PART II.

Previous
EVIDENCE IN SUPPORT OF THE THEORY FROM THE AGE OF THE SUN’S HEAT.
Testimony of Geology and Biology as to the Age of the Sun’s Heat.

The question which we have now to consider is—to which of the two theories does geology lend its testimony? Will the length of time which, according to the gravitation theory, can possibly be allotted satisfy the requirements of geology? In short, are the facts of geology reconcilable with the theory? If not, the theory must be abandoned.

Before the period when geologists felt that they were limited to time by physical considerations, the most extravagant opinions prevailed in regard to the length of geological epochs. So long as the physicist continued to state in a loose and general way that the sun might have been supplying our earth with heat at his present rate for the past 100,000,000 years, no very serious difficulty was felt; but when geologists came to understand that ten or twenty millions of years were all that could be granted to them, the condition of matters was entirely altered. The belief that the mathematical physicist must be right in his views as to the age of the sun’s heat, and that there is no possibility of a longer period being admitted, seems at present to be leading geologists towards the opposite extreme in regard to the length of geological time. Attempts have been recently made to compress the geological history of our globe into the narrow space allotted by the physicist. The attempt is hopeless, as well as injurious to geological science. What misleads is not the belief that gravitation could not possibly afford a supply of heat sufficient for more than 20,000,000 years, for this is true; it is the belief that there was no other source of heat than gravity.

We shall now consider the evidence which geology seems to afford as to the age of the sun’s heat. Geology is quite competent to render aid on this point, for the sun’s heat must be at least as old as life on this globe; and the record of the rocks tells us when this life first appeared. We require, however, to be able to measure the time which has elapsed since these records were left. What we want is absolute time; not relative time. Much has been done by geologists in regard to relative time; but this can be of no service to us in our present inquiry. Unfortunately very little trustworthy work has been done in the way of determining the absolute length of geological periods. Happily, however, great exactness of measure is not required. A rough approximation to the truth will suffice for our present purpose. If it can be shown to be more than fifteen or twenty millions of years since life first appeared on the earth, it will as effectually prove that gravitation alone could not have been the source from which the sun derived his heat as if it were shown that that period was a thousand times more remote. All we have to do is simply to assign an inferior limit to the age of life on the earth; and this can be effectually done by means of the methods, imperfect though they be, which we have at command. As the question of geological time is of some importance in relation to our present inquiry, I shall consider it at some length.

Testimony of Geology: method employed.—What has subsequently proved to be a pretty successful method of measuring geological time suggested itself to my mind during the summer of 1865. It then occurred to me that we might obtain a tolerably accurate measure of absolute geological time from the present rate of subaËrial denudation, which might be ascertained in the following way: The rate of subaËrial denudation must be equal to the rate at which materials are carried off the land into the sea; and this is measured by the rate at which sediment is carried down by our river systems. Consequently, in order to determine the present rate of subaËrial denudation, we have only to ascertain the quantity of sediment annually carried down by the river systems. This gives us the time required to remove any given quantity, say one foot, off the face of the country. If we assume the rate to be pretty much the same during past geological ages, we have a means of telling the time that was occupied in removing any known thickness of strata. But as we never can be perfectly certain that the rate is the same in both cases, the results can, of course, be regarded as only approximately true.

Taking the quantity of sediment discharged into the sea annually by the Mississippi river, as determined by Messrs. Brown and Dickson,[23] I found that it amounted to one foot off the face of the country in 1,388 years, and that, at this rate of denudation, our continents, even if they had an elevation of 1,000 feet, would not remain above sea-level over 1,500,000 years.[24] This was an exaggerated estimate of the quantity of sediment, for I shortly afterwards found that far more accurate determinations were made by Messrs. Humphreys and Abbot,[25] who were employed by the United States Government to report upon the physics and hydraulics of the Mississippi. Messrs. Brown and Dickson had estimated the quantity of sediment at 28,188,083,892 cubic feet, whereas Messrs. Humphreys and Abbot found it to be only 6,724,000,000 cubic feet, or less than one-fourth that amount. This gives one foot in 6,000 years as the rate of denudation.

At this time Dr. Archibald Geikie took up the question and went into the consideration of the subject in a most thorough manner; and it is mainly through the instrumentality of his writings on the matter[26] that the method under consideration has gained such wide-spread acceptance among geologists. After an examination of nearly all that is known regarding the amount of sediment carried down by rivers, he drew up the following table, showing the number of years required by seven rivers to remove one foot of rock from the general surface of their basins.

