Frozen mercury cannot be touched without experiencing a sensation similar to that of an ignited body, although directly opposite to heat. The summit of Ætna, notwithstanding the fire of the volcano, is covered almost all the year with snow. Fazello, speaking of this says, that "this region extends nearly twelve miles; and, even in summer, is almost perpetually covered with snow, and extremely cold: which is the more wonderful as the summit continually produces, nourishes, and pours forth flames amid the ice and snow with which it is enveloped." Solinus says, "Ætna, in a wonderful manner, exhibits snows mixed with fires; and retains every appearance of the severest winter, amid her vast conflagrations." Silius Italicus, and Claudian, and Pindar, who lived 500 years before the Christian era, bear testimony to the antiquity of this fact. 'Where burning Ætna, towering, threats the skies, Mid flames and ice the lofty rocks arise, The fire amid eternal winter glows, And the warm ashes hide the hoary snows.' Silius Italicus, from the Latin. 'Amid the fires accumulates the snow, And frost remains where burning ashes glow; O'er ice eternal sweep th' inactive flames, And winter, spite of fire, the region claims.' Claudian, from the Latin. ----'Snowy Ætna, nurse of endless frost, The mighty prop of heaven.' Pindar, from the Greek. The height of Ætna is generally estimated at 11,000 feet above the sea. In 1755, it issued out a torrent, not of mud, as was supposed, but of snow and ice melted by the lava. The same thing happened at the volcano of Cargarossa in South America. The celebrated Herschel, (Phil. Trans. 1801, and Nich. Jour. 1. 13), in considering the construction of the sun, infers it to be a habitable globe more magnificent than our earth, or other planets, and that its lucid substance is not a liquid nor an elastic fluid; but that it exists in the manner of luminous clouds, swimming in the transparent atmosphere of the sun, or rather of lucid decompositions taking place within that atmosphere. The Philosophical Transactions, 1795, p. 72, also contains remarks on this lucid matter. Having rejected the old terms of spots, nuclei, penumbrÆ, and luculi, he has substituted those of openings, shallows, ridges, nodules, corrugations, indentations, and pores. The openings are places where the luminous solar clouds are removed, which he thinks are produced by a wind or gas from the sun's body. Shallows are depressions below the luminous clouds, and are caused by the propelling gas, which produces the openings. They are tufted like masses of clouds. Ridges are elevations of the luminous clouds. The length of one of the longest was found to be 75,000 miles. They generally surround the openings. Herschel thinks it probable, from appearances, that the luminous matter is disturbed at top by the transparent elastic fluid, which issues from the openings. Nodules are small elevations of the luminous matter. Corrugations are smaller elevations and depressions of the same matter. Indentations are the dark places of corrugations. That they are not much depressed, is deduced from their visibility near the margin of the sun. They are of the same nature as shallows, and of different sizes. Pores are the low places of indentations. The doctor is of opinion, that the phenomena before described could not appear, if the shining matter were a liquid; because, by the laws of hydrostatics, the openings, shallows, indentations, and pores would be filled up. Still less could these phenomena exist with the supposition of elastic fluidity. The shining matter, he concludes, must exist in the manner of empyreal luminous or phosphoric clouds. The planetary atmosphere of the sun, its great height, its density, as inferred from the power of gravitation, which is known to be twenty-seven times stronger at the sun's surface than with us, and other subjects are also discussed. He supposes the gas to pass from the sun itself upwards to the region of the clouds, so as to generate pores, corrugations, &c. He concludes finally, that if this view of the solar appearances be well founded, there will be no difficulty in ascertaining the actual state of the sun with regard to its energy in giving heat and light. In a paper on the "Construction of the Heavens," the doctor thinks it probable, that the great stratum called the milky way is that in which the sun is placed, though perhaps not in the centre of its thickness. The celebrated astronomer Lalande supposes the spots before mentioned to be parts of the solid body of the sun, but admits not a luminous atmosphere, but a luminous ocean. For the observations of Dr. Young, see his Natural Philosophy, and of sir Isaac Newton, his Principia, &c. Consult also Biot. Sir Isaac Newton has asserted, according to Nicholson, (British Encyclopedia) "that the density of the sun's heat, which is proportioned to his light, is seven times as great in Mercury as with us, and that water there would be all carried off in the shape of steam, for, he found, by experiments with the thermometer, that a heat seven times greater than that of the sun's beams in summer will serve to make water boil." That fixed stars are of the same nature as the sun, since they agree with it in several particulars, as in the property of emitting light continually, and in retaining constantly their relative situation with but little variation, is generally admitted. They are supposed also to emit heat as well as light. The sun is, therefore, considered a fixed star comparatively near us, and the fixed stars, which seem as centres to other systems of worlds, as suns at immense distances from us. Taking the distance of the sun from us to be, as is found by calculation, 95,000,000 miles, we may infer, that every thing must be scorched up at its surface; but this question is put at rest, if we consider that the sun's rays act on a calorific medium, as the cause of changing quiescent into distributable heat. May not light itself, by some process unknown to us, produce calorific rays? That heat and light are both material, and possess some properties in common, that for instance, of reflection and refraction, are facts well known; but to account for the peculiar agency of light, if it be admitted, is a