CHAPTER X THE NATURAL FORMATION OF THE DIAMOND

Previous

An hypothesis is of little value if it only elucidates half a problem. Let us see how far we can follow out the ferric hypothesis to explain the volcanic pipes. In the first place we must remember these so-called volcanic vents are admittedly not filled with the eruptive rocks, scoriaceous fragments, etc., constituting the ordinary contents of volcanic ducts.

Certain artificial diamonds present the appearance of an elongated drop. I have seen diamonds which have exactly the appearance of drops of liquid separated in a pasty condition and crystallised on cooling. Diamonds are sometimes found with little appearance of crystallisation, but with rounded forms similar to those which a liquid might assume if kept in the midst of another liquid with which it would not mix. Other drops of liquid carbon retained for sufficient time above their melting-point would coalesce with adjacent drops, and on slow cooling would separate in the form of large perfect crystals. Two drops, joining after incipient crystallisation, might assume the not uncommon form of interpenetrating twin crystals.

Many circumstances point to the conclusion that the diamond of the chemist and the diamond of the mine are strangely akin as to origin. It is evident that the diamond has not been formed in situ in the blue ground. The genesis must have taken place at vast depths under enormous pressure. The explosion of large diamonds on coming to the surface shows extreme tension. More diamonds are found in fragments and splinters than in perfect crystals; and it is noteworthy that although these splinters and fragments must be derived from the breaking up of a large crystal, yet in only one instance have pieces been found which could be fitted together, and these occurred at different levels. Does not this fact point to the conclusion that the blue ground is not their true matrix? Nature does not make fragments of crystals. As the edges of the crystals are still sharp and unabraded, the locus of formation cannot have been very distant from the present sites. There were probably many sites of crystallisation differing in place and time, or we should not see such distinctive characters in the gems from different mines, nor indeed in the diamonds from different parts of the same mine.

I start with the reasonable supposition that at a sufficient depth[9] there were masses of molten iron at great pressure and high temperature, holding carbon in solution, ready to crystallise out on cooling. Far back in time the cooling from above caused cracks in superjacent strata through which water[10] found its way. On reaching the incandescent iron the water would be converted into gas, and this gas would rapidly disintegrate and erode the channels through which it passed, grooving a passage more and more vertical in the necessity to find the quickest vent to the surface. But steam in the presence of molten or even red-hot iron liberates large volumes of hydrogen gas, together with less quantities of hydrocarbons[11] of all kinds—liquid, gaseous, and solid. Erosion commenced by steam would be continued by the other gases; it would be easy for pipes, large as any found in South Africa, to be scored out in this manner.

Sir Andrew Noble has shown that when the screw stopper of his steel cylinders in which gunpowder explodes under pressure is not absolutely perfect, gas escapes with a rush so overpowering and a temperature so high as to score a wide channel in the metal. To illustrate my argument Sir Andrew Noble has been kind enough to try a special experiment. Through a cylinder of granite he drilled a hole 0·2 inch diameter, the size of a small vent. This was made the stopper of an explosion chamber, in which a quantity of cordite was fired, the gases escaping through the granite vent. The pressure was about 1500 atmospheres and the whole time of escape was less than half a second. The erosion produced by the escaping gases and by the heat of friction scored out a channel more than half an inch diameter and melted the granite along the course. If steel and granite are thus vulnerable at comparatively moderate gaseous pressure, it is easy to imagine the destructive upburst of hydrogen and water-gas, grooving for itself a channel in the diabase and quartzite, tearing fragments from resisting rocks, covering the country with debris, and finally, at the subsidence of the great rush, filling the self-made pipe with a water-borne magma in which rocks, minerals, iron oxide, shale, petroleum, and diamonds are violently churned in a veritable witch’s cauldron! As the heat abated the water vapour would gradually give place to hot water, which, forced through the magma, would change some of the mineral fragments into the existing forms of to-day.

Each outbreak would form a dome-shaped hill; the eroding agency of water and ice would plane these eminences until all traces of the original pipes were lost.

Actions such as I have described need not have taken place simultaneously. As there must have been many molten masses of iron with variable contents of carbon, different kinds of colouring matter, solidifying with varying degrees of rapidity, and coming in contact with water at intervals throughout long periods of geological time—so must there have been many outbursts and upheavals, giving rise to pipes containing diamonds. And these diamonds, by sparseness of distribution, crystalline character, difference of tint, purity of colour, varying hardness, brittleness, and state of tension, have the story of their origin impressed upon them, engraved by natural forces—a story which future generations of scientific men may be able to interpret with greater precision than is possible to-day.


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page