Danube 6,846 years
Mississippi 6,000
Nith 4,723
Ganges 2,358
Rhone 1,528
Hoang-Ho 1,464
Po 729
----- -----
Mean 3,378 years

This gives a mean of 3,378 years to remove one foot, or a little over one-half the time taken by the Mississippi. This mean appears to be generally taken as representing the average rate of subaËrial denudation of the whole earth, but it has, I fear, been rather too hastily adopted. To estimate correctly the quantity of sediment annually discharged by a large river is a most difficult and laborious undertaking. A perusal of the voluminous report of Messrs. Humphreys and Abbot, extending over 690 pages, which Dr. Geikie justly styles a model of patient and exhaustive research, will clearly show this, and at the same time prove how skilfully and accurately the task allotted to them was performed.

The risk of making very serious errors in computing the amount of sediment discharged, unless proper precautions are taken, is well illustrated in the case of the determinations made by Messrs. Brown and Dickson, to which reference has already been made. Although their report shows that they took great pains in order to arrive at correct results—in fact, they computed the total annual quantity of sediment discharged to within a cubic foot—after all, instead of being correct to this minute quantity, they gave a total more than fourfold what it ought to be. A somewhat similar discrepancy exists in reference to the denudation of the basin of the Ganges. The time required to lower its surface by one foot is, according to one estimate, 2,358 years; according to another, 1,751; and according to a third, only 1,146 years. The first figure is probably nearest the truth. Still, these differences show both the difficulty of the problem and the necessity of caution in adopting any of these results as correct.

By far the most trustworthy determinations of the whole are those of the Mississippi by Messrs. Humphreys and Abbot, which may be relied upon as not far from the truth. But, supposing the estimates in the foregoing table to be perfectly correct, can we assume that their mean may be safely taken as probably representing the average rate of denudation of the whole earth? I would most unhesitatingly reply, Certainly not. The Rhone and Po are full of glacier mud from the Alps; and the amount of sediment which they carry down may give us the rate of denudation of Switzerland, but certainly not that of the whole earth, or even of Europe. The same may be said of the Ganges, which is charged with the mud which it brings down from the Himalaya Mountains. The Hoang-Ho, or Yellow River, is an exceptionally muddy river; in fact, it derives its name from the vast quantity of yellow mud held by its waters in a state of solution. It was probably the exceptionally muddy character of the Po, the Rhone, the Ganges, and the Yellow River which attracted attention, and led to observations being made of the sediment they contain. Rivers more unsuitable than these to give us the average denudation of the earth’s surface could not well be selected. Among the seven rivers in the table, leaving out of account the small Scottish stream, the Nith, with its basin of only 200 square miles, there are only two, the Mississippi and the Danube, that drain countries which may be regarded as in every way resembling the average condition of the earth’s surface. I would choose the Mississippi as being superior to the Danube, for two reasons: (1) because the rate of denudation of its basin has been more accurately determined; and (2) because the area of its basin not only exceeds that of the Danube as five to one, but better fulfils the necessary conditions, as Sir Charles Lyell has so clearly shown. “That river,” says Sir Charles, “drains a country equal to more than half the continent of Europe, extends through twenty degrees of latitude, and therefore through regions enjoying a great variety of climate, and some of its tributaries descend from mountains of great height. The Mississippi is also more likely to afford us a fair test of ordinary denudation, because, unlike the St. Lawrence and its tributaries, there are no great lakes in which the fluviatile sediment is thrown down and arrested on its way to the sea.”[27] There is no other river in the globe which to my mind better fulfils the required conditions. It is no doubt true that the rate of denudation of the basin of the Mississippi is probably less than that of Switzerland, Norway, and the Himalayas, where glaciers abound, and certainly less than that of Greenland and the Antarctic continent; but, on the other hand, this rate is certainly much greater than that of the whole continent of Africa, Australia, and large tracts of Asia, where the rainfall is much smaller. One foot in 6,000 years may, therefore, I think, be safely taken as the average rate of denudation of the whole surface of the globe.

The average rate of denudation in the past probably not much greater than in the present.—The belief has long prevailed that the rate of denudation was much greater in past ages than it is now; but I am unable to perceive any good grounds for concluding that such was the case at any time since the beginning of the PalÆozoic period. Various reasons have, however, been assigned for this supposed greater rate; and to the consideration of these I shall now very briefly refer.