problem, which, perhaps, will never be settled? Pontoppidan (Natural History of Norway) remarks, that he has a piece of paper made of the Norway asbestus, which, when thrown into a fierce fire, is not in the least wasted, but what is written on it totally disappears. In Norway, the stone flax is prepared by beating it in water, till the fibres separate, which are repeatedly washed, and then dried in a sieve. It is afterwards spun, observing to moisten the fingers with oil. The oracle of Apollo at Delphos, says Percy, having been consulted about the manner of stopping a plague then raging at Athens, returned for answer, that the plague should cease, when Apollo's altar, which was cubical, should be doubled. The philosophers of Athens immediately applied themselves to discover the duplicature of the cube, which henceforward was called the Delian Problem, and continued for a long time to be an object of the keenest pursuit to the curious. The first who discovered the solution was Hippocrates Chias. The incantation, that Mr. C—d used, was simply this: The snake was put into a room, and Mr. C. took in with him a bowl of milk, and the door was closed. Having taken off his coat, and put on a glove, he proceeded towards his antagonist, who, being prepared for the attack, made at him, but was repulsed; a second and third attempt was made, but he was thrown back as before. The snake finding himself mastered, did not think proper to renew the combat, and crawled into the corner panting for breath. Mr. C. now took some of the milk and placed it before him, without the least fear, and after he had finished it, he gave him more. This he continued until the snake was satisfied. After which, to the astonishment of all who witnessed the experiment, he took it up, and having wound itself round his arm, he carried it home. Whether he examined his mouth, destroyed the fang, or the vesicular sac, (if it had one), I do not recollect; but this same snake was afterwards a great favorite, and would follow his master like a dog, and even play about with the children. I mention this incident to show, that serpents possess considerable instinct, and are, like domestic animals, conscious of their friends and benefactors, and may be trained in the same manner. In the island of Ceylon, there is a small animal called the Indian Ichneumon, which destroys snakes in abundance; but, what is remarkable, he only attacks them in an open place, where he has an opportunity of running to a certain herb, which he knows instinctively to be an antidote against the poison of the bite, if he should happen to receive one. The monkeys of India, knowing the malignity of snakes, make a business of hunting and destroying them at night; after seizing them, they carry them to a stone, and beat their heads until the fangs are destroyed, and then exultingly throw them in the air. The poison is lodged in two small vesicles, and when the animal bites they are squeezed, and the poison is forced through the fangs into the wound. If the vesicles be extracted, or the liquid prevented from flowing into the wound, the bite is harmless. Various other means, besides those we have stated, have been recommended to prevent the effect of contagious matter, such as odoriferous substances, preparations of camphor, aromatic vinegar, called the vinegar of four thieves, &c. but all come short of the effect, and may be regarded as nostrums. The vapour of burning sulphur, or sulphurous acid, is used in the East against the plague; but this is inferior to either of the other acids, of which chlorine, formerly called oxymuriatic acid, is to be preferred. A mixture of four parts of common salt, one of black oxide of manganese, and two of sulphuric acid, or muriatic acid poured on manganese or red lead, will generate chlorine gas. Morveau's disinfecting apparatus contains the above mixture. The free use of this gas in apartments, &c. &c. cannot be too strongly recommended. According to the Dictionnaire de l'Industrie, (article Tonnerre artificiel), thunder is imitated, by making a hexangular case of sheet iron, and putting stones or small balls into it, and rolling it more or less swiftly. Another mode is to roll cannon balls on a floor, on which is loosely nailed, at certain distances apart, strips of wood or lath. A clap of thunder is imitated by letting fall on each other, very suddenly, a number of sheet iron plates, having them previously suspended, or strung on a cord, which must be vertical. In 1784, M. Michael, (Journal de Paris) made a machine, which imitated thunder, so completely, as either to produce the most violent clap, or the most distant rumbling, with intermediate variations. Parchment, stretched over a frame, has likewise, been used for the same purpose. The distant thunder may be represented in this manner; but, to produce a sharp noise, or clap, something more is required. The diameter of any bullet is found, by dividing 1.6706 by the cube root of the number, which shows how many of them make a pound, or it may be done in a shorter way. From the logarithm .2228756 of 1.6706, subtract continually the third part of the logarithm of the number of bullets in the pound, and the difference will be the logarithm of the diameter required. Thus the diameter of a bullet, whereof twelve weigh a pound, is found by subtracting .3597270, a third part of the logarithm of 12, from the given logarithm .2228756; or, when the logarithm is less than the former, a unit must be added, so as to have 1.2228756, and the difference .8631486 will be the logarithm of the diameter sought, which is .7297 inches; observing that the number found will always be a decimal, when the logarithm, which is to be subtracted is greater than that of the pound; because the divisor is greater than the dividend in this case. Hence, from the specific gravity of lead, the diameter of any bullet may be found from its given weight: for, since a cube foot weighs 11325 ounces, and 678 is to 355, as the cube 1728 of a foot, or 12 inches, is the content of the sphere; which therefore is, 5929.7 is to 16 ounces, or a pound, as the cube 1728 is to the cube of the diameter of a sphere which weighs a pound; which cube therefore is 4.66263, and its root 1.6706 inches, the diameter sought. |