The sorting room in the pulsator house is long, narrow, and well lighted (Fig. 9). Here the rich gravel is brought in wet, a sieveful at a time, and is dumped in a heap on tables covered with iron plates. The tables at one end take the coarsest lumps, next comes the gravel which passed the ?-inch holes, then the next in order, and so on. The first sorting is done by thoroughly trustworthy white men; for here the danger of robbery is greatest. Sweeping the heap of gravel to the right, the sorter scrapes a little of it to the centre of the table by means of a flat piece of sheet zinc. With this tool he rapidly passes in review the grains, seizes the diamonds and puts them into a little tin box in front of him. The stuff is then swept off to the left and another lot taken, and so on till the sieveful of gravel is exhausted, when another is brought in. The stuff the sorter has passed to his left as temporarily inspected is taken next to another part of the room, where it is again scrutinised by native convicts again and again, and whilst diamonds can be found in quantity sufficient to repay the cost of convict labour, it is passed under examination.
The diamond has a peculiar lustre, and on the sorter’s table it is impossible to mistake it for any other stone that may be present. It looks somewhat like clear pieces of gum arabic, with a sort of intrinsic lustre which makes a conspicuous shine among the other stones.
Automatic Diamond Collector
A series of experiments was initiated by Mr. Gardner Williams with the object of separating the diamonds from the heavy, valueless concentrates with which they are associated. An ordinary shaking or percussion table was constructed, and every known means of separation was tried without success. One of the employees of De Beers, Mr. Fred Kirsten, was in charge of the experimenting, under the supervision of the late Mr. George Labram, the manager of the large crushing plant, and afterwards mechanical engineer to the Company. Notwithstanding the fact that the specific gravity of the diamond (3·52) was less than that of several of the minerals associated with it, so that its separation would seem a simple matter, it was found in practice to be impossible owing to the slippery nature of the diamond. The heavy concentrates carried diamonds, and diamonds flowed away from the percussion table with the tailings. When it seemed that every resource to do away with hand-sorting had been exhausted, Kirsten asked to be allowed to try to catch the diamonds by placing a coat of thick grease on the surface of the percussion table with which the other experiments had been made. Kirsten had noticed that oily substances, such as axle grease and white or red lead, adhered to diamonds when they chanced to come into contact, and, he argued to himself, if these substances adhered to diamonds and not to the other minerals in the concentrates, why should not diamonds adhere to grease on the table and the other minerals flow away? In this way the remarkable discovery was made that diamonds alone of all minerals contained in the blue ground will adhere to grease, and that all others will flow away as tailings over the end of the percussion table with the water. After this was determined by thorough experiments, more suitable shaking tables were constructed at the Company’s workshops. These were from time to time improved upon, until now all the sorting (except for the very coarse size) is done by these machines, whose power of distinction is far superior to the keenest eye of the native.
Only about ? of 1 per cent of diamonds is lost by the first table, and these are recovered almost to a stone when the concentrates are passed over the second table. The discrimination of this sorter is truly marvellous. Native workers, although experienced in the handling of diamonds, often pick out small crystals of zircon, or Dutch boart, by mistake, but the senseless machine is practically unerring.
The grease containing the diamonds, together with a small percentage of very heavy minerals, such as iron pyrites and barytes, is scraped from the tables, placed in buckets made of steel plates with fine perforations, and boiled or steamed. The grease passes away to tanks of water, where it is cooled and is again fit for use. The diamonds, together with small bits of iron pyrites, brass nails from the miners’ boots, pieces of copper from the detonator used in blasting, which remain on the tables owing to their high specific gravity, and a very small admixture of worthless deposit which has become mechanically mixed with the grease, are then boiled in a solution containing caustic soda, where they are freed from all grease. The quantity of deposit from the size of ? of an inch downwards, which now reaches the sorting table, does not exceed 1 cubic foot for every 12,000 loads (192,000 cubic feet) of blue ground washed. As already stated, 5/12 of 1 per cent of the whole mass of blue formerly passed to the sorting tables; or, from 12,000 loads, which is about the daily average of the quantity washed at De Beers and Kimberley Mines, 800 cubic feet had to be assorted by hand.
The Yield of Diamonds
Sometimes as many as 8000 carats of diamonds come from the pulsator in one day, representing about £20,000 in value.