It has been thought that at some remote epoch of the earth’s history, when the moon was much nearer and the day much shorter than now, the rate of denudation would, owing to the erosive power of the enormous tides which would then prevail, be much greater than at the present day. This, however, is very doubtful. There is nothing in the stratified rocks which affords any support to the idea of great tidal waves having swept over the land, at least since the time when life began on our globe. Such a state of things would have destroyed all animal life. “The PalÆozoic sediments,” as Professor A. Winchell remarks, “have been deposited, for the chief part, in quiet seas. The deep beds of limestones and shales are spread out in sheets continent-wide, which testify unmistakably to placid waters and slow deposition.”[28] But high tides, not sweeping over the land, would not increase the rate of denudation to the extent supposed. High tides silt up a river channel more readily than they deepen it. A higher tide would probably produce a greater destruction of sea-coast: it would tend to increase the rate of marine denudation, but this would not materially affect the general rate of denudation. For, as the present rate of marine denudation is to that of subaËrial denudation only as 1 to about 1,700,[29] it would take a very large increase in the rate of marine denudation to affect sensibly the general result. Suppose the rate of marine denudation to have been, for example, ten times as great during the PalÆozoic age as it is now (which it certainly was not), it would only have shortened the time required to effect a given amount of denudation of the whole earth by 9 years in 1,700, i.e. by little more than one-half per cent.

Again, it is assumed that the greater rate of terrestrial rotation in the early ages would produce certain influences which would in turn bring about a greater amount of denudation. The rate of rotation has been slowly decreasing for ages, and in PalÆozoic times it must, of course, have been greater than at present. A more rapid rotation would increase the velocity of the trade and anti-trade winds, and would thus tend to augment the action of those meteorological agents chiefly effective in the work of subaËrial denudation. Here again the testimony of geology is negative. We have no geological grounds to conclude that the winds of PalÆozoic times were stronger than those at the present day. The heat was no doubt greater, and perhaps there was more rain; but, on the other hand, there would be less frost, snow, ice, and other denuding agents.

There is one cause which would, perhaps, be more effective than any of the foregoing: viz. the periodic occurrence of glacial epochs. When a country is buried under ice, the erosion of the surface is great. But it must be borne in mind that the influence of rain, rivers, and other denuding agents now in operation would then, in the glaciated regions, be almost nil. Besides, the greater part of the materials ground off the rocks would be left on the land; and, when the ice disappeared, it would be found in the form of a thick mantle of boulder clay—a mantle which would protect the rocky surface of the country for thousands and tens of thousands of years from further denudation. This is shown by the fine striÆ on the rocky surface, made perhaps more than 50,000 years ago, remaining under the boulder clay as perfect as the day on which they were engraved. But, more than all this, a very considerable part of the 1 foot presently being removed off the country in 6,000 years consists of the loose materials belonging to the glacial epoch, such as sands, gravels, and boulder clay, which are being swept off the surface by rain and river action. Were it not for this, the present rate of subaËrial denudation would not be so high as it actually is. Taking all things into consideration, it is, I think, obvious that the average rate of denudation since the beginning of PalÆozoic times was probably not much greater than at the present day.

How the method has been applied.—Having determined what appears to be the probable average rate of subaËrial denudation, we may now proceed to consider the way in which this rate has been applied to measure past geological time. There are two ways in which it may be applied for this purpose. It may (1) be applied directly: knowing the thickness of strata which may have been removed by denudation, we can easily tell, from that rate, the time it required to effect their removal. If we have evidence, for example, that at some epoch 1,000 feet of stratified rock were carried away, then, on the assumption that the rate of denudation was the same at that epoch as now, we have 1,000 × 6,000 = 6,000,000 years as the required time. (2) It may be applied indirectly: knowing the thickness of the strata, we may estimate the time required for their formation. This is the way in which it has usually been applied, but, as we shall see, it is the less satisfactory way of the two.

Dr. A. Geikie gives the land area of the globe as 52,000,000 square miles, and that of water as 144,712,000 square miles.[30] We may thus take the proportion of land to water roughly as 1 to 3; about one-quarter of the earth’s surface being land, and three-quarters water. One foot, therefore, removed off the surface of the land would cover the whole globe with a layer 3 inches thick, or the entire sea-bottom with a layer 4 inches thick.

If we knew the total quantity of stratified rock on the globe, we could easily tell the time that would be required for its formation. Most geologists would, I believe, be inclined to admit that, if spread uniformly over the entire globe, it would form a layer of at least 1,000 feet in thickness. In such a case the time required for its deposition would be as follows:

1,000 × 6,000 × 4 = 24,000,000 years.

