THE IMPACT THEORY OF STELLAR EVOLUTION. Upwards of twenty years ago In the theory here discussed the truth of the nebular hypothesis, which begins by assuming the The theory starts with the assumption that the greater part of the energy possessed by the universe exists or is stored up in the form of the motion of stellar masses. The amount of energy which may thus be stored up is startling to contemplate. Thus a mass equal to that of the sun, moving with a velocity of 476 miles per second, would possess, in virtue of that motion, energy sufficient, if converted into heat, to maintain the present rate of the sun’s radiation for 50,000,000 years. We are at perfect liberty to begin by assuming the Eternal motion is just as warrantable an assumption as eternal matter. When we reflect that space is infinite—at least in thought—and that, for aught we know to the contrary, bodies may be found moving throughout its every region, we see that the amount of energy may be perfectly illimitable. But, illimitable as the amount of the energy may be, it could be of no direct service while it existed simply as the motion of stellar masses. The motion, to be available, must be transformed into heat: the motion of translation into molecular, or some other form of motion. This can be done in no other way than by arresting the motion of the masses. But how is such motion to be arrested? How are bodies as large as our earth, moving at the rate of hundreds of miles per second, to have their motion stopped? According to the theory this is effected by collision: by employing the motion of the one body to arrest that of the other. Take the case of the formation of our sun according to the theory. Suppose two bodies, each one-half of the mass of the sun, moving directly towards each other with a velocity of 476 miles per second. These Coming in collision with such a velocity, the result would inevitably be that the two bodies would shatter each other to pieces. But, although their onward motions would thus be stopped, it is absolutely impossible that the whole of the energy of their motions could be at once converted into heat; and it is equally impossible that it could be annihilated. Physical considerations enable us to trace, though in a rough and general way, the results which would necessarily follow. The broken fragments, now forming one confused mass, would rebound against one another, breaking up into smaller fragments, and flying off in all directions. As these fragments receded from the centre of dispersion they would strike against each other, and, by their mutual impact, become shivered into still smaller fragments, which would in turn be broken up into fragments yet smaller, and so on as they proceeded outwards. This is, however, only one part of the process, and a part which would certainly A far more effective means of dispersing the fragments and shattering them to pieces would be the expansive force of the enormous amount of incandescent gas almost instantaneously generated by the heat of collision. The general breaking up of the two masses and the stoppage of their motions would be the work of only a few minutes, or a few hours at most. The heat evolved by the arrested motion would, in the first instance, be mainly concentrated on the surface layers of the broken blocks. The layers would be at once transformed into the gaseous condition, thus enveloping the blocks and filling the interspaces. It is difficult to determine what the temperature and expansive force of this gas would at the moment be, but evidently it would be excessive; for, were the whole of the heat of the arrested motion distributed over the mass, it would, as has been stated, amount to 100,000,000,000 foot-pounds per pound of the mass—an amount sufficient to raise 264,000 tons of iron 1° C. Thus, if we assume the specific heat of the gas to be equal to that of air (viz. ·2374), it would have a temperature of about 300,000,000° C. or more than 140,000 times that of the voltaic arc. I hardly think it will be deemed extravagant to assume that at the moment after impact the temperature of the evolved gas would be at least as great as here stated. If we assume it to be so, it is obvious that the broken mass would, by the expansive force of the generated gas, be dispersed in all directions, I am glad to find that the theory, in one of its main features, has been adopted by Sir William Thomson, “We cannot,” says Sir William, “help asking the question, What was the condition of the sun’s matter before it came together and became hot? (1) It may have been two cool, solid masses, which collided with the velocity due to their mutual gravitation; or (2), but with enormously less of probability, it may have been two masses colliding with velocities considerably greater than the velocities due to their mutual gravitation.” This is precisely what I have been contending for during the past twenty years, with the simple exception that I assume, according to his second supposition, that the “two masses collided with velocities considerably greater than the velocities due to mutual gravitation.” Sir William admits, of course, my supposition to be quite a possible one, but rejects it on the supposed ground of its improbability. His reasons for this, stated in his own words, are as follows: “This last supposition implies that, calling the two bodies A and B for brevity, the motion of the centre of inertia of B relatively to A must, when the distance between them was great, have been directed with great exactness to pass through the centre of inertia of A; such great exactness that the rotational momentum or moment of momentum after collision was no more than to let the sun have his present slow