When the bare statement is made that nearly 5,000,000 truck-loads, or more than 4,000,000 tons of blue ground, have been washed in a year, the mind only faintly conceives the prodigious size of the mass that is annually drawn from the old craters and laboriously washed and sorted for the sake of a few bucketfuls of diamonds. It would form a cube of more than 430 feet, or a block larger than any cathedral in the world, and overtopping the spire of St. Paul’s, while a box with sides measuring 2 feet 9 inches would hold the gems. From two to three million carats of diamonds are turned out of the De Beers mines in a year, and as 5,000,000 carats go to the ton, this represents half a ton of diamonds. To the end of 1892 10 tons of diamonds had come from this mine, valued at £60,000,000 sterling. This mass of blazing diamonds could be accommodated in a box 5 feet square and 6 feet high.
The diamond is a luxury, and there is only a limited demand for it throughout the world. From four to four and a half millions sterling is as much as is spent annually in diamonds; if the production is not regulated by the demand, there will be over-production, and the trade will suffer. By regulating the output the directors have succeeded in maintaining prices since the consolidation in 1888.
The blue ground varies in its yield of diamonds in different mines, but is pretty constant in the same mine. In 1890 the yield per load of blue ground was:
| CARATS |
From the Kimberley Mine | from 1·25 to 1·5 |
” De Beers Mine | ” 1·20 ” 1·3 |
” Dutoitspan Mine | ” 0·17 ” 0·5 |
” Bultfontein Mine | ” 0·5 ” 0·33 |
Varieties of Diamonds
Fancy Stones
Diamonds occur in all shades, from deep yellow to pure white and jet black, from deep brown to light cinnamon, also green, blue, pink, yellow, orange, and opaque.
Both in Kimberley and De Beers the blue ground on the west side is poorer in diamonds than the blue ground in other parts of the mines. The diamonds from the west side also differ somewhat from those in other parts of the same mine.
The diamonds from each mine have a distinctive character, and so uniform are the characteristics that an experienced buyer can tell at once the locality of any particular parcel of stones. An isolated stone may, of course, be found occasionally in any one mine which is characteristic of some other source of production, but this is the exception to the general rule.
There is a great similarity between the produce of the De Beers and Kimberley mines. A day’s wash from either of these mines could be distinguished from each other, but not so easily the majority of the individual stones.
The Kimberley Mine produces a small percentage of white crystals, octahedral in shape, is noted for its large macles, and, in common with the De Beers Mine, it also yields a large percentage of coloured and large yellow diamonds.
The De Beers Mine produces a comparatively small percentage of really white diamonds, but is noted for its fine silvery capes.
The Dutoitspan Mine is noted for its fine white cleavages, silver capes, large yellows, and an exceptional proportion of large stones generally. It also produces a small proportion of fine white, octahedral-shaped crystals and a comparatively small proportion of diamonds below 0·2 of a carat in size.
The Bultfontein Mine produces a very large percentage of white diamonds, mostly octahedral in shape and generally small in size. It produces very few coloured stones, but a larger percentage of flawed and spotted stones than any other mine. Even the apparently pure stones from this mine frequently develop flaws in cutting, which in the rough were imperceptible to the naked eye.
The Wesselton Mine diamonds are noted for an abnormally large percentage of octahedral stones, a large proportion of which are free from flaws. White and brown stones predominate in this mine; there is almost an entire absence of the ordinary yellow, but very fine golden-coloured fancy stones are unearthed occasionally, invariably in the form of cleavage, and hardly ever exceeding 2 carats each in weight.
For “golden fancies” this mine is unrivalled. Wesselton diamonds are easily distinguished from the produce of every other mine by a decided gloss common to them.
Wesselton produces more stones of 10 carats each and over than Bultfontein, but comparatively few large stones of over 50 carats each. It produces a very large percentage of small diamonds under 0·2 of a carat. With Bultfontein it shares the distinction of yielding cubical stones occasionally. It also produces a small percentage of blue-whites.
The Frank Smith Mine produces very fine white diamonds, fairly regular in shape, mostly octahedral, and hardly any coloured stones. Many of the stones are grooved at the edges.
The Kamfersdam Mine yields diamonds of very inferior quality, dark brown being the predominating colour, and even the majority of the better-class stones from this mine are faintly tinged with brown.