This would not, however, represent the age of the stratified rocks. It would only represent the time required to deposit the rocks which we have assumed to be now in existence. The greater mass of sedimentary rocks has been formed out of previously existing sedimentary rocks, and these again out of sedimentary rocks still older. The oldest known sedimentary rocks are the Laurentian; but these are believed by geologists to have been formed from still older sedimentary rocks. It is therefore evident that the materials composing our stratified beds must have passed through many cycles of destruction and re-formation. The materials of some of the recent formations, for example, may have passed through denudation and deposition a dozen of times over.[31] The time required to have deposited at a given rate the present existing mass of sedimentary rocks is probably but a small fraction of the time required to have deposited at the same rate the total mass that has actually been formed. Few geologists, I think, who will duly reflect on the subject, will deem it too much to say that the present existing stratified rocks have on an average passed at least thrice through the cycle of destruction and re-formation. If this be admitted, then the 1,000 feet of stratified rock represent, not a period of 24,000,000 years, but a period three times as great, viz. 72,000,000 years.

It is impossible to tell from geological data the actual age of the stratified rocks; but this is not required. What we require is, as already stated, not their actual age, but an inferior limit to that age.

Method as applied by Professor Haughton.—Professor Haughton estimates the mass of the stratified rocks down to the time of the Miocene Tertiary period as being 177,200 feet in thickness, and covering an area equal to that of the sea. The present rate of subaËrial denudation he considers to be equal to one foot removed off the surface of the land in 3,090 years. If the proportion of land to water be taken as 52 to 145, it thus requires 8,616 years to deposit one foot of sediment over the bed of the ocean, and consequently this is the rate at which strata are at present being formed. This would give 8,616 × 177,200 = 1,526,750,000 years for the age of the stratified rocks. But he assumes the rate of denudation to have been ten times greater in geological time than at present. This consequently reduces the age of the rocks to 152,675,000 years. By adding one-third for the time which has elapsed since the Miocene Tertiary period he gets 200,000,000 years as a minimum length of geological time.[32]

The validity of this result rests upon what appear to me to be two very doubtful assumptions. It is assumed in his calculations that the total amount of strata formed during past ages (not the amount presently remaining) was equal to a mass 177,200 feet in thickness, covering the entire area of the ocean. This is certainly doubtful. It may have been as great, for anything that can be proved to the contrary; but we have no evidence that it was so. Certainly there is no evidence that the rate of subaËrial denudation during past ages was ever ten times as great as it is now. But how is a length of 200,000,000 years to be reconciled with the age of the sun’s heat? The stratified rocks may be as old as this, but assuredly they are not if gravitation was the only source from which the sun derived his energy.

Method as applied by Mr. Alfred R. Wallace.—Mr. Wallace adopts Professor Haughton’s estimate of 177,200 feet for the maximum thickness of the sedimentary rocks. But, instead of supposing, like Professor Haughton, the products of denudation to be uniformly spread over the entire sea-bottom, he supposes them spread over a belt of merely 30 miles broad, extending along the entire coast-line of the globe, which he estimates at 100,000 miles. This gives an area of 3,000,000 square miles on which the denuded matter of the whole land area of 57,000,000 square miles is deposited. These two areas are to one another as 1 to 19, and thus it follows that deposition goes on 19 times as fast as denudation. The rate of denudation he takes as one foot removed off the surface of the land in 3,000 years, so that the rate of deposition would be about one foot in 158 years, and consequently the time required to deposit the 177,200 feet of rock would be

177,200 × 158 = 27,997,600 years.

This is a period double what the gravitation theory of the source of the sun’s energy can afford. And if the rate of denudation be taken at one foot in 6,000 years, which is, as we have seen, probably nearer the truth, then this would make the age of the stratified rocks 56,000,000 years.

There seems to be a little ambiguity about Mr. Wallace’s result. Do the 177,200 feet represent the quantity of rock which presently exists, or do they represent the total quantity which has been formed during all past ages? If the former, then the 28,000,000 years are but a fraction of the time which must have been required; for, as we have been shown, the materials composing the stratified rocks have, on an average, been deposited at least three or four times over. If, on the other hand, the thickness is meant to represent the total quantity of rock which has been formed during the whole of past geological time, then the question arises, by what means could this quantity possibly be ascertained? In other words, how was the relation between the present quantity and the total quantity ascertained? But in either case the result is wholly irreconcilable with the gravitation theory of the source of the sun’s heat.

Method as applied directly.—We have seen that it is impossible to determine the actual age of the earth from the stratified rocks, even if we knew with perfect accuracy their present total amount. We have also seen that from the rate of deposition we cannot fix with any degree of certainty a minimum value for the age of these rocks. We can, however, by means of the first or direct application of the method, assign with tolerable accuracy, as was shown on a former occasion,[33] a minimum age to the earth. We can be far more certain of the time which must have been required to remove by denudation, say, a thousand feet of rock than we can possibly be of the time required to have deposited a thousand feet of sediment. The thousand feet of sediment may, under certain conditions, have been deposited in a hundred years, while under other conditions they may have required a million of years. In fact, nothing can be more uncertain than the rate of deposition: it depends upon such a multitude of circumstances. At the mouth of a great river, for example, a foot of sediment may be deposited in a single day, whereas in some places, as in mid-ocean, it may require a million of years to deposit the same amount. But in reference to subaËrial denudation no such uncertainty exists.