rotation when shrunk to his present dimensions. This exceedingly exact aiming of the one body at the other, so to speak, is, on the dry theory of probability, Sir William here argues that the second supposition is far less probable than the first, because, according to it, the motion of the one body relatively to the other must, in order to strike, be directed with great exactness. The result, in such a case, is that collision will rarely occur; whereas, according to the first supposition, the two bodies starting from a state of rest will, by their mutual gravitation, inevitably collide. According to the second hypothesis they will generally miss; according to the first they will always collide. I have been led to a conclusion directly opposed to Sir William’s. The fact, that, according to the second supposition, collisions can but rarely occur is one reason, amongst others, why I think that supposition to be true; and the fact that, according to the first It by no means adds anything to the probability of the first supposition to assert that, according to it, such collisions will occur readily and frequently. On the contrary, it would show that the supposition was the less likely to be true. If the collisions were insufficient in character, the fewer of them that occurred, the better; for the result of such collisions would simply be a waste of the potential energies of the universe. We should in this case have an innumerable host of imperfect suns without planets, or with at most only one or two, and these at no great distance from the luminary. There would thus be evolved a universe without any grand planetary systems. There is still another objection to the supposition. The same gravitating force which makes the dark bodies liable to come into collision with each other must, of course, make them equally liable to come into collision with the luminous bodies, and with our sun amongst the rest. Our sun would, accordingly, be at the mercy of any of those masses which might happen to come within the reach of its attractive influence. It would pull the mass towards it, and a collision would be inevitable, unless it so happened that a transverse motion of the sun itself might enable it to escape destruction. Even in such a case it could not by any means manage to get rid of the entangling mass. I. Probable Origin of Meteorites. Recent researches establish beyond doubt that stars, nebulÆ, comets and meteorites, do not differ much from our earth in their chemical constitution. Meteorites, it is true, differ in their physical characteristics from ordinary rock such as is found on the earth’s surface. But it is possible, if not probable, that the earth’s interior mass “may,” as Sir Henry Roscoe remarks, “partake of the physical nature of these metallic meteorites, and that if we could obtain a portion of matter from a great depth below the earth’s surface we should find it exactly corresponding in structure as well as in chemical composition with a metallic meteorite, and the existence of such interior masses of metallic iron may go far to explain the well-known magnetic condition of our planet.” These meteorites must be of vast antiquity, for if they are fragments of the dark bodies then they must be not only older than our solar system, but older than the nebula from which that system was formed. Some of them, however, may have come from other systems. They are fragments which may yet cast some light on the history of the dark bodies. II. Motion of the Stars; how of such different velocities, and always in straight lines. It will be only when the two bodies, coming from contrary directions, collide with equal momentum that the entire motion will be stopped. But in the case of stellar masses moving, as it were, at random in every direction this is a condition which will but rarely occur. Accordingly, in most cases the resulting stars will have more or less motion. In short, the stars should, according to the theory, be moving in all directions and with all varieties of velocity. Further, it follows that these motions ought to be in perfectly straight lines, and not in definite orbits of any kind. So far as observation has yet determined, all these conditions seem to be fulfilled. Sometimes it will happen that the two bodies will strike each other obliquely. In this case the resulting star, both as to the direction and velocity of its motion, will, to a large extent, be the resultant of the two concurrent forces. III. Motion of the Stars not due to their Mutual Attractions. According to the theory the absolute motion of the stars is due, not to the influence of gravity, but to motions which originally belonged to the two component masses out of which the star arose; motion As regards the theory we are discussing, it is the same which alternative is taken, for both are equally favourable. If the former, then, according to the theory that stellar heat had its origin in collision, it is presumptive evidence that space is occupied by dark There are other stars, such as 61 Cygni, e Indi, Lalande 21258, Lalande 21185, CassiopeiÆ, and Arcturus, possessed of motions which could not have been derived from gravity. And there are probably many more of which, owing to their enormous distances, the proper motions have not been detected. a Centauri, the nearest star in the heavens, by less than one-half, is distant twenty-one millions of millions of miles; and there are, doubtless, many visible stars a thousand times more remote. A star at this distance, though moving transversely to the observer at the enormous rate of 100 miles per second, would take upwards of thirty years to change its position so much as one second, and consequently 1,800 years