The Kimberley West, formerly known as Theron’s Mine, situated about 30 miles due west of Kimberley, yields a very small percentage of blue-whites, fine “silver capes,” and a large proportion of brown diamonds, somewhat better in quality than Kamfersdam and more regular in shape. The diamonds from this mine present a distinctly “alluvial” appearance, but they are nevertheless distinctive in character from river diamonds and much inferior in quality.
The diamonds from the Leicester Mine are of a distinctive character; they are very much grooved, extremely bad shapes for cutting, and many of the stones are cross-grained.
The Newlands Mine, West Griqualand, about 40 miles north-west of Kimberley, is interesting on account of the occurrence of diamond in what the Reverend Professor Bonney considers to be its true matrix. The workmen occasionally come across well-rounded, boulder-like masses of eclogite, a rather coarsely crystalline rock, sometimes more than a foot in diameter. Some of these boulders have diamonds imbedded in them. One piece examined by Professor Bonney measured approximately 4 inches by 3 inches by 2 inches, and appeared to have been broken off a larger eclogite boulder. In it were seen ten diamonds, mostly well-crystallised octahedra, perfectly colourless, with brilliant lustre, four of them being comprised within a space of a quarter of an inch square. All these diamonds were on the surface. Probably others would have been found inside, but it was not considered desirable to destroy the specimen by breaking it up. It is now in the Natural History Museum, having been presented by the Directors of the Newlands Mine.
Eclogite has been found in other diamond mines, but I am not aware that diamonds have been found imbedded in it except in the Newlands Mine.
Stones from Jagersfontein, in the Orange River Colony, display great purity of colour and brilliancy, and they have the so-called “steely” lustre characteristic of old Indian gems.
Falling off of Yield with Depth
According to tables furnished by the De Beers Company, the yield of the De Beers and Kimberley mines has declined as the depth increases. At the same time the value of the stones has risen, and diamonds are more expensive to-day than at any previous time.
| NUMBER OF CARATS[5] | VALUE |
YEAR | PER LOAD | PER CARAT |
| | s. | d. |
1889 | 1·283 | 19 | 8·75 |
1890 | 1·15 | 32 | 6·75 |
1891 | 0·99 | 29 | 6 |
1892 | 0·92 | 25 | 6 |
1893 | 1·05 | 29 | 0·6 |
1894 | 0·89 | 24 | 5·2 |
1895 | 0·85 | 25 | 6 |
1896 | 0·91 | 26 | 9·4 |
1897 | 0·92 | 26 | 10·6 |
1898 | 0·80 | 26 | 6·2 |
1899 | 0·71 | 29 | 7·2 |
1900 | 0·67 | 35 | 10·2 |
1901 | 0·76 | 39 | 7 |
1902 | 0·76 | 46 | 5·7 |
1903 | 0·61 | 48 | 6·3 |
1904 | 0·54 | 48 | 11·8 |
Stones other than Diamonds
Accompanying diamonds in the concentrates are a number of other minerals of high specific gravity, and some of notable beauty. Among these are the rich red pyrope (garnet), sp. gr. 3·7, containing from 1·4 to 3 per cent of oxide of chromium; zircon, in flesh-coloured grains and crystals, sp. gr. 4 to 4·7; kyanite, sp. gr. 3·45 to 3·7, discernible by its blue colour and perfect cleavage; chrome diopside, sp. gr. 3·23 to 3·5, of a bright green colour; bronzite, sp. gr. 3·1 to 3·3; magnetite, sp. gr. 4·9 to 5·2; mixed chrome and titanium iron ore, sp. gr. 4·4 to 4·9, containing from 13 to 61 per cent of oxide of chromium, and from 3 to 68 per cent of titanic acid, in, changeable quantities; hornblende, sp. gr. 2·9 to 3·4; barytes, sp. gr. 4·3 to 4·7; and mica. Some of the garnets are of fine quality, and one was recently cut which resembled a pigeonblood ruby, and attracted an offer of £25.
In the pulsator and sorting house most of the native labourers are long-sentence convicts, supplied with food, clothing, and medical attendance by the Company. They are necessarily well guarded. I myself saw about 1000 convicts at work. I was told that insubordination is very rare; apart from the hopelessness of a successful rising, there is little inducement to revolt; the lot of these diamond workers is preferable to life in the Government prisons, and they seem contented.
FIG. 10. DE BEERS DIAMOND OFFICE. 25,000 CARATS.
FIG. 11. DE BEERS DIAMOND OFFICE. THE VALUATORS’ TABLE.
To face p. 72.