The utter inadequacy of a period of 20,000,000 years for the age of our earth is demonstrable from the enormous thickness of rock which is known to have been removed off certain areas by denudation. I shall now briefly refer to a few of the many facts which might be adduced on this point.

Evidence from “faults.”—One plain and obvious method of showing the great extent to which the general surface of the country has been lowered by denudation is furnished, as is well known, by the way in which the inequalities of surface produced by faults or dislocations have been effaced. It is quite common to meet with faults where the strata on the one side have been depressed several hundreds—and in some cases thousands—of feet below those on the other; but we seldom find any indications of such on the surface, the inequalities on the surface having been all removed by denudation. Now, in order to effect this, a mass of rock must have been removed equal in thickness to the extent of the dislocation. The following are a few examples of large faults:

The great Irwell fault, described by Professor Hull,[34] which stretches from the Mersey west of Stockport to the north of Bolton, has a throw of upwards of 3,000 feet.

Some remarkable faults have been found by Professor Ramsay in North Wales. For example, near Snowdon, and about a mile E.S.E. of Beddgelert, there is a fault with a downthrow of 5,000 feet; and in the Berwyn Hills, between Bryn-mawr and Post-gwyn, there is one of 5,000 feet. In the Aran Range there is a great fault, designated the Bala fault, with a downthrow of 7,000 feet. Again, between Aran Mowddwy and Careg Aderyn the displacement of the strata amounts to no less than from 10,000 to 11,000 feet.[35] Here we have evidence that a mass of rock, varying from one to two miles in vertical thickness, must have been denuded in many places from the surface of the country in North Wales.

The fault which passes along the east side of the Pentlands is estimated to have a throw of upwards of 3,000 feet.[36] Along the flank of the Grampians a great fault runs from the North Sea at Stonehaven to the estuary of the Clyde, throwing the Old Red Sandstone on end sometimes for a distance of two miles from the line of dislocation. The amount of the displacement, Dr. A. Geikie[37] concludes, must in some places be not less than 5,000 feet, as indicated by the position of occasional outliers of conglomerate on the Highland side of the fault.

The great fault crossing Scotland from near Dunbar to the Ayrshire coast, which separates the Silurians of the South of Scotland from the Old Red Sandstone and Carboniferous tracts of the North, has been found by Mr. B. N. Peach, of the Geological Survey,[38] to have in some places a throw of fully 15,000 feet. This great dislocation is older than the Carboniferous period, as is shown by the entire absence of any Old Red Sandstone on the south side of the fault, and by the occurrence of the Carboniferous Limestone and Coal-measures lying directly on the Silurian rocks. We obtain here some idea of the enormous amount of denudation which must have taken place during a comparatively limited geological epoch. So vast a thickness of Old Red Sandstone could not, as Mr. Peach remarks, “have ended originally where the fault now is, but must have swept southwards over the Lower Silurian uplands. Yet these thousands of feet of sandstones, conglomerates, lavas, and tuffs were so completely removed from the south side of the fault previous to the deposition of the Carboniferous Limestone series and the Coal-measures, that not a fragment of them is anywhere to be seen between these latter formations and the old Silurian floor.”[39] This enormous thickness of nearly three miles of Old Red Sandstone must have been carried away during the period which intervened between the deposition of the lower members of the Lower Old Red Sandstone and the accumulation of the Carboniferous Limestone.

Near Tipperary, in the south of Ireland, there is a dislocation of the strata of not less than 4,000 feet,[40] which brings down the Coal-measures against the Silurian rocks. Here 1,000 feet of Old Red Sandstone, 3,000 feet of Carboniferous Limestone, and 800 feet of Coal-measures have been removed by denudation off the Silurian rocks. Not only has this immense thickness of beds been carried away, but the Silurian itself on which they rested has been eaten down in some places into deep valleys several hundreds of feet below the surface on which the Old Red Sandstone rested.

Turning to the American continent, we find the amount of rock removed to be even still greater. In the Valley of Thessolon, to the north of Lake Huron, there is a dislocation of the strata to the extent of 9,000 feet.[41]

In front of the Chilowee Mountains there is a vertical displacement of the strata of more than 10,000 feet.[42] Professor H. D. Rogers found in the Appalachian coal-fields faults ranging from 5,000 feet to more than 10,000 feet of displacement.

