CHAPTER VI

Previous

Synopsis of Chapter. Introduction of Pumping Machinery into Waterworks Practice—The Archimedes Screw—Use of Pumps in Hanover, Germany—First London Pump on London Bridge—Savery and Newcomen's Pumping Engine—The Hydraulic Ram—Pumping Engines Erected for the Philadelphia Waterworks—Pipes for Distributing Water—Hydrants and Valves for Wooden Pipes—Data regarding the Use of Wooden Pipes—Modern Pumping Engines.

Water wheels for raising water were in use at such an early period that the exact date of their invention will never be known. The earliest known or approximate date for the invention of a water-raising machine extends back to about 215 years before the birth of Christ, when Archimedes, the Greek mathematician, who was killed at the taking of Syracuse by the Romans, invented the Archimedes screw. This apparatus, unlike pumps of later date, was operated independently of the atmospheric pressure, and by using a number of the screws in series, water could be raised to any desired height.

Savery's Engine

The Archimedes screw was not adapted for raising large quantities of water, however, so that Greek and Roman cities never were supplied with water by means of engines. It remained for Hanover, Germany, to install the first pump of which we have knowledge, for supplying a town or city with water. In Germany, waterworks were constructed as early as 1412, and pumps were introduced in Hanover in the year 1527.

In London, England, the first pump was erected on the old London Bridge in 1582, for the purpose of supplying the city with water from the Thames and distributing it through lead pipes. There are only meagre accounts of the Hanover and London Bridge pumps to be had, however, and no illustrations showing their construction.

Newcomen's Engine

The oldest known print of a steam engine is in the Birmingham public library,[2] and shows a machine built in 1712 by Savery and Newcomen. A search made by The Engineer of London, has brought to light an old engraving dated 1725, and entitled "The Engine for Raising Water by Fire." It is unique in containing the first illustrated description of a steam engine. This machine is somewhat different from that portrayed in earlier engravings, for the boiler is fed with a portion of the hot water coming from the bottom of the cylinder or hot well. This fixes the date of the improvement described by Desagaliers in his Experimental Philosophy as follows: "It had been found of benefit to feed the boiler warm water coming from the top of the piston, rather than cold water, which would too much check the boiling and cause more force to be needful. But after the engine had been placed some years, some persons concerned about an engine, observing that the injected water as it came out of the induction pipe was scalding hot, when the water coming from the top of the piston was but just lukewarm, thought it would be of great advantage to feed from the induction or injected water, and accordingly did it, which gave a stroke or two of advantage to the engine."

Section Through the Engine House of the Centre Square Water Works, Philadelphia

At about this time or late in 1700, a Frenchman, Montgolfer, invented the hydraulic ram. This machine, while simple in construction, is one of the most efficient water-raising devices made, and in the later improved designs amount actually to hydraulic engines. That pumping engines of this period and steam boilers to operate them were of crude design there can be no doubt, indeed, many years later, in 1800, when waterworks and a pumping station were introduced in Philadelphia, the pumps and boilers were of the crudest design. A sectional illustration of the pumping house, taken from Volume 17 of Engineering News, conveys a fair idea of the design of the pumps. The engine was built mostly of wood and had cylinders 6 feet long by 38¼ inches inside diameter. A double acting pump had a cylinder of 18½ inches diameter and 6-foot stroke. In these engines the lever arms, flywheel shaft and arms, flywheel bearings, the hot well, hot and cold water pumps, cold water cistern, and even the external shell of the boilers were made of wood. The boilers were rectangular chests, made of 5-inch white pine planks of the general dimensions shown in the illustration. They were braced on the sides, top and bottom with white oak scantling, 10 inches square, all bolted together with 1¼-inch iron rods passing through the planks. Inside the chest was an iron fire-box, 12 feet 6 inches long by 6 feet wide and 1 foot 10 inches deep, and 8 vertical flues, 6 of 15 inches and 2 of 12 inches diameter, through which the water circulated, the fire acting around them and passing up an oval flue situated just above the fire box and carried from the back of the boiler to near the front and then returned to the chimney at the back.

Wooden Boilers used in the Philadelphia Water Supply

These wooden boilers were used at the Centre Street waterworks from 1801 to 1815, but did not give general satisfaction on account of the numerous leaks. They were operated at very low pressure, averaging not over 2½ pounds per square inch, but even at this extremely low pressure were found unsatisfactory.

During the early days of water supply, following the period of aqueducts, lead was the material commonly used for water supply mains. Later, however, pipes made of bored-out logs were used and continued in service up to the year 1819. The water mains used in Philadelphia were made of spruce logs, reinforced at the ends with wrought-iron bands. A section of one of these old Philadelphia water mains, which is still in a good state of preservation, is on exhibition in the Builders' Exchange of that city.

So far as is known, Philadelphia was the first city in the world to adopt cast iron pipe for water mains. Cast iron water pipes were laid in Philadelphia in the year 1804, antedating their use in London, England, by a few years.

Section of Bored-out Log Laid in Victoria, B. C., in 1862 and taken out 1900

The durability of wood pipe is rather astonishing when the short life of logs exposed on the surface of the earth is considered. After lying buried in the earth for fifty or sixty years the wood pipe used in the Philadelphia waterworks was sold to Burlington, N. J., in 1804, and remained in constant use there until 1887, when larger mains were required.

Valve for Wooden Pipes Used in the Philadelphia Water Supply

Hydrant for Wooden Pipes Used in the Philadelphia Water Supply

Portsmouth, N. H., used bored pine logs for mains from 1798 to 1896, when they were replaced with larger pipes. When dug up, the logs were entirely sound and good for many years' service.

A few data regarding the use of wooden pipes might not be without interest, while at the same time pointing out the approximate dates when waterworks were constructed in several cities. Log pipes laid in Victoria, B. C., in 1862 and taken out in 1900 were quite free from decay but badly checked.

Constantinople still receives part of its supply through wood pipe.

London had 400 miles of wood pipe in use for 218 years, from 1589 to 1807. When taken up it was found to be quite sound.

Boston used one system of wood pipes from 1652 to 1796, then replaced it with another one which lasted until 1848.

Denver, Colorado, has nearly 100 miles of stave pipe conduit and mains in use. All the water brought to Denver for domestic use passes through wooden pipe 37 inches in diameter, which conducts it from Cherry Creek, which is about 8 miles from center of city.

The hydrants and valves used in connection with wood pipes in Philadelphia were made of metal, and it is presumed that the valves and hydrants used in other cities were likewise made of metal.

Modern Vertical Triple-Expansion Pumping Engine

Only one brief century has passed since waterworks pumping stations were introduced in the United States, but what wonderful improvements have been made in pumping machinery design within that short space of time! Steel and iron have taken the place of wood in the manufacture of boilers and pumps, and instead of the leaky, unsatisfactory apparatus of other days, even when working under low pressures, we now have pumping engines which will work continuously month after month under several hundred pounds pressure, and deliver the daily volumes of from a few hundred to many million gallons of water.

·AQVEDVCT·CROSSING·THE·ALCANTARA·VALLEY·

·SPANISH-PORTVGESE-BORDER·


                                                                                                                                                                                                                                                                                                           

Clyx.com


Top of Page
Top of Page