to permit two fluids to pass in opposite directions at the same time. This property is designated endosmose when a fluid passes from without a body inward; and exosmose when the reverse takes place. The first is called imbibition. One of the most striking instances of this, in the human system, is shown in the lungs, where carbonic acid and water pass out through the mucous membrane of the bronchial tubes and air-cells; and the oxygen of the air enters the blood through the same membrane. By this process of imbibition, the oxygenation of the blood is much more readily and faithfully accomplished; inasmuch, as by the immense number of bronchial tubes and air-cells a larger quantity of blood is exposed to a greater portion of air, than if the blood were directly laid open to the atmosphere in a mass, or the air were immediately transmitted through it.

Since the function of respiration is to free the system of superfluous carbon and hydrogen, by union with the oxygen of the air, it follows that the greater the amount of the products to be expelled, the larger the quantity of oxygen will be required to effect this purpose, as we find to be the case with those who consume large quantities of food.

The quantity of oxygen daily consumed through the lungs by an adult is about 32.5 oz., and the carbon in the food 13.9 oz. But in order to convert this whole amount of carbon into carbonic acid, which passes off through the lungs and skin, 37 oz. of oxygen are required; the remaining 4.5 oz. being absorbed by the skin. If the supply of food remain the same, while the amount of oxygen in the inspired air is diminished, the superfluous carbon will induce disease in the system, as is the case of those persons who are limited in their supply of air of a proper quality or quantity, and, consequently, have less appetite for food than those who are abundantly supplied with air of the proper standard of health; and in children, who proportionally consume more food than adults, and who are more active, thereby causing a more rapid circulation of blood, and, consequently, the removal of more superfluous particles of matter.

In children we notice the need of air, by their disposition to be much in the open air, and often inspiring more deeply than is common in older persons. 449 Also, if the carbon of the food does not have a requisite supply of oxygen from the air, or other sources, the body becomes emaciated, although nourishing food may be used. And on the other hand, if there be a diminished supply of food, but an abundance of atmospheric air, leanness and emaciation are sure to follow; owing to the fact that if the oxygen has no waste carbon from the body to unite with, it combines with the fat, and some other soft portions of the body, which the Author of nature seems to have provided for this very purpose; as is seen in the case of hibernating animals, who enter their places of winter abode sleek and fat, but crawl out in the spring not merely deprived of their fatty matter, but also with great diminution of all the softer parts, which have given up their share of carbon to supply animal heat. One important cause of emaciation in febrile diseases is the greater rapidity of the pulse and respiration, which consume more carbon than is afforded by the scanty supply of food that is taken, although profuse perspiration, which almost always occurs in some stages of fevers, greatly diminishes the full state of the body.

K.

The theory of Baron Liebig concerning the change which the blood experiences in color, in its passage through the lungs, meets with the approbation of many physiologists, although there are some important difficulties in the way of fully receiving it. A chemical analysis of the blood shows it to be composed of albumen and fibrin, together with some other substances, in small proportions, and always perceptible traces of iron. He attributes the change in color to the iron, as this substance enters into combination with carbon and oxygen. For, as the blood passes through the trunks of the larger vessels and capillaries, it receives the carbon from the tissues which are continually transformed, and taking up the oxygen from the arterialized blood, forms carbonic acid, which unites with the iron, forming proto-carbonate of iron. This being of a gray color, he supposes it to be that which, with the other impurities of the blood, gives the venous blood the dark blue color. Then, as the blood comes in contact with the oxygen, as it is returned and exposed to this element in the lungs, the carbonic acid leaves the iron, which has a stronger affinity for oxygen than for carbonic acid, and forms the scarlet red peroxide of iron, that gives the characteristic color to the arterial blood. After this, as the blood is sent out through the smaller arteries and capillaries, it again gathers carbon and other impurities from the system, and becomes the dark, venous blood, thus completing the whole change of color in the circulation.

450

L.

As already mentioned, different articles of food have been divided into the azotized and non-azotized, or those which contain nitrogen as one of their constituents, and those which are nearly destitute of it. Of these, according to Liebig, the azotized portions are simply to supply the waste that is continually going on in the body, and promote its growth in the early stages of existence, or, in other words, the nutrient portion; while the sugar, starch, &c., are mainly of use in the respiratory organs. The correctness of this view may be understood from the fact, that the inhabitants in the colder regions of the earth consume a much larger quantity of oil and fat than the residents of hotter climates; and also those dwelling in the temperate zones can eat with greater impunity a larger quantity of fat meats in the winter than in the summer, there being then so much more demand for animal heat than in the summer.

M.

The suggestion of using the bellows in asphyxia, is from the directions of that distinguished and veteran surgeon, Valentine Mott, of New York city. The directions in the first part of the paragraph are the most practical, and best adapted to the wants of the community.


451
                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page