In the Nova Scotia coal-fields one or two miles in thickness of strata have been removed in some places.[43]

A great fracture runs along the axis of the Sierra Nevada for 300 miles, accompanied by a dislocation of 3,000 to 10,000 feet.[44]

The anticlinal of the Park Range of the Rocky Mountains was cleft down the axis, and the eastern half depressed 10,000 feet. And Mr. J. P. Lesley gives an account of a fault in the Appalachians of not less than 20,000 feet, bringing the upper Devonian strata on the one side opposite to the lowest Cambrian on the other.[45]

A fault with a vertical displacement of 20,000 feet was found in the Uinta Mountains.[46]

In the Aqui range of mountains, Utah, there is a fault determined by Mr. S. F. Emmons to be at least 10,000 feet.[47]

The Grand CaÑon of Colorado, in some places 4,000, 5,000, and 6,000 feet in depth, is cut, says Professor A. Winchell, in a plateau which has itself been lowered by erosion to the extent of 10,000 feet; and this plateau occupies an area of 13,000 to 15,000 square miles.[48]

The Grand “Wash Fault,” Colorado, has a downthrow to the west of 6,000 feet. The “Hurricane Fault,” close to it, has displaced the strata to the extent of over 12,000 feet.[49]

In the Valley of East Tennessee, Appalachian Mountains, it has been shown by Mr. J. P. Lesley that as much as 35,000 feet of rock have been removed by denudation. But this being from an anticlinal arch, it does not, of course, afford any measure of the extent of the denudation of the surrounding country. Major J. W. Powell, Director of the U.S. Geol. Survey, found that under a similar condition as much as three and a half miles of strata have been removed by denudation from the top of anticlinal beds in the Uinta Mountains.[50]

Probably the most enormous displacement of strata which has yet been found is that of the “Wahsatch Fault,” Utah. This fault is about 100 miles in length, crossing the fortieth parallel of latitude from north to south, with a downthrow to the west of not less than 40,000 feet. So clear is the evidence regarding this fault that Mr. Clarence King says “that there can be no doubt of the quantitative correctness of my reading of this tremendous dislocation.”[51]

There are other modes than the foregoing by means of which geologists are enabled to measure the thickness of strata which may have been removed in places off the present surface of the country. Into the details of these I need not here enter; but I may give a few examples of the enormous extent to which the country, in some places, has been found to have been lowered by denudation.

Dr. A. Geikie has shown[52] that the Pentlands must at one time have been covered with Carboniferous rocks, upwards of a mile in thickness, which have all been removed by denudation.

In the Bristol coal-fields, between the river Avon and the Mendips, Sir Andrew C. Ramsay has shown[53] that about 9,000 feet of Carboniferous strata have been removed by denudation from the present surface.

Between Bendrick Rock and Garth Hill, South Glamorganshire, a mass of Carboniferous and Old Red Sandstone, of upwards of 9,000 feet, has been removed. At the Vale of Towy, Caermarthenshire, about 6,000 feet of Silurian and 5,000 feet of Old Red Sandstone—in all about 11,000 vertical feet—have been swept away. Between Llandovery and Aberaeron a mass of about 12,000 vertical feet of the Silurian series has been removed by denudation. Between Ebwy and the Forest of Dean, a distance of upwards of 20 miles, a thickness of rock varying from 5,000 to 10,000 feet has been abstracted.

Prof. Hull found[54] on the northern flanks of the Pendle Range, Lancashire, the Permian beds resting on the denuded edges of the Millstone Grit, and these were again observed resting on the Upper Coal-measures south of the Wigan coal-field. Now from the known thickness of the Carboniferous series in this part of Lancashire he was enabled to calculate approximately the quantity of Carboniferous strata which must have been carried away between the period of the Millstone Grit and the deposition of the Permian beds, and found that it actually amounted to no less than 9,900 feet. He also found in the Vale of Clitheroe, and at the base of the Pendle Range, that the Coal-measures, the whole of the Millstone Grit, the Yoredale series, and part of the Carboniferous Limestone, amounting in all to nearly 20,000 feet, had been swept away—an amount of denudation which, as Prof. Hull remarks, cannot fail to impress us with some idea of the prodigious lapse of time necessary for its accomplishment.