to change its position one minute. In fact, we should have to watch the star for a generation or two before we could be certain whether it was moving or not. Great difficulty has been experienced in accounting for the origin of comets upon the nebular hypothesis. They approach the sun from all directions, and their motions, in relation to the planets, are as often retrograde as direct. Not only are their orbits excessively elliptical, but they are also inclined to the ecliptic at all angles from 0° to 90°. It is evidently impossible to account satisfactorily for the origin of comets if we assume them all to have been evolved out of the solar nebula, although this has been attempted by M. Faye and others. Comets are evidently, as Laplace and Professor A. Winchell both conclude, strangers to our system, and have come from distant regions of space. If they belonged to the solar system they could not, says Professor Winchell, have parabolic and hyperbolic paths. “Only a small portion of the comets,” he remarks, “are known to move in elliptic orbits.” V. NebulÆ. It is a curious circumstance that the theory here advanced seems to afford a rational explanation of almost every peculiarity of nebulÆ, as I have, on former occasions, endeavoured, at some length, to prove. 1. Origin of nebulÆ.—We have already seen that the theory affords a rational account of the origin of nebulÆ. 2. How nebulÆ occupy so much space.—It accounts for the enormous space occupied by nebulÆ. It may be objected that, enormous as would be the original temperature of the solar system produced by the primeval collision, it would nevertheless be insufficient to expand the mass, against gravity, to such an extent that it would occupy the entire space included within the orbit of Neptune. But it will be perceived, from what has already been stated regarding the dispersion of the materials before they had sufficient time to assume the gaseous condition, that this dispersion was the main cause of the gaseous nebula coming to occupy so much space. And, to go 3. Why nebulÆ are of such varied shapes.—Although the dispersion of the materials would be in all directions, it would, according to the law of probability, very rarely take place uniformly in every direction. There would generally be a greater amount of dispersion in some directions than in others, and the materials would thus be carried along various lines and to diverse distances; and, although gravity would tend to bring the widely scattered materials ultimately together into one or more spherical masses, yet, owing to the exceedingly rarified condition of the gaseous mass, the nebulÆ would change form but slowly. 4. Broken fragments in a gaseous mass of an excessively high temperature the first stage of a nebula.—From what has already been shown, it will be seen that after the colliding of the two dark bodies the first condition of the resulting nebula would be an enormous space occupied by broken fragments of all sizes dashing against each other with tremendous velocities, like the molecules in a perfect gas. All the interspaces between those fragments would be entirely filled with a gaseous mass, which, at its earliest stages at least, as in the case of the solar nebula, would have a temperature probably more than That there are some of the nebulÆ which appear to consist of solid matter interspersed in a gaseous mass is shown by the researches of Mr. Lockyer Mr. Lockyer has recently fully adopted Professor Tait’s suggestion as to the nature and origin of nebulÆ, and has endeavoured to give it further development. He considers the nebulÆ to be composed of sparse meteorites, the collisions of which give the nebulÆ their temperature and luminosity. He divides the nebulÆ into three groups, “according as the formative action seems working towards a centre; round a centre in a plane, or nearly so; or in one direction only.” As a result we have globular, spheroidal, and cometic nebulÆ. Globular nebulÆ he accounts for in the following manner. “If we,” he says, “for the sake of the greatest simplicity consider a swarm of meteorites at rest, and then assume that others from without approach it from all directions, their previous paths being deflected, the question arises whether there will not be at some distance from the centre of the swarm a region in which collisions will be most valid. If we can answer this question in the affirmative, it will follow that some of the meteorites arrested here will begin to move in almost circular orbits round the common centre of gravity. “The major axes of these orbits may be assumed to be not very diverse, and we may further assume that, to begin with, one set will preponderate over the rest. “If the collision region has any great thickness, the centre should appear dimmer than the portion nearer the edge. “Such a collision surface, as I use the term, is presented to us during a meteoric display by the upper part of our atmosphere.” Spheroidal nebulÆ, he considers, are produced by the rotation of what was at first a globular rotating swarm of meteorites. Cometic nebulÆ are explained, he considers, “on the supposition that we have either a very condensed swarm moving at a very high velocity through a sheet of meteorites at rest, or the swarm at rest surrounded by a sheet, all moving in the same direction.” In an able and interesting work, which seems almost utterly unknown in England, Amongst the first to advance the meteoric hypothesis of the origin and formation of the solar system was probably the late Mr. Richard A. Proctor. This was done in his work, “Other Worlds than Ours,” published in 1870. “Under the continual rain of meteoric matter,” he says, “it may be said that the earth, sun, and planets are growing. Now, the idea obviously suggests itself that the whole growth of the solar system, from its primal condition to its present state, may have been due to processes resembling those which we now see taking place within its bounds.” He further adds: “It seems to me that not only has this general view of the mode in which our system has reached its present state a greater support from what is now actually going on than the nebular hypothesis of Laplace, but that it serves to account in a far more satisfactory manner for the principal peculiarities of the solar system. I might, indeed, go farther, and say that where those peculiarities seem to oppose themselves to Laplace’s theory they give support to those I have put forward.” 