It may be observed that, enormous as is the amount of denudation indicated by the foregoing figures, these figures do not represent in most cases the actual thickness of rock removed from the surface. We are necessitated to conclude that a mass of rock equal to the thickness stated must have been removed, but we are in most cases left in uncertainty as to the total thickness which has actually been carried away. It cannot be imagined that these great disruptions occurred first when the surface became subject to denuding agencies, or that denudation ceased to operate precisely when the inequality was smoothed away. Moreover, during the time the surface on one side of the fault was being reduced, some amount of denudation must also have been in progress on the other and lower side. In the case of a fault, for example, with a displacement of, say, one mile, where no indication of it is seen at the surface of the ground, we know that on one side of the fault a thickness of rock equal to one mile must have been denuded, but we do not know how much more than that may have been removed. For anything which we know to the contrary, hundreds of feet of rock may have been removed before the dislocation took place, and as many more hundreds after all indications of dislocation had been effaced at the surface.

But it must be observed that the total quantity of rock which has been removed from the present surface of the land is evidently small in proportion to the total quantity removed during the past history of our globe. For those thousands and thousands of feet of rock which have been denuded were formed out of the waste of previously existing rocks, just as these had been formed out of the waste of yet older rock-masses. In short, as a general rule, the rocks of one epoch have been formed out of those of preceding periods, and go themselves to form those of subsequent epochs.

In many of the cases of enormous denudation to which we have referred, the erosion has been effected during a limited geological epoch. We have, for example, seen that upwards of a mile in thickness of Carboniferous rock has been denuded in the area of the Pentlands. But the Pentlands themselves, it can be proved, existed as hills, in much their present form, before the Carboniferous rocks were laid down over them; and as they are of Lower Old Red Sandstone age, and have been formed by denudation, they must consequently have been carved out of the solid rock between the period of the Old Red Sandstone and the beginning of the Carboniferous age. This affords us some conception of the immense lapse of time represented by the Middle and Upper Old Red Sandstone periods.

Again, in the case of the great fault separating the Silurians of the south of Scotland from the Old Red Sandstone tracts lying to the north, a thickness of the latter strata of probably more than a mile, as we have seen, must have been removed from the ground to the south of the fault before the commencement of the Carboniferous period. And again, in the case of the Lancashire coal-fields, to which reference has been made, nearly two miles in thickness of strata had been removed in the interval which elapsed between the Millstone Grit and the Permian periods.

Time required to effect the foregoing amount of denudation.—To lower the country one mile by denudation would therefore require, according to the rate which we have already established, about 15,000,000 years; but we have seen that a thickness of rock more than equal to that must have been swept away since the Carboniferous period; and even during the Carboniferous period itself more than a mile in thickness of strata in many places was removed. Again, there can be no doubt whatever that the amount of rock removed during the Old Red Sandstone period was much greater than one mile; for we know perfectly well that over large tracts of country nearly a mile in thickness of rock was carried away between the period of the Lower Old Red Sandstone and the Carboniferous epoch. Further, all geological facts go to show that the time represented by the Lower Old Red Sandstone itself must have been enormous.

Now, three miles of rock removed since the commencement of the Old Red Sandstone period (which, doubtless, is an under-estimate) would give us 45,000,000 years.

Again, going farther back, we find the lapse of time represented by the Silurian period to be even more striking than that of the Old Red Sandstone. The unconformities in the Silurian series indicate that many thousands of feet of these strata were denuded before overlying members of the same great formations were deposited. And again, this immense formation was formed in the ocean by the slow denudation of pre-existing Cambrian continents, just as these had been built up out of the ruins of the still prior Laurentian land. And even here we do not reach the end of the series, for the Laurentians themselves resulted from the denudation, not of the primary rocks of the globe, but of previously existing sedimentary and probably igneous rocks, of which, perhaps, no recognisable portion now remains.

It is the opinion of Mr. Darwin, and also of Mr. Wallace, that the geological time which elapsed anterior to the Cambrian period was as long as the whole interval from that period to the present day. This is an opinion which I suppose is supported by most geologists. But, to err on the safe side, I shall assume that the time which had elapsed prior to the Old Red Sandstone was not greater than the time which has elapsed since that period. Even on this assumption we have at least 90,000,000 years as a minimum duration of geological time.

Age of the earth as determined by the date of the glacial epoch.—Professor A. Winchell, by a most careful examination of the probable relative lengths of geological periods, arrived at the conclusion that the time which elapsed since the beginning of the glacial epoch is to the time which has elapsed since the solidification of the earth’s surface as 1 to 250.[55] According to the eccentricity theory of the cause of the glacial epoch, that epoch began 240,000 years ago; consequently this makes the time since solidification took place 60,000,000 years, a period which agrees roughly with that deduced from denudation, and is so far presumptive evidence of the truth of that theory of the cause of the glacial cold.

Testimony of Biology.—The time required for the variation and modification of organic forms has, Mr. Alfred R. Wallace states, been generally considered to require an even longer series of ages than might satisfy the demands of physical geology. This is a point, however, on which I am not qualified to venture an opinion. I shall simply refer to the views held by our highest authorities on the subject.

Referring to Professor Huxley’s anniversary address to the Geological Society in 1870, where he shows that almost all the higher forms of life must have existed during the PalÆozoic period, Mr. Wallace says: “Thus, from the fact that almost the whole of the Tertiary period has been required to convert the ancestral Orohippus into the true horse, he, Professor Huxley, believes that, in order to have time for the much greater change of the ancestral ungulata into the two great odd-toed and even-toed divisions (of which change there is no trace even among the earliest Eocene mammals), we should require a large portion, if not the whole, of the Mesozoic or Secondary period. Another case is furnished by the bats and whales, both of which strange modifications of the mammalian type occur perfectly developed in the Eocene formation. What countless ages back must we, then, go for the origin of these groups, the whales from some ancestral carnivorous animal, and the bats from the insectivora! And even then we have to seek for the common origin of carnivora, insectivora, ungulata, and marsupials at a far earlier period; so that, on the lowest estimate, we must place the origin of the mammalia very far back in PalÆozoic times.”[56]

“If the very small differences,” says Professor Huxley,[57] “which are observable between the Crocodilia of the older Mesozoic formations and those of the present day furnish any sort of approximation towards an estimate of the average rate of change among the Sauropsida, it is almost appalling to reflect how far back in PalÆozoic times we must go before we can hope to arrive at that common stock from which the Crocodilia, Lacertilia, Ornithoscelida, and Plesiosauria, which had attained so great a development in the Triassic epoch, must have been derived.

“The Amphibia and Pisces tell the same story. There is not a single class of vertebrated animals which, when it first appears, is represented by analogues of the lowest known members of the same class. Therefore, if there is any truth in the doctrine of evolution, every class must be vastly older than the first record of its appearance upon the surface of the globe. But if considerations of this kind compel us to place the origin of vertebrated animals at a period sufficiently distant from the Upper Silurian, in which the first Elasmobranchs and Ganoids occur, to allow of the evolution of such fishes as these from a vertebrate as simple as the Amphioxus, I can only repeat that it is appalling to speculate upon the extent to which that origin must have preceded the epoch of the first recorded appearance of vertebrate life.”

“If the theory be true,” says Mr. Darwin, “it is indisputable that before the lowest Cambrian stratum was deposited long periods elapsed—as long as, or probably far longer than, the whole interval from the Cambrian age to the present day; and that during these vast periods the world swarmed with living creatures.”[58]

In referring to the abundant and well-developed fauna of the Cambrian period, Sir Andrew C. Ramsay remarks:[59] “In this earliest known varied life we find no evidence of its having lived near the beginning of the Zoological series. In a broad sense, compared with what must have gone before, both biologically and physically, all the phenomena connected with this old period seem, to my mind, to be quite of a recent description; and the climates of seas and lands were of the very same kind as those that the world enjoys at the present day—one proof of which, in my opinion, is the existence of great glacial boulder beds in the Lower Silurian strata of Wigtonshire, west of Loch Ryan.”

Professor Haeckel remarks that “Darwin’s theory, as well as that of Lyell, renders the assumption of immense periods absolutely necessary. If the theory of development be true at all, there must certainly have elapsed immense periods, utterly inconceivable to us.”

In reference to the foregoing, Mr. Wallace says:[60] “These opinions, and the facts on which they are founded, are so weighty that we can hardly doubt that, if the time since the Cambrian epoch is correctly estimated at 200,000,000 of years,[61] the date of the commencement of life on the earth cannot be much less than 500,000,000; while it may not improbably have been longer, because the reaction of the organism under changes of the environment is believed to have been less active in low and simple than in high and complex forms of life, and thus the processes of organic development may for countless ages have been excessively slow.”

I think it must now be perfectly evident that the facts both of geology and of biology are utterly irreconcilable with the theory that the sun’s heat was derived from the condensation of its mass by gravitation; and that the mistake in regard to geological time has been committed by the physicist, and not by the geologist. The grounds upon which the geologists and the biologists found the conclusion that it is more than 20 or 30 millions of years since life began on the earth are far more certain and reliable than the grounds upon which the physicist concludes that the period must be less. The only real ground that the physicist has is that according to the theory which he holds of the origin of the sun’s heat a longer period is not possible. This might be considered good evidence were no other theory possible; but there is another theory, which accords with all the facts, and consequently has a strong presumption in its favour.

                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page