5. The gaseous condition the second stage of a nebula.—The second stage obviously follows as a necessary consequence from the first; for the fragments, in the case under consideration, possess energy in the form of motion, which, with the heat of their circumambient vapour, is more than sufficient not only to convert the fragments into the gaseous state, but to produce complete dissociation of the chemical elements. The complete transformation of the first stage into the second must, therefore, be simply a matter of time. According to the laws of probability it may, however, sometimes happen that the two original dark bodies will not collide with force sufficient to confer on the broken fragments the energy required to convert them all into the gaseous condition. The result in this case would, no doubt, be that the untransformed fragments, drawn together by their mutual attractions, would collide and form an imperfect star or sun, without a planet. Such a star might continue luminous for a few thousands or perhaps a few millions of years, as the case might be, when it would begin to fade, and finally disappear. We have here an imperfect nebula, resulting in an imperfect star. In short, we should have in those stellar masses, on a grand scale, what we witness every day around us in organic nature, viz. imperfect formations. Such occasional imperfections give variety and add perfection to the whole. How dreary and monotonous 6. The gaseous condition essential to the nebular hypothesis.—It is found that the density of the interior planets of our solar system compared with that of the more remote is about as five to one. The obvious conclusion is that there is a preponderance of the metallic elements in the interior planets and of metalloids in the exterior. It thus becomes evident, as Mr. Lockyer has so clearly shown, All these facts show that the sifting and sorting of the chemical elements according to their densities must have taken place when our solar system was in the condition of a nebula. But, further, it seems impossible that this could have taken place had the materials composing the nebula been in the solid form, even supposing that they had taken the form of clouds of stones. It is equally impossible that the nebula could have been in the fluid or liquid state during this process. This is obvious, for the nebula must then have occupied, at least, the entire space within the orbit of the most remote planet. But our solar system in the liquid condition could not occupy one-millionth part of that space. It is therefore evident that the nebula must have been in the state of a gas, and a gas of extreme tenuity. 7. The mass must have possessed an excessive temperature.—There is ample evidence, Mr. Lockyer thinks, to show that the temperature of the solar nebula was as great as that of the sun at the present time. But I think it is extremely probable that, in some of its stages, the nebula had a very much higher temperature than that now possessed by the sun. There must, during the sifting period, have been complete chemical dissociation, so as to keep the metals and the metalloids uncombined, and thus allow the elements to arrange themselves according to their densities. The nebula hypothesis, remarks 8. Gravitation could, under no possible condition, have generated the amount of heat required by the nebular hypothesis.—The nebular hypothesis does not profess to account for the origin of nebulÆ. It starts with matter existing in space in the nebulous condition, and explains how, by condensation, suns, planets &c. are formed out of it. In fact, it begins at the middle of a process: it begins with this fine, attenuated material in the process of being drawn together and condensed under the influence of attraction, and professes to explain how, as the process goes on, a solar system necessarily results. To simplify our inquiry we shall confine our attention to the solar nebula, and consider in the first place how far condensation may be regarded as a sufficient source of heat. A. Condensation.—The heat which our nebula could have derived from condensation up to the time that Neptune was detached from the mass, no matter how far the outer circumference of the mass may have originally extended beyond the orbit of that planet, could not have amounted to over 1/7,000,000 of a thermal unit (772 foot-pounds) for each cubic foot. It is perfectly obvious that this amount could not have produced the dissociation required; and without the required dissociation Neptune could never have been formed. Further, it is physically impossible that the materials of which our solar system are composed B. Solid globes colliding under the influence of gravity alone.—As we have already seen, the view has been adopted by Sir W. Thomson that the solar nebula may have resulted from the colliding of cold, solid globes with the velocity due to their mutual gravitation alone. He states his views as follows: “Suppose, now, that 29,000,000 cold, solid globes, each of about the same mass as the moon, and amounting in all to a total mass equal to the sun’s, are scattered as uniformly as possible on a spherical surface of radius equal to one hundred times the radius of the earth’s orbit, and that they are left absolutely at rest in that position. They will all commence falling towards the centre of the sphere, and will meet there in 250 years, and every one of the 29,000,000 globes will then, in the course of half an hour, be melted, and raised to a temperature of a few hundred thousand or a million degrees Centigrade. The fluid mass thus formed will, by this prodigious The reason which he assigns for the incandescent globe settling down at a radius forty times that of the earth’s orbit is as follows: “The radius of a steady globular gaseous nebula of any homogeneous gas is 40 per cent. of the radius of the spherical surface from which its ingredients must fall to their actual positions in the nebula to have the same kinetic energy as the nebula has.” If the solar nebula thus produced would be swelled out into a spherical incandescent mass with a radius 40 times the radius of the earth’s orbit, simply because the globes fell from a distance of 100 times the radius of that orbit, then for a similar reason the mass would have a radius of 400 times that of the earth’s orbit had the globes fallen from a distance of 1,000 times the radius, and 400,000 times if the globes had fallen from a distance of 1,000,000 times the radius, and two-fifths of any conceivable distance from which they may have fallen. Supposing all this to be physically possible, which it undoubtedly is not, still the heat generated would not 9. Condensation the third and last condition of a nebula.—According to the gravitation theory, condensation is the first stage of a nebula as well as the last; for, according to it, gravity is the force which both collects together the scattered materials and gives them their heat. 10. How nebulÆ emit such feeble light.—The light of nebulÆ is mainly derived from glowing hydrogen and nitrogen in a condition of extreme gaseous tenuity; and it is well known that these gases are exceedingly bad radiators. The oxyhydrogen flame, although its temperature is surpassed only by that of the voltaic arc, gives a light so feeble as to be scarcely visible in daylight. The small luminosity of nebulÆ is, however, mainly due to a different cause. The In point of fact it would not even amount to so much, for a quantity equal to upwards of 20,000,000 years’ heat would necessarily be consumed in work against gravity in the expansion of the mass, all of which would, of course, be given back in the form of heat as the mass contracted. During the nebulous condition, however, this quantity would exist in an entirely different form, so that only 19 out of the 32 foot-pounds per cubic foot generated by concussion would then exist as heat. The density of the nebula would be only 1/16,248,160 that of hydrogen at ordinary temperature and pressure. The 19 foot-pounds of heat in each cubic foot would thus be sufficient to maintain an excessive temperature; for there would be in each cubic foot only 1/440,000 of a grain of matter. But, although the temperature would be excessive, the quantity both of light and heat in each cubic foot would of necessity be small. The heat being only 1/71 of a thermal unit, the light emitted would certainly be exceedingly feeble, resembling very much the electric light in a vacuum-tube. The theory affords a rational explanation of the origin of binary stars. Binary stars, in so far as regards their motion, follow also, of course, as a consequence, from the gravitation theory. If two bodies come into grazing collision, “they will,” says Sir VII. Sudden Outbursts of Stars. The case of a star suddenly blazing forth and then fading away, such as that observed by Tycho Brahe in 1572, may be accounted for by supposing that the star had been struck by one of the dark bodies—an event not at all impossible, or even improbable. In some cases of sudden outbursts, such as that of Nova Cygni, for example, the phenomenon may result from the star encountering a swarm of meteorites. The difficulty in the case of Nova Cygni is to account for the very sudden decline of its brilliancy. This might, however, be explained by supposing that the outburst of luminosity was due to the destruction of the meteorites, and not to any great increase of heat produced in the star itself. A swarm of meteorites converted into incandescent vapour would not be long in losing its brilliancy. Mr. Lockyer thinks that the outburst was produced by the collision of two swarms of meteorites, and not by the collision of the meteorites with a previously existing star. VIII. Star Clusters. A star cluster will result from an immensely widespread nebula breaking up into a host of separate nuclei, each of which becomes a star. The irregular manner in which the materials would, in many cases, be widely distributed through space after collision would prevent a nebula from condensing into a single mass. Subordinate centres of attraction would be established, as was long ago shown by Sir William Herschel in his famous memoir on the formation of stars; IX. Age of the Sun’s Heat: a Crucial Test. When we come to the question of the age of the sun’s heat, and the length of time during which that orb has illuminated our globe, it becomes a matter of the utmost importance which of the two theories is to be adopted. On the age of the sun’s heat rests the whole question of geological time. A mistake here is fundamental. If gravitation be the only source from which the sun derived